Spot, Forward, and Futures Libor Rates

Size: px
Start display at page:

Download "Spot, Forward, and Futures Libor Rates"

Transcription

1 Spo, Forward, Fuures Libor Raes MAREK RUTKOWSKI Insiue of Mahemaics, Poliechnika Warszawska, -66 Warszawa, Pol Absrac The properies of forward fuures ineres-rae conracs associaed wih a given collecion of rese daes are sudied wihin he frameworks of he Gaussian HJM model he lognormal model of Libor raes. We focus on he dynamics disribuional properies of spo, forward, fuures Libor raes under spo forward maringale measures. Keywords: zero-coupon bond, Libor rae, forward conrac, fuures conrac, Eurodollar fuures Inroducion In a series of recen papers o menion a few: Brace e al. [2], Goldys [5], Jamshidian [7], Milersen e al. [8], Musiela Rukowski [9], Rady [], Rukowski [3] various approaches o he problem of modelling of Libor raes were presened. In paricular, quesions relaed o he valuaion hedging of ineres raes derivaives, such as caps swapions, were examined in some deail. In he presen noe, a slighly differen perspecive is adoped, namely, he emphasis is on he dynamics disribuional properies of various spo, forward fuures raes under spo forward maringale measures. Though he so-called lognormal model of Libor raes is aken as a benchmark, o faciliae he comparison, he mos basic resuls relaed o behaviour of Libor raes wihin he Gaussian HJM framework are also given. A large par of he presen work is devoed he sudy of he dynamics he ransiion probabiliy densiy funcion of he forward Libor rae under spo forward maringale measures noe ha hese resuls are also closely relaed o he behavior of he forward bond price. Le us sress ha he disribuional properies of forward Libor raes are relaively easy o esablish in he presen framework. On he conrary, he sudy of he behavior of spo fuures Libor raes poses some nonrivial difficulies. This specific feaure is mainly due o he fac ha he before-menioned mehods of modelling focus on he deerminaion of he dynamics of forward Libor raes, hus ypically leaving some degree of freedom in he specificaion of oher Libor raes. We hope ha his research will prove useful as a saring poin for furher sudies of sill unsolved problem of exogenous modelling of eiher spo or fuures Libor raes. 2 Forward Fuures Libor Raes We assume ha we are given a prespecified collecion of rese/selemen daes T =<T < < T M = T, referred o as he enor srucure. Le us denoe δ j = T j T j for j =,...,M. We wrie B, T o denoe he price a ime of a T -mauriy zero-coupon bond. P is he spo probabiliy measure, while P Tj P Tj+, respecively is he forward probabiliy measure associaed wih he dae T j T j+, respecively. The corresponding d-dimensional Brownian moions are denoed by W W Tj W Tj+, respecively. Also, we wrie F B, T, U =B, T /B, U odenoehe forward price of a bond his inerpreaion is valid provided ha U T. Finally, π X denoes he value ha is, he arbirage price a ime of European coningen claim X see Musiela markru@alpha.im.pw.edu.pl.

2 2 M.Rukowski: Spo, Forward, Fuures Libor Raes Rukowski [] for deails. Our firs aim is o examine hese properies of forward fuures conracs or raes which are universal; ha is, which do no rely on specific assumpions imposed on a paricular model of he erm srucure of ineres raes. We fix an index j, we inroduce various kinds of ineres raes relaed o he period [T j,t j+ ]. 2. Forward Libor Rae Le us firs consider a one-period swap agreemen seled in arrears; i.e., wih he rese dae T j he selemen dae T j+. By he conracual feaures, he long pary pays δ j+ κ receives B T j,t j+ aimet j+. Equivalenly, he pays an amoun Y =+δ j+ κ receives Y 2 = B T j,t j+ a his dae. The values of hese payoffs a ime T j are π Y =B, T j+ +δ j+ κ, π Y 2 =B, T j. The second equaliy above is rivial, since he payoff Y 2 is equivalen o he uni payoff a ime T j. Consequenly, for any fixed T j, he value of he forward swap rae, which makes he conrac worhless a ime, can be found by solving for κ he following equaion π Y =B, T j+ +δ j+ κ = B, Tj =π Y 2. I is apparen ha κ = B, T j B, T j+, [,T j ]. δ j+ B, T j+ Noe ha κ coincides wih he forward Libor rae L, T j overheperiod [T j,t j+ ], which is given by he convenional formula +δ j+ L, T j def = B, T j B, T j+ = E P Tj+ B T j,t j+ F, Noe ha he second equaliy in is a sraighforward consequence of he definiion of he forward measure P Tj+. I is hus clear ha in order o deermine he forward Libor rae L,T j, i is enough o find he forward price of he claim B T j,t j+ for he selemen dae T j+. Furhermore, he process L,T j necessarily follows a maringale under he forward probabiliy measure P Tj+. Recall also ha wihin he HJM framework we have df B, T j,t j+ =F B, T j,t j+ b, T j b, T j+ dw Tj+ 2 under P Tj+, where b,t ss for he price volailiy of he T -mauriy zero-coupon bond. On he oher h, L,T j can be shown o admi he following represenaion dl, T j =L, T j λ, T j dw Tj+, where λ,t j is a d-dimensional adaped process. Combining he las wo formulae wih, we arrive a he following fundamenal relaionship δ j+ L, T j +δ j+ L, T j λ, T j=b, T j b, T j+, [,T j ]. 3 Le us sress ha equaliy 3 is an essenial ingredien in various consrucions of he lognormal model of forward Libor raes. For insance, if we work by he backward inducion, relaionship 3 allows us o deermine he forward measure for he dae T j, provided ha he forward measure P Tj+, he associaed Brownian moion W Tj+, he volailiy λ, T j are known i is cusomary o assume ha λ,t j is an exogenously given deerminisic funcion. Indeed, in he HJM framework, he Radon-Nikodým densiy of P Tj wih respec o P Tj+ is known o saisfy EZ ss for he Doléans exponenial of he process Z dp Tj = E Tj dp Tj+ b, Tj b, T j+ dw Tj+.

3 UNSW, Repor No.S97-, Sepember 997 his version: June In view of 3, we also have dp Tj δ j+ L, T j = E Tj dp Tj+ +δ j+ L, T j λ, T j dw Tj+. For our furher purposes, i is also useful o observe ha his densiy admis he following represenaion dp Tj = cf B T j,t j,t j+ =c +δ j+ LT j, P Tj+ -a.s., 4 dp Tj+ where LT j =LT j,t j c> is he normalizing consan. Therefore dp Tj dp Tj+ F = cf B, T j,t j+ =c +δ j+ L, T j, P Tj+ -a.s. Finally, he process L,T j is known o saisfy he following sochasic differenial equaion, under he probabiliy measure P Tj, δj+ L, T j λ, T j 2 dl, T j =L, T j +δ j+ L, T j 2.2 Adjused Forward Libor Rae d + λ, T j dw Tj. Consider now a similar swap which is, however, seled in advance ha is, a ime T j. Our firs goal is o deermine he forward swap rae implied by such a conrac. Noe ha under he presen assumpions, he long pary formally pays an amoun Y =+δ j+ κ receives Y 2 = B T j,t j+ aheselemendaet j which coincides here wih he rese dae. The values of hese payoffs a ime T j admi he following represenaions π Y =B, T j +δ j+ κ, π Y 2 =B, T j E PTj B T j,t j+ F. The value κ of he adjused forward swap rae, which makes he swap agreemen seled in advance worhless a ime, can be found from he equaliy π Y =B, T j +δ j+ κ = B, T j E PTj B T j,t j+ F =π Y 2. I is clear ha κ = δ j+ E PTj B T j,t j+ F. We are in a posiion o inroduce he adjused forward Libor rae L, T j by seing L, T j def = δ j+ E PTj B T j,t j+ F, [,T j ]. Le us make wo remarks. Firs, i is clear ha finding of he adjused Libor rae L,T j is essenially equivalen o pricing of he claim B T j,t j+ which seles a T j more precisely, we need o know he forward price of his claim for he dae T j. Second, i is useful o observe ha L, T j =E PTj BTj,T j BT j,t j+ δ j+ BT j,t j+ F = E PTj LT j,t j F. In paricular, i is eviden ha a he rese dae T j he wo forward Libor raes inroduced above coincide, since manifesly LT j,t j = BT j,t j+ δ j+ BT j,t j+ = LT j,t j.

4 4 M.Rukowski: Spo, Forward, Fuures Libor Raes To summarize, he sard forward Libor rae L,T j saisfies L, T j =E PTj+ LT j,t j F, [,T j ], wih he iniial condiion L,T j = B,T j B,T j+ δ j+ B,T j+, for he adjused Libor rae L,T j wehave L, T j =E PTj LT j,t j F, [,T j ], wih he iniial condiion L,T j =δ j+ E PTj B T j,t j+. Noe ha he las condiion depends no only on he iniial erm srucure, bu also on he volailiies of bond prices see, e.g., formula 9 below. 2.3 Fuures Libor Rae A Eurodollar fuures conrac is a fuures conrac in which he Libor rae plays he role of an underlying asse. By convenion, a he conrac s mauriy dae T j, he quoed Eurodollar fuures price ET j,t j is se o saisfy cf. Amin Ng [] ET j,t j def = δ j+ LT j,t j. Equivalenly, in erms of he zero-coupon bond price we have ET j,t j =2 B T j,t j+. From he general heory, i follows ha he Eurodollar fuures price a ime T j equals E, T j def = E P ET j,t j F = δ j+ E P LTj,T j F =2 E P B T j,t j+ F 5 recall ha P represens he spo maringale measure in a given model of he erm srucure. I seems naural o inroduce he concep of he fuures Libor rae, associaed wih he Eurodollar fuures conrac, hrough he following definiion. Definiion 2. Le E, T j be he Eurodollar fuures price a ime for he selemen dae T j. The implied fuures Libor rae L f, T j saisfies E, T j = δ j+ L f, T j, [,T j ]. 6 I follows immediaely from 5 6 ha he following equaliy is valid +δ j+ L f, T j =E P B T j,t j+ F. Equivalenly, we have L f, T j =δj+ E P B T j,t j+ F = E P LT j,t j F =E P LT j,t j F. Noe ha he fuures Libor rae follows a maringale under he spo maringale measure P.

5 UNSW, Repor No.S97-, Sepember 997 his version: June Gaussian HJM Model In his secion, we focus on he Heah e al. [6] approach o he erm srucure modelling. We denoe by f, T he insananeous forward rae prevailing a ime for he fuure infiniesimal ime period [T,T + dt ], we wrie r, T =f, +T. Noe ha r = f, =r, represens he shor-erm rae. Consequenly, he savings accoun B saisfies B =exp r u du =exp fu, u du =exp ru, du. We assume ha for any mauriy dae T he insananeous forward rae saisfies df, T =α, T d + σ, T dw where σ,t is an adaped sochasic process. The process W is a d-dimensional sard Brownian moion defined on a filered probabiliy space Ω, F, P, where P is inerpreed as he spo maringale measure. We find i convenien o assume ha he underlying filraion is generaed by W. I is well known ha in he so-called risk-neural world, ha is, under P, we have see [6] T α, T =σ, T σ, u du = b, T b, T, T where b, T ss for he bond price volailiy, ha is, T b, T = σ, u du. In he HJM framework, he price process B,TofaT -mauriy discoun bond is inroduced hrough he formula T T B, T =exp f, u du =exp r, u du for every T. In paricular, he price process D,T of a sliding bond equals +T T D, T =exp f, u du =exp r, u du for any, T. Assume, in addiion, ha he bond price volailiies b,t j follow deerminisic funcions. In his case, i is no hard o express forward fuures Libor raes in erms of bond prices bond price volailiies. Furhermore, as soon as he dynamics of various raes under forward probabiliy measures are explicily known, i is sraighforward o value ineres-rae sensiive derivaives. As already menioned, in he HJM framework we have df B, T j,t j+ =F B, T j,t j+ b, T j b, T j+ dw Tj+ wih he erminal condiion F B T j,t j,t j+ =B T j,t j+. Also, he spo forward Brownian moions are known o saisfy dw Tj = dw Tj+ b, T j b, T j+ d, 7 dw = dw Tj + b, T j d. for every j =,...,M. Le us emphasize ha in he sard HJM framework here is no ambivalence in he definiion of he spo probabiliy measure. This should be conrased wih he case of he discree-enor lognormal model of forward Libor raes, in which he spo maringale measure is

6 6 M.Rukowski: Spo, Forward, Fuures Libor Raes no uniquely defined, hus here is some degree of freedom in he choice of he spo maringale measure, when a family of forward measures is previously specified. For sake of simpliciy, we denoe γ, T j,t j+ =b, T j b, T j+. We are in a posiion o esablish he following proposiion see Flesaker [4] for relaed resuls. Proposiion 3. Assume he Gaussian HJM model of he erm srucure of ineres raes. Then he following relaionships are valid +δ j+ L, T j =E PTj+ B T j,t j+ F = FB, 8 +δ j+ L, Tj =E PTj B Tj γu,t T j,t j+ F = FB e j,t j+ 2 du, 9 +δ j+ L f, T j =E P B T j,t j+ F = FB e Tj bu,t j+ γu,t j,t j+ du. Proof. The firs assered formula is in fac universal see. For he second, noe ha cf. 2 dw Tj df B =F B γ, T j,t j+ + γ, T j,t j+ d. Consequenly, T j dw Tj F B T j =F B exp γu, T j,t j+ u + γu, T j,t j+ du 2 Tj γu, T j,t j+ 2 du. Since B T j,t j+ =F B T j, upon aking condiional expecaion wih respec o he σ-field F, we obain 9. Finally, we have df B =F B γ, T j,t j+ dw b, T j+ d hus T j F B T j =F B exp γu, T j,t j+ dw u bu, T j+ du Tj γu, T j,t j+ 2 du. 2 This leads o equaliy. ¾ The dynamics of various forward Libor raes are also easy o find, as he following corollary shows. Corollary 3. We have dl, T j =δj+ +δj+ L, T j γ, T j,t j+ dw Tj+, d L, T j =δ j+ +δj+ L, T j γ, T j,t j+ dw Tj, dl f, T j =δj+ +δj+ L f, T j γ, T j,t j+ dw. Proof. The firs formula is an immediae consequence of combined wih 2. The nex wo expressions can be derived by applying Iô s rule o equaliies 9 respecively. Remark. Noice ha +δ j+ L f, T j = +δ j+ L, Tj e Tj bu,t j γu,t j,t j+ du. Therefore, L f,t j = L,T j if he bond price volailiy b,t j vanishes idenically. On he oher h, equaliy L f,t j =L,T j holds provided ha he volailiy b,t j+ vanishes idenically. For obvious reasons hese wo cases are of minor ineres. On he oher h, i is clear from Corollary 3. ha closed-form soluions for opions wrien on he forward or fuures LIBOR raes are no available in he presen seup. ¾

7 UNSW, Repor No.S97-, Sepember 997 his version: June Dynamics of Libor Raes Recall ha for any daes <T <U he forward Libor rae L, T, U is given by he formula cf. L, T, U = B, T B, U. U T B, U Forafixedδ>, we shall focus on he case when U = T + δ i.e., we examine he case of fixedlengh accrual period. As before, we prefer o wrie L, T raher han L, T, T + δ. Also, we shall denoe K, T =L, + T for any T. Finally, he spo Libor rae is defined by seing ˆL = L, =K,. Le us denoe by D, δ =B, + δ he price a ime of a + δ-mauriy zero-coupon bond. The process D,T will be referred o as he price of a sliding bond, he yield Z,T of a sliding bond as a sliding yield. Noe ha K, T = B, + T B, + T + δ δb, + T + δ = D, T D, T + δ δd, T + δ D, D, δ ˆL = = δ D, δ. 2 δd, δ For sake of convenience, we shall someimes wrie c, δ =b, + δ in wha follows. The following resul which holds wihin he Heah, Jarrow, Moron [6] seup will prove useful see, e.g., Brace e al. [2] or Rukowski [4] for he proof. Proposiion 4. Assume he HJM arbirage-free framework. The dynamics of he price process D,δ of a sliding bond, under he spo maringale measure P, are r dd, δ =D, δ r, δ d + c, δ dw, 3 where r = f, r, δ =f, + δ. The nex proposiion deals wih he dynamics of spo forward Libor raes in a risk-neural world. Proposiion 4.2 Assume ha he lengh δ> of he accrual period is fixed. The dynamics of he spo Libor rae ˆL are governed by he expression, under he spo maringale measure P, r, dˆl = δ + δ ˆL δ r + c, δ 2 d c, δ dw. 4 Furhermore, for any fixed mauriy dae T, he forward Libor raes K,T L,T saisfy dk, T = K, T δ + δk, T c, T c, T + δ c, T + δ d T + δ + δk, T c, T c, T + δ dw dl, T =δ + δl, T b, T b, T + δ dw b, T + δ d, 5 respecively. Proof. Applying Iô s formula o 3, we obain dd, δ =D, δ r, δ r + c, δ 2 d c, δ dw.

8 8 M.Rukowski: Spo, Forward, Fuures Libor Raes Since + δ ˆL = D, δ sohadˆl = δ dd, δ, he las formula immediaely yields 4. For he forward Libor rae K,T we have cf. dk, T = D, T δ d. D, T + δ An applicaion of Iô s formula yields dk, T = D, T r, T + δ r, T c, T c, T + δ c, T + δ d δd, T + δ + c, T c, T + δ dw. From he definiion of he process D,T, i is easily seen ha D, T + δ T = D, T + δr, T + δ D, T = D, T r, T. T Therefore K, T is necessarily differeniable wih respec o he second argumen, K, T = D, T = r, T + δ r, T D, T T δ T D, T + δ δd, T + δ. The formula for he dynamics of K,T now follows by elemenary algebra. Similar, bu simpler, calculaions show ha L,T saisfy 5. This complees he proof of he proposiion. ¾ Example 4. We shall examine he behavior of he spo Libor rae process wihin he framework of he Vasicek model. We assume ha he shor-erm rae r solves he SDE dr = a br d σdw, where a, b σ are sricly posiive consans. Le us denoe g = e b. The dynamics of D,T under he maringale measure P are r dd, δ =gδd, δ ab + 2 σ2 b 2 gδ d + σb dw. Le us firs focus on he yield process Z, δ =Y, + δ of he sliding bond. Since Z, δ = δ ln D, δ, one can show ha see Rukowski [4] dz, δ = hδ bz, δ d σb δ gδ dw, where hδ =b 2 b δ gδ ab 2 σ2 + 4 b 2 σ 2 δ g 2 δ+ab δ. Pu anoher way, he dynamics of he sliding yield Z,δ are dz, δ = â ˆbZ, δ d +ˆσdW, where â, ˆb ˆσ are consans depending on T. On he oher h, i is clear ha dd, δ =gδd, δ 2 σ2 b 2 gδ+ab r d + σb dw. Furhermore, we have +δ ˆL = B, + δ =exp m, + δ+n, + δr,

9 UNSW, Repor No.S97-, Sepember 997 his version: June hus where n, + δ =b gδ r = m, + δ + ln + δ ˆL n, + δ, I is no hard o check ha m, + δ =b 3 gδ bδ ab 2 σ2 4 b 3 σ 2 g 2 δ. gδr = b 2 gδ bδ ab 2 σ2 4 b 2 σ 2 g 2 δ+b ln + δ ˆL. Consequenly, for any fixed δ we have dˆl = δ dd, δ =δ + δ ˆL hδ b ln + δ ˆL d σb gδ dw where hδ is a consan, namely, hδ =ab gδ+b 2 bδ gδ ab 2 σ b 2 σ 2 g 2 δ. We conclude ha wihin Vasicek s framework, he spo Libor rae ˆL follows a diffusion process under he spo maringale measure P. Oher classic examples of shor-erm rae models can be sudied along he same lines. An ineresing problem which arises in his conex is hus he characerizaion of hose diffusion processes which may play he role of he spo Libor rae. 4. Lognormal Model of Forward Libor Raes From now on, he bond price volailiies b,t j are no longer assumed o be deerminisic. On he oher h, we shall frequenly assume ha he volailiies of processes L,T j follow deerminisic funcions. For various approaches o such a model, he reader is referred o Milersen e al. [8], Brace e al. [2], Musiela Rukowski [9], Jamshidian [7], Rukowski [3]. In his secion, we focus on he original mehod, due o Brace e al. [2]. I appears, ha formula 5 is a convenien saring poin in a consrucion of he lognormal model of forward Libor raes. Assume, for insance, ha for any mauriy dae T we are given a funcion λ,t:[,t] R d. We posulae ha δ + δl, T b, T b, T + δ dw = λ, T L, T dw, or equivalenly, b, T b, T + δ = δl, T λ, T. 6 +δl, T Equaliy 5 hen becomes dl, T =L, T λ, T dw b, T + δ d. To solve explicily he las equaion, we need o specify b, T + δ. To his end, i is enough o assume, for insance, ha he process b, T = b, T isknownforanyt every [T δ, T ]. Such an approach o he modelling of forward Libor raes was adoped by Brace e al. [2]. Discree-enor case. Le us firs focus on a discree se of rese daes T j = jδ, j =, 2,... his is commonly referred o as he discree-enor case. By assumpion, he funcion b,t =ˆb,T is exogenously specified. Equaliy 6 implies ha b, T 2 =ˆb, T δl, T +δl, T λ, T, [,T ].,

10 M.Rukowski: Spo, Forward, Fuures Libor Raes moreover b, T 2 =ˆb, T 2 for T,T 2 ]. Therefore, L,T saisfies dl, T =L, T λ, T dw ˆb, T d + δl, T +δl, T λ, T d. We shall now deermine he dynamics of L,T 2. For his purpose, noe ha b, T 3 =ˆb, T 2 i= δl, T i +δl, T i λ, T i for [,T ], b, T 3 =ˆb, T 2 δl, T 2 +δl, T 2 λ, T 2 for T,T 2 ], finally b, T 3 =ˆb, T 3 for T 2,T 3 ]. Consequenly, L,T 2 saisfies dl, T 2 =L, T 2 λ, T 2 dw ˆb, T d + 2 i= δl, T i +δl, T i λ, T i d for [,T ], dl, T 2 =L, T 2 λ, T 2 dw ˆb, T 2 d + δl, T 2 +δl, T 2 λ, T 2 d for [T,T 2 ]. In general, for any j =, 2,... he process L,T j solves on each inerval [T k,t k ],k=,...,j, he following SDE dl, T j =L, T j λ, T j dw ˆb, T k d + j i=k δl, T i +δl, T i λ, T i d. We have hus found a sysem of SDEs, which can be solved recursively. We firs solve his sysem in fac, a paricular SDE for L,T on [,T ] ; subsequenly, we solve i for L,T 2 ; firs on he inerval [,T ], hen [T,T 2 ], so forh. Remarks. The procedure above can be easily exended o he case of variable accrual periods. To be more specific, we may focus on an arbirary discree collecion of rese daes <T <T 2 <... For any j we are now preoccupied wih he forward Libor rae L,T j,t j+ which corresponds o he rese dae T j he accrual period [T j,t j+ ]. Noe ha in conras o he previously examined case, he lengh δ j+ = T j+ T j is no longer assumed o be consan, i.e., independen of j. If we wish o exend he consrucion discussed above o he presen case, i is sufficien o assume ha for any j he volailiy funcion b,t j is exogenously given on he inerval [T j,t j ]. I is worhwhile o menion ha an alernaive approach o he discree-enor case based on he backward inducion was developed in [7], [9], [3]. An advanage of his alernaive approach is ha one deals wih he dynamics of forward Libor raes under forward maringale measures; he need o specify he bond price volailiy ˆb,T j is hus avoided. Once he consrucion of a discree-enor model is achieved, he spo maringale measure can also be inroduced see [7] or [3]. Coninuous-enor case. Le us now consider he case of an arbirary rese dae T>. Suppose firs ha T δ. Then clearly dl, T =L, T λ, T dw ˆb, T d + δl, T +δl, T λ, T d. Suppose now ha T m <T <T m+ for some m. We denoe a = T T m, we se T =, T j =j δ + a

11 UNSW, Repor No.S97-, Sepember 997 his version: June 998 for j =, 2,... To find L,T=L, T m i is enough o make use of he following sysem of SDEs dl, T j =L, T j λ, T j dw ˆb, T k d + j i=k δl, T i +δl, T i λ, T i d on [ T k, T k ], also o be solved recursively we firs solve he sysem above for L, T on [, T ], hen for for L, T 2 on [, T ] [ T, T 2 ], ec. In his way we are able o specify a leas in principle a forward Libor rae L,T for any dae T >. Since K, T =L, + T for any, T >, we have defined also he family K,T of processes. I is ineresing o noe, however, ha i is unclear in general wheher his family of processes solves he equaion of Proposiion 4.2. The posiive answer o his quesion relies on he smoohness of K, T wih respec o he second argumen. Equivalenly, i hinges on he differeniabiliy of he bond price volailiy b, T wih respec T. The las propery is in urn direcly relaed o he exisence of he coefficien σ, T in he dynamics of he underlying forward rae f, T ; ha is, o he possibiliy of sudying he lognormal model of forward Libor raes wihin he general HJM framework. I is ineresing o noe ha in all mehods menioned above, here is a uniquely deermined correspondence beween forward measures forward Brownian moions associaed wih differen daes i is based on relaionships 3 7. On he oher h, however, here is a considerable degree of ambiguiy in he way in which he spo maringale measure is specified in some insances, i is no inroduced a all. Consequenly, he fuures Libor rae L f,t j, which equals cf. Secion 2.3 L f, T j =E P LT j,t j F =E P LT j,t j F, 7 is no necessarily specified in he same way in various approaches o he lognormal model of forward Libor raes. For his reason, we sar by examining he disribuional properies of forward Libor raes which, of course, hold in all hese models. The properies of fuures Libor raes are examined in Secion Valuaion of European Coningen Claims For a given funcion g : R R, a fixed dae u T j, we are ineresed in European payoffs of he form X = g Lu, T j 8 which sele a ime T j. Paricular cases of such payoffs are recall ha all hese payoffs are seled a ime T j Recall ha X = g B T j,t j+, X 2 = g BT j,t j+, X 3 = g F B u, T j+,t j. B T j,t j+ =+δ j+ LT j,t j =+δ j+ LTj,T j =+δ j+ L f T j,t j. The choice of he pricing measure is hus largely he maer of convenience. Noe ha BT j,t j+ = +δ j+ LT j,t j = F BT j,t j+,t j,, more generally, he forward price of a T j+ -mauriy bond for he selemen dae T j equals F B u, T j+,t j = Bu, T j+ Bu, T j = +δ j+ Lu, T j. To value a European coningen claim X = glu, T j = gf B u, T j+,t j, which seles a ime T j, we may use he forward-risk adjused formula π X =B, T j E PTj X F, [,T j ].

12 2 M.Rukowski: Spo, Forward, Fuures Libor Raes To price X when u T j, i suffices o deermine he dynamics of eiher L,T j orf B,T j+,t j under he forward measure P Tj. When u = T j, we may equally well refer o he dynamics, under P Tj, of he adjused Libor rae L,T j or he fuures Libor rae L f,t j. Indeed, we have π X =B, T j E PTj B T j,t j+ F =B, T j E PTj F B T j,t j+,t j F, bu also π X =B, T j +δ j+ E PTj ZT j F, where ZT j =LT j,t j = LT j,t j =L f T j,t j. 4.3 Dynamics of L,T j under P Tj In his secion, we shall derive he ransiion probabiliy densiy funcion p.d.f. of he process L,T j under he forward probabiliy measure P Tj. Le us firs prove he following relaed resul of independen ineres i is due o Jamshidian [7]. Proposiion 4.3 Le u T j. Then E PTj Lu, Tj F = L, Tj + δ j+var PTj+ Lu, Tj F. +δ j+ L, T j In he case of he lognormal model of Libor raes, we have E PTj Lu, Tj F = L, Tj + δ j+l, T j e v 2 j,u, 9 +δ j+ L, T j where In paricular, v 2 j, u =Var PTj+ u λs, T j dws Tj+ = u λs, T j 2 ds. L, T j =L, T j + δ j+l, T j e v 2 j,tj. +δ j+ L, T j Proof. Combining 4 wih he maringale propery of L,T j under P Tj+, we obain E PTj Lu, Tj F = E PTj+ + δj+ Lu, T j Lu, T j F +δ j+ L, T j so ha E PTj Lu, Tj F = L, Tj + δ j+ E PTj+ Lu, Tj L, T j 2 F. +δ j+ L, T j In he case of he lognormal model, we have Lu, T j =L, T j e η,u 2 v2 j,u, where Consequenly, we have η, u = u λs, T j dw Tj+ s. 2 E PTj+ Lu, Tj L, T j 2 F = L 2, T j e v2 j,u, his proves equaliy 9. ¾

13 UNSW, Repor No.S97-, Sepember 997 his version: June To derive he ransiion probabiliy densiy funcion p.d.f. of he process L,T j, noice ha for any u T j, any bounded Borel measurable funcion g : R R we have E PTj glu, Tj F = E PTj+ The following simple lemma appears o be useful. glu, T j +δ j+ Lu, T j F +δ j+ L, T j. Lemma 4. Le ζ be a nonnegaive rom variable on a probabiliy space Ω, F, P wih he probabiliy densiy funcion f P. Le Q be a probabiliy measure equivalen o P. Suppose ha for any bounded Borel measurable funcion g : R R we have E P gζ = E Q + ζgζ. Then he p.d.f. f Q of ζ under Q saisfies f P y =+yf Q y. Proof. The asserion is in fac rivial since, by assumpion, gyf P y dy = gy + yf Q y dy for any bounded Borel measurable funcion g : R R. ¾ Assume he lognormal model of Libor raes fix x R. Recall ha for any u we have Lu, T j =L, T j e η,u 2 Var P T j+ η,u, where η, u is given by 2 so ha i is independen of he σ-field F. Markovian propery of L,T j under he forward measure P Tj+ is hus apparen. Denoe by p L, x, u, y he ransiion p.d.f. under P Tj+ of he process L,T j. Elemenary calculaions involving Gaussian densiies yield p L, x, u, y =P Tj+ {Lu, T j =y L, T j =x} = lny/x+ { 2πvj, uy exp 2 v2 j, u 2 } 2vj 2, u for any x, y > arbirary <u. Taking ino accoun Lemma 4., we conclude ha he ransiion p.d.f. of he process L,T j, under he forward probabiliy measure P Tj, saisfies p L, x, u, y =P Tj {Lu, T j =y L, T j =x} = +δ j+y +δ j+ x p L, x, u, y. We are in a posiion o sae he following resul. Corollary 4. The ransiion p.d.f. under P Tj p L, x, u, y = of he forward Libor rae L,T j equals +δ j+ y lny/x+ { 2πvj, u y + δ j+ x exp 2 v2 j, u 2 } 2vj 2, u 2 for any <u arbirary x, y >. The Markovian propery of L,T j under P Tj follows from he properies of he forward price see he nex secion.

14 4 M.Rukowski: Spo, Forward, Fuures Libor Raes 4.4 Dynamics of F B,T j+,t j under P Tj Observe ha he forward bond price F B,T j+,t j saisfies F B, T j+,t j = B, T j+ = B, T j +δ j+ L, T j. 22 Firs, his implies ha in he lognormal model of Libor raes, he dynamics of he forward bond price F B,T j+,t j are governed by he following sochasic differenial equaion, under P Tj, df B = F B F B λ, T j dw Tj, 23 wherewewrief B =F B, T j+,t j. If he iniial condiion saisfies <F B <, his equaion can be shown o admi a unique srong soluion i saisfies <F B < for every >. This makes clear ha he process F B,T j+,t j hus also he process L,T j are Markovian under P Tj. Using formula 2 relaionship 22, one can find he ransiion p.d.f. of he Markov process F B,T j+,t j under P Tj ;hais, p B, x, u, y =P Tj {F B u, T j+,t j =y F B, T j+,t j =x}. We have he following resul see Rady Smann [2], Milersen e al. [8], Jamshidian [7]. Corollary 4.2 The ransiion p.d.f. under P Tj of he forward bond price F B,T j+,t j equals 2 x ln x y p B, x, u, y = 2πvj, uy 2 y exp y x + 2 v2 j, u 2vj 2, u for any <u arbirary <x,y<. Proof. Le us fix x,. Using 22, i is easy o show ha p B, x, u, y =δ j+ y 2 p L, x δ j+ x,u, y. δ j+ y ¾ The formula now follows from 2. In his probabilisic derivaion of he closed-form soluion for he bond opion price in he lognormal model of Libor raes, Goldys [5] esablished he following resul which can also be used o value oher European coningen claims. Proposiion 4.4 Le X be a soluion of he following sochasic differenial equaion dx = X X λ dw, X = x, 24 where W follows a sard Brownian moion under P, λ : R + R is a locally square inegrable funcion. Then for any nonnegaive Borel measurable funcion g : R R any u> we have E P gx u = xe Q gh ζ + xe Q gh2 ζ, 25 where ζ has, under Q, a Gaussian law wih zero mean value variance Var Q ζ =v 2,u= u λs 2 ds. Furhermore, he funcions h,h 2 : R R are given by he formula h,2 z =+exp z +ln x ± x 2 v2,u, y R.

15 UNSW, Repor No.S97-, Sepember 997 his version: June Goldys [5] proved also he following formula, which indeed is closely relaed o 24 see Appendix A for deails. For any any nonnegaive Borel measurable funcion g : R R any u>we preserve here he noaion of Proposiion 4.4 E P gx u = x x e 8 v2,u E Q {g e z+ζ/2 + e z+ζ/2}, 26 +e z+ζ where we wrie z =lnx/ x. Equaliy 26 was employed in Goldys [5] o obain he closed-form expression for he price of a European call or pu opion, wih expiraion dae T j, wrienona zero-coupon bond of mauriy T j+. Since he payoff of a pu opion equals X =K BT j,t j+ +, i is clear ha he opion s price a ime admis he following represenaion π X =B, T j E PTj K FB T j,t j+,t j + F. The condiional expecaion in he righ-h side can be explicily evaluaed using, for insance, equaliy 26. On he oher h, i is no hard o check ha a cap seled in arrears ha is, a porfolio of call opions wrien on a Libor rae is essenially equivalen o he porfolio of pu opions on a zero-coupon bond. This equivalence leads o he closed-form soluion for he arbirage price of a cap wihin he framework of he lognormal model of forward Libor raes see [2], [8]. A similar approach o he pricing of caps wihin he lognormal model of forward Libor raes was previously adoped by Milersen e al. [8] who used, however, a slighly differen echnique in he las sep. Following Rady Smann [2], hey focused on he parial differenial equaion, which is saisfied by he funcion v = v, x ha expresses he forward price of a bond opion in erms of he forward price of he underlying bond. I can be shown ha v solves he following PDE v + 2 λ, T j 2 x 2 x 2 2 v x 2 = 27 wih he erminal condiion vt j,x=k x +. PDE 27 was explicily solved by Rady Smann [2], who obained in his way a closed-form soluion for he price of a bond opion hey worked, however, wihin a oally differen framework; namely, he Bühler Käsler [3] erm srucure model. In his conex, i is worhwhile o menion he paper by Rady [], in which a simple derivaion of he bond opion price based on he change of numeraire echnique is presened see Appendix B below. Le us finally observe ha from Brace e al. [2], i is clear ha he valuaion of a cap can also be easily done using he sard by now forward measure echnique i is enough o evaluae he expeced payoff of each caple under he corresponding forward measure P Tj. Neverheless equaliies are sill useful since hey allow us o value any European coningen claim of he form gbt j,t j+ or 8 which seles a ime T j. Before we end his secion, we shall check ha formula 22 can be rederived using formula 25. According o 25, we have E PTj gx u = I + I 2, where I + I 2 = x 2πv,u gh z e z2 /2v 2,u dz + x 2πv,u gh 2 z e z2 /2v 2,u dz. Firs, le us subsiue y = h z ini, so ha dy = y ydz. Then we obain 2 x gy ln x y I = 2πv,u y y exp y x 2 v2,u 2v 2,u dy, or equivalenly, I = x 2πv,u gy x y y y y x exp ln x y y x + 2 v2,u 2v 2,u 2 dy.

16 6 M.Rukowski: Spo, Forward, Fuures Libor Raes Similarly, subsiuing y = h 2 z ini 2 so ha once again dy = y y dz, we ge 2 x gy ln x y I 2 = 2πv,u y y exp y x + 2 v2,u 2v 2,u dy. By simple algebra, we find ha E PTj gx u = 2πv,u xgy y 2 y exp ln x y y x + 2 v2,u 2v 2,u 2 dy. The formula above easily generalizes o he case <uo his end, i is enough o consider he SDE 24 wih he iniial condiion X = x 2 xgy ln x y E PTj gx u X = x = 2πv, u y 2 y exp y x + 2 v2, u 2v 2, u dy. Applying he las formula o he process X = F B, T j+,t j, we obain an alernaive proof of Corollary Modelling of Fuures Libor Raes As already menioned, he properies of he fuures Libor raes in he lognormal model of forward Libor raes depend essenially on he choice of he spo maringale measure. For insance, Brace e al. [2] place hemselves in he HJM framework, herefore heir consrucion hinges on a prespecified spo maringale measure. They specify heir model by imposing he following condiion on he bond price volailiy: b, T =, for [T δ, T ], for any mauriy dae T. They assume ha he lengh of he accrual period equals a posiive consan δ in a discree-enor framework, his corresponds o he specificaion T j = T + jδ. Using he condiion above, wih T = T = δ, we find ha b, T 2 = δl, T +δl, T λ, T, [,T, 28, of course, b, T 2 = for every [T,T 2 ]. In he general HJM framework for any mauriy dae T he Radon-Nikodým densiy of he spo probabiliy measure P wih respec o he forward measure P T is known o saisfysee, for insance, Chaper 3 in Musiela Rukowski [] dp = E T bu, T dwu T 29 dp T on Ω, F T. In view of he las formula, i is clear ha P = P T on Ω, F T since he price volailiy of he T -mauriy bond vanishes idenically. Consequenly, he fuures Libor rae L f,t coincides wih he adjused forward Libor rae L,T. Le us now consider he nex dae, T 2. Using 29 reasoning along he similar lines, we conclude ha he spo maringale measure P is uniquely defined on Ω, F T2 hrough he formula dp = E T bu, T 2 dwu T2, 3 dp T2 wih he funcion b,t 2 given by 28. The fuures Libor rae for he dae T 2 can hus be deermined, a leas in principle. Indeed, we have cf. 7 L f, T 2 =E PT2 {LT 2 exp T where we have used he Bayes rule. Recall ha bu, T 2 dw T2 u 2 T } bu, T 2 2 du F,

17 UNSW, Repor No.S97-, Sepember 997 his version: June T 2 LT 2 =L, T 2 exp λu, T 2 dwu T3 T2 λu, T 2 2 du 2 dw T3 = dw T2 + δl, T 2 +δl, T 2 λ, T 2 d. I is hus apparen ha an explici expression for he condiional expecaion 4.5 is no easily available under presen assumpions hough i is possible o esablish an approximae formula. If condiion: b, T =, for [T δ, T ], is relaxed, he fuures Libor rae L f,t 2 saisfies L f, T 2 =E PT2 {LT 2 exp T2 bu, T 2 dw T2 u 2 T2 } bu, T 2 2 du F. Le us sress ha he specificaion of he bond price volailiy b,t 2 compaible wih he lognormal model of forward Libor raes is a raher nonrivial problem. A more promising approach would be perhaps o focus direcly on fuures Libor raes for a prespecified se of daes, wih he aim o produce a erm srucure model yielding closed-form soluions for prices of Eurodollar fuures opions wih differen expiraion daes. For a furher discussion of his poin, we refer o Rukowski [3]. References [] Amin, K., Ng, V.K.: Inferring fuure volailiy from he informaion in implied volailiy in Eurodollar opions: A new approach. Rev. Finan. Sud. 997, [2] Brace, A., G aarek, D., Musiela, M.: The marke model of ineres rae dynamics. Mah. Finance 7 997, [3] Bühler, W., Käsler, J.: Konsisene Anleihenpreise und Opionen auf Anleihen. Working paper, Universiy of Dormund, 989. [4] Flesaker, B.: Arbirage free pricing of ineres rae fuures forward conracs. J. Fuures Markes 3 993, [5] Goldys, B.: A noe on pricing ineres rae derivaives when LIBOR raes are lognormal. Finance Sochas. 997, [6] Heah, D., Jarrow, R., Moron, A.: Bond pricing he erm srucure of ineres raes: A new mehodology for coningen claim valuaion. Economerica 6 992, [7] Jamshidian, F.: LIBOR swap marke models measures. Finance Sochas. 997, [8] Milersen, K., Smann, K., Sondermann, D.: Closed form soluions for erm srucure derivaives wih log-normal ineres raes. J. Finance , [9] Musiela, M., Rukowski, M.: Coninuous-ime erm srucure models: Forward measure approach. Finance Sochas. 997, [] Musiela, M., Rukowski, M.: Maringale Mehods in Financial Modelling. Springer, Berlin Heidelberg New York, 997. [] Rady, S.: Opion pricing in he presence of naural boundaries a quadraic diffusion erm. Finance Sochas. 997, [2] Rady, S., Smann, K.: The direc approach o deb opion pricing. Rev. Fuures Markes 3 994, [3] Rukowski, M.: Models of forward Libor swap raes. Preprin, Universiy of New Souh Wales, 997 submied o Appl. Mah. Finance. [4] Rukowski, M.: Self-financing rading sraegies for sliding, rolling-horizon, consol bonds. Preprin, Universiy of New Souh Wales, 997 submied o Mah. Finance.

18 8 M.Rukowski: Spo, Forward, Fuures Libor Raes 5 Appendix A The resuls of his appendix are due o Goldys [5]. Le X be a soluion o he sochasic differenial equaion { dx = X X λ dw, 3 X = x, where we assume ha he funcion λ :[,T ] R d is bounded measurable, as usual, W is a sard Brownian moion defined on a filered probabiliy space Ω, F, P. For any x,, he exisence of a unique global soluion o 3 can be easily deduced from he general heory of sochasic differenial equaions. However, in Lemma 5. below we provide a direc proof by means of a simple ransformaion which is also crucial for he furher calculaions. Consider he following sochasic differenial equaion dz = e Z 2 +e λ 2 d λ dw 32 Z wih Z = z. Since he drif erm in his equaion is represened by a bounded globally Lipschiz funcion, equaion 32 is known 2 o have a unique srong non-exploding soluion for any iniial condiion z R. Lemma 5. For any x, he process x X = +e Z, [,T ], 33 where Z = z =ln x is a unique srong non-exploding soluion o equaion 3. Moreover, <X < for every [,T ]. Proof. I is easy o see ha equaion 32 can be rewrien in he form dz = X 2 λ 2 d λ dw. Hence, applying he Iô formula o he process X given by formula 33, we find ha dx = X X λ dw. Therefore, he process X is indeed a soluion o 3. Conversely, if X is any local weak soluion o 3 hen i is in fac a srong soluion because he diffusion coefficien in 3 is locally Lipschiz. Moreover, using again he Iô formula, one can check ha he process Z =lnx ln X, [,T ], 34 is a srong soluion of 32. Hence i can be coninued o a global one which is unique. The las par of he lemma follows from he definiion of he process X uniqueness of soluions o 3. ¾ Theorem 5. Le g : R R be a nonnegaive Borel funcion. Then for every x, > he expeced value E P gx is given by he formula E P gx = x x e 8 v2, E Q {g e z+ζ/2 + e z+ζ/2}, +e z+ζ where z =ln x x, he rom variable ζ has, under Q, a Gaussian law wih zero mean value variance v 2,= λu 2 du. 2 See, for insance, Theorem in: I.Karazas S.Shreve, Brownian Moion Sochasic Calculus. Springer, Berlin Heidelberg New York, 988.

19 UNSW, Repor No.S97-, Sepember 997 his version: June Proof. The proof borrowed from Goldys [5] is based on a simple idea ha for any rom variable U say we have E P U = E P X U+E P Y U, 35 where Y = X. I is essenial o observe ha X = x E Y u λu dw u 36 while Furhermore, from 32 i follows ha Y = x E X u λu dw u. 37 dz = λ dw X 2 λ d, or equivalenly, dz = λ dw Y + 2 λ d. Le us inroduce probabiliy measures P ˆP on Ω, F by seing Noice ha where he processes d P dp = E d ˆP dp = E Z = z W u = W u Ŵ u = W u Xu 2 λu dwu def = η 38 Yu + 2 λu dwu def = ˆη. 39 λu d W u = z u u Xv 2 λv dv, u [,], Yv + 2 λv dv, u [,], λu dŵu, 4 are known o follow sard Brownian moions under P ˆP, respecively. Simple manipulaions show ha η = E X u λu dw u exp λu d 2 W u + λu 2 du 8 so ha, using 37, we obain Y = x e 8 v2, η exp 2 Similarly, we have hus, in view of 36, ˆη = E Y u λu dw u exp 2 X = xe 8 v2, ˆη exp 2 λu dŵu + 8 λu d W u. 4 λu dŵu λu 2 du,. 42

20 2 M.Rukowski: Spo, Forward, Fuures Libor Raes Equaliy 42 yields while 4 gives E P X gx = xe 8 v2, E ˆP E P Y gx = x e 8 v2, E P Using 33 35, we conclude ha E P gx = e 8 v2, E Q {g { gx exp 2 { gx exp 2 +e z+ζ λu dŵu }, λu d W u }. xe 2 ζ + xe 2 ζ}, where ζ is, under Q, a Gaussian rom variable wih zero mean value variance v 2,. Equivalenly, E P gx = x x e 8 v2, E Q {g e z+ζ/2 + e z+ζ/2}. +e z+ζ This ends he proof of he heorem. ¾ Remark. To esablish direcly formula 25, a slighly differen changes of he underlying probabiliy measure P appear o be convenien. Namely, we pu on Ω, F d P dp = E X u λu dw u Now, under P ˆP we have respecively, where W u = W u u d ˆP dp = E Y u λu dw u. dz u = 2 λu du λu d W u dz u = 2λu d λu dŵu, X v λv dv, Ŵ u = W u u Y v λv dv, u [,], are sard Brownian moions under he corresponding probabiliies. Equaliy 25 can hus be easily derived from Corollary 5. Le g : R R be a nonnegaive Borel funcion. Then for every x, any <<T he condiional expecaion E P gx T F equals E P gx T F =kx, where he funcion k :, R is given by he formula kx = x x e 8 v2,t E Q {g e z+ζ/2 + e z+ζ/2}, +e z+ζ z =lnx/ x, he rom variable ζ has, under Q, a Gaussian law wih zero mean value variance T v 2, T = λu 2 du.

21 UNSW, Repor No.S97-, Sepember 997 his version: June In he nex proposiion he bond opion valuaion formula which was previously obained hrough he PDE approach by Rady Smann [2] is rederived. For sake of noaional simpliciy, we shall someimes wrie T j = T T j+ = T + δ. Proposiion 5. The price C a ime T of a European call opion wrien on a zero-coupon bond mauring a T + δ, wih expiraion dae T srike price <K<, equals C = KB, T + δnl + 2 v K B, T B, T + δ Nl 2 v, where Proof. l = l, T = v 2 = v 2, T = In view of Corollary 5., i is clear ha T λu, T 2 du v, T ln KB, T + δ K B, T B, T + δ. C = B, T E PT FB T,T + δ, T K + F = B, T kx, 43 where x = F B, T + δ, T gy =y K +. Using he noaion v 2 = v 2, T l = l, T = v ln Kx xk, we obain kx = x x e 8 v2 l +e K e z+vy 2 z+vy + e z+vy 2 ny dy, where n ss for he sard normal densiy. Le us denoe hy =e 2 z+vy + e 2 z+vy. Then kx = x x e hyny 8 v2 dy K l +e z+vy Equivalenly, kx = x x e 8 v2 I KI 2, where I = Consequenly, we find ha l e 2 z+vy ny dy = e 8 v2 + 2 z N l 2 v I 2 = I + e 8 v2 2 z N l + 2 v. l hyny dy. kx = x x Ke 2 z N l 2 v K x xe 2 z N l + 2 v, or, afer simplificaion, kx =x KNl + 2 v K xnl 2v. 44 Since x = F B, T + δ, T =B, T + δ/b, T, o end he proof i is enough o combine 43 wih 44. ¾

22 22 M.Rukowski: Spo, Forward, Fuures Libor Raes Using he pu-call pariy relaionship C P = B, T j KB, T j, i is easy o check ha he price of he corresponding pu opion equals P =K B, T j N l 2 v K B, T j B, T j N l + 2 v. 45 I is well known easy o check ha a caple is equivalen o he pu opion wrien on a zero-coupon bond, wih he srike price K = d j =+κd j more precisely, muliplied by a consan δ j =+κδ j. Therefore, using 45, we obain Cpl = B, T j B, T j N l + 2 v κδ j B, T j N l 2 v, since K = κδ δ j j. This ends a probabilisic derivaion of he cap valuaion formula wihin he lognormal model of forward LIBOR raes as already menioned, anoher approach o he bond opion valuaion relies on solving he parial differenial equaion Appendix B A more direc however, slighly less general probabilisic approach o he valuaion of a bond opion wihin he framework of he lognormal model of forward LIBOR raes was proposed by Rady []. We provide below a shor accoun of his resuls. We are given an arbirage-free model of securiy marke, le Z Z 2 be wo sricly posiive price processes of primary securiies. Our goal is o price an opion o exchange one asse for anoher, more specifically, we consider a European coningen claim Y ha seles a ime T Y =Z T KZ2 T + = Z T I A KZ 2 T I A, 46 where A = {ZT >KZ2 T } is he exercise se. I appears ha under specific assumpions on he dynamics of he relaive price process X = Z /Z 2, an judicious choice of numeraire asses leads o a closed-form soluion. We posulae ha here exiss consans a, b, c, d such ha ad bc 3 dx =ax + bcx + dλ dw, 47 where λ :[,T] R d is a coninuous funcion. Moreover, W follows a sard Brownian moion, under he maringale measure P ha corresponds o he choice of securiy Z 2 as a numeraire asse. Le us assume ha ax + b cx + d. Then Ṽ def = ax + b, Ũ def = cx + d, 48 for every [,T] his can be deduced from he non-confluen propery of soluions of sochasic differenial equaions wih Lipschiz coninuous coefficiens. I is useful o noe ha dx = ṼŨλ dw, Le us denoe def V = az + bz 2 = ṼZ 2 def, U = cz + dz 2 = ŨZ 2. I is eviden ha V U represen wealh processes of wo self-financing rading sraegies, hus hese processes may be aken as numeraire asses noe ha hey never vanish. I is crucial o observe ha Y admis he following represenaion Y = Kc + dv T I A Ka + bu T I A ad bc = αv T I A + βu T I A, 3 Exisence uniqueness of a non-exploding srong soluion o SDE 47 can be jusified using he sard resuls of sochasic calculus see, in paricular, Theorem in: I.Karazas S.Shreve, Brownian Moion Sochasic Calculus. Springer, Berlin Heidelberg New York, 988. Le us only indicae ha if he iniial condiion lies beween he zeros of he funcion fx =ax + bcx+ d, hen he soluion says in his inerval forever.

23 UNSW, Repor No.S97-, Sepember 997 his version: June where α β are consans. Moreover, he exercise se A saisfies A = {αv T >βu T }. If, for insance V T >, U T >, ad bc >, Ka+ b>kc + d>, hen we have also A = {V T /U T >D} = {U T /V T <D }, 49 where we wrie D =Ka + bkc + d. From he general heory i is clear ha if he claim Y is aainable, hen is arbirage price π Y equals π Y =αv P{A F } + βu ˆP{A F }, 5 where P ˆP, respecively is he maringale measure which corresponds o he choice of he process V U, respecively as a numeraire asse. To find explici formulae for he condiional probabiliies in he righ-h side, we shall use he following resul which follows easily from Iô s formula. Lemma 6. Suppose ha X saisfies 47 processes Ṽ,Ũ are given by 48. Then where λ =ad bcλ. dṽ/ũ =Ṽ/Ũ λ dw cṽλ d, From Lemma 6. i is clear ha du/v =dũ/ṽ =U/V λ d W dv/u=dṽ/ũ =V/U λ dŵ, where W Ŵ, respecively follows a sard Brownian moion under P ˆP, respecively. This observaion combined wih equaliy 5 leads o he following valuaion resul, whose proof is sard, hus is omied. Proposiion 6. The arbirage price a ime of a claim Y given by 46 equals π Y =αv N d Z,Z2,,T + βu N d 2 Z,Z2,,T, where d,2 Z,Z 2,,T= lnv /U ln D ± σ 2, T σ, T D =Ka + bkc + d, σ 2, T = T T λu 2 du =ad bc 2 λu 2 du. Le us reurn o he case of a European call opion wrien on a zero-coupon bond mauring a T + δ, wih expiraion dae T srike price <K<. We have C T = BT,T + δ K + =Z T KZ 2 T +,, where Z = B, T + δ Z2 = B, T. Furhermore, he forward price of a zero-coupon bond X = B, T + δ/b, T =Z /Z 2 saisfies see 23 dx = X X λ, T dw T, 5

24 24 M.Rukowski: Spo, Forward, Fuures Libor Raes where W T follows a sard Brownian moion under he forward measure P T. To apply he change of numeraire mehod, i is hus enough o se V = Z = B, T + δ >, U = Z 2 Z = B, T B, T + δ >, ha is, we may ake a =,b=,c= d =. I is now sraighforward o check ha α = K, β = K, D = K/ K, represenaion 49 of he opion s exercise se is valid. Therefore, using Proposiion 6., we may find he price of a call bond opion, namely, C = KB, T + δn d Z,Z2,,T K B, T B, T + δ N d 2 Z,Z2,,T. Since see Proposiion 5. d,2 Z,Z2,,T=l, T ± 2 v, T σ 2, T =v 2, T, we conclude ha he las formula coincides wih he valuaion formula obained in Proposiion 5.. This complees Rady s derivaion of he bond opion valuaion formula for he lognormal model of forward Libor raes. I is worhwhile o poin ou ha since he formula esablished in Proposiion 6. applies only o opions o exchange one asse for anoher, i is less general hen any of represenaions obained by Goldys [5]. In principle, he laer may serve o value any coningen claim, eiher hrough numerical inegraion or hrough he Mone Carlo procedure. We end his noe by presening a minor modificaion of Rady s approach o he valuaion he bond opion wihin he framework of he lognormal model of forward Libor raes. Noe firs ha C T = BT,T + δ K + = KBT,T + δ K BT,T BT,T + δ + so ha as before, we denoe D = K K C T = K Z T D Z 2 T / Z T +, where Z = B, T + δ Z 2 = B, T B, T + δ. Le us denoe Z = Z 2 / Z = B, T B, T + δ B, T + δ = X. Using Iô s formula combined wih 5, we obain d Z = dx = Z λ, T dw T + A d, where A is an adaped process. Consequenly, under he maringale measure P which corresponds o he choice of he process B,T + δ as a numeraire i.e., under he forward measure for he dae T + δ wehave d Z = Z λ, T d W, where W is a P-Brownian moion. Consequenly Z T = Z T exp λu, T d W u T λu, T 2 du. 2 Since he opion s price a ime equals C = K Z E P D ZT + F, he formula of Proposiion 5. follows easily by sard argumens.

Modelling of Forward Libor and Swap Rates

Modelling of Forward Libor and Swap Rates Modelling of Forward Libor and Swap Raes Marek Rukowski Faculy of Mahemaics and Informaion Science Warsaw Universiy of Technology, -661 Warszawa, Poland Conens 1 Inroducion 2 2 Modelling of Forward Libor

More information

12. Market LIBOR Models

12. Market LIBOR Models 12. Marke LIBOR Models As was menioned already, he acronym LIBOR sands for he London Inerbank Offered Rae. I is he rae of ineres offered by banks on deposis from oher banks in eurocurrency markes. Also,

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Technical Appendix to Risk, Return, and Dividends

Technical Appendix to Risk, Return, and Dividends Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,

More information

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 94-9(5)634-4 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE

More information

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process,

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process, Chaper 19 The Black-Scholes-Vasicek Model The Black-Scholes-Vasicek model is given by a sandard ime-dependen Black-Scholes model for he sock price process S, wih ime-dependen bu deerminisic volailiy σ

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619 econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;

More information

A general decomposition formula for derivative prices in stochastic volatility models

A general decomposition formula for derivative prices in stochastic volatility models A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 5-7 85 Barcelona Absrac We see ha he price of an european call opion

More information

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets A Generalized Bivariae Ornsein-Uhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical

More information

Option Pricing Under Stochastic Interest Rates

Option Pricing Under Stochastic Interest Rates I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

More information

Foreign Exchange and Quantos

Foreign Exchange and Quantos IEOR E4707: Financial Engineering: Coninuous-Time Models Fall 2010 c 2010 by Marin Haugh Foreign Exchange and Quanos These noes consider foreign exchange markes and he pricing of derivaive securiies in

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis Second Conference on The Mahemaics of Credi Risk, Princeon May 23-24, 2008 Credi Index Opions: he no-armageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo - Join work

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

CREDIT RISK MODELING

CREDIT RISK MODELING CREDIT RISK MODELING Tomasz R. Bielecki Deparmen of Applied Mahemaics Illinois Insiue of Technology Chicago, IL 6616, USA Monique Jeanblanc Déparemen de Mahémaiques Universié d Évry Val d Essonne 9125

More information

T ϕ t ds t + ψ t db t,

T ϕ t ds t + ψ t db t, 16 PRICING II: MARTINGALE PRICING 2. Lecure II: Pricing European Derivaives 2.1. The fundamenal pricing formula for European derivaives. We coninue working wihin he Black and Scholes model inroduced in

More information

UNIVERSITY OF CALGARY. Modeling of Currency Trading Markets and Pricing Their Derivatives in a Markov. Modulated Environment.

UNIVERSITY OF CALGARY. Modeling of Currency Trading Markets and Pricing Their Derivatives in a Markov. Modulated Environment. UNIVERSITY OF CALGARY Modeling of Currency Trading Markes and Pricing Their Derivaives in a Markov Modulaed Environmen by Maksym Terychnyi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL

More information

LECTURE 7 Interest Rate Models I: Short Rate Models

LECTURE 7 Interest Rate Models I: Short Rate Models LECTURE 7 Ineres Rae Models I: Shor Rae Models Spring Term 212 MSc Financial Engineering School of Economics, Mahemaics and Saisics Birkbeck College Lecurer: Adriana Breccia email: abreccia@emsbbkacuk

More information

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his

More information

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Introduction to Arbitrage Pricing

Introduction to Arbitrage Pricing Inroducion o Arbirage Pricing Marek Musiela 1 School of Mahemaics, Universiy of New Souh Wales, 252 Sydney, Ausralia Marek Rukowski 2 Insiue of Mahemaics, Poliechnika Warszawska, -661 Warszawa, Poland

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

On the degrees of irreducible factors of higher order Bernoulli polynomials

On the degrees of irreducible factors of higher order Bernoulli polynomials ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on

More information

Stochastic Calculus and Option Pricing

Stochastic Calculus and Option Pricing Sochasic Calculus and Opion Pricing Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Sochasic Calculus 15.450, Fall 2010 1 / 74 Ouline 1 Sochasic Inegral 2 Iô s Lemma 3 Black-Scholes

More information

Credit risk. T. Bielecki, M. Jeanblanc and M. Rutkowski. Lecture of M. Jeanblanc. Preliminary Version LISBONN JUNE 2006

Credit risk. T. Bielecki, M. Jeanblanc and M. Rutkowski. Lecture of M. Jeanblanc. Preliminary Version LISBONN JUNE 2006 i Credi risk T. Bielecki, M. Jeanblanc and M. Rukowski Lecure of M. Jeanblanc Preliminary Version LISBONN JUNE 26 ii Conens Noaion vii 1 Srucural Approach 3 1.1 Basic Assumpions.....................................

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 2013 Scoring Guidelines AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

More information

Communication Networks II Contents

Communication Networks II Contents 3 / 1 -- Communicaion Neworks II (Görg) -- www.comnes.uni-bremen.de Communicaion Neworks II Conens 1 Fundamenals of probabiliy heory 2 Traffic in communicaion neworks 3 Sochasic & Markovian Processes (SP

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

Valuation of Credit Default Swaptions and Credit Default Index Swaptions

Valuation of Credit Default Swaptions and Credit Default Index Swaptions Credi Defaul Swapions Valuaion of Credi Defaul Swapions and Marek Rukowski School of Mahemaics and Saisics Universiy of New Souh Wales Sydney, Ausralia Recen Advances in he Theory and Pracice of Credi

More information

European option prices are a good sanity check when analysing bonds with exotic embedded options.

European option prices are a good sanity check when analysing bonds with exotic embedded options. European opion prices are a good saniy check when analysing bonds wih exoic embedded opions. I s an old exam quesion. Arbirage-free economy where ZCB prices are driven 1-D BM, i.e. dp (, T ) = r()p (,

More information

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS

ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Time-inhomogeneous Lévy Processes in Cross-Currency Market Models

Time-inhomogeneous Lévy Processes in Cross-Currency Market Models Time-inhomogeneous Lévy Processes in Cross-Currency Marke Models Disseraion zur Erlangung des Dokorgrades der Mahemaischen Fakulä der Alber-Ludwigs-Universiä Freiburg i. Brsg. vorgeleg von Naaliya Koval

More information

PRICING and STATIC REPLICATION of FX QUANTO OPTIONS

PRICING and STATIC REPLICATION of FX QUANTO OPTIONS PRICING and STATIC REPLICATION of F QUANTO OPTIONS Fabio Mercurio Financial Models, Banca IMI 1 Inroducion 1.1 Noaion : he evaluaion ime. τ: he running ime. S τ : he price a ime τ in domesic currency of

More information

arxiv:submit/1578408 [q-fin.pr] 3 Jun 2016

arxiv:submit/1578408 [q-fin.pr] 3 Jun 2016 Derivaive pricing for a muli-curve exension of he Gaussian, exponenially quadraic shor rae model Zorana Grbac and Laura Meneghello and Wolfgang J. Runggaldier arxiv:submi/578408 [q-fin.pr] 3 Jun 206 Absrac

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.

More information

ARCH 2013.1 Proceedings

ARCH 2013.1 Proceedings Aricle from: ARCH 213.1 Proceedings Augus 1-4, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference

More information

Term Structure Models: IEOR E4710 Spring 2010 c 2010 by Martin Haugh. Market Models. 1 LIBOR, Swap Rates and Black s Formulae for Caps and Swaptions

Term Structure Models: IEOR E4710 Spring 2010 c 2010 by Martin Haugh. Market Models. 1 LIBOR, Swap Rates and Black s Formulae for Caps and Swaptions Term Srucure Models: IEOR E4710 Spring 2010 c 2010 by Marin Haugh Marke Models One of he principal disadvanages of shor rae models, and HJM models more generally, is ha hey focus on unobservable insananeous

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Dependent Interest and Transition Rates in Life Insurance

Dependent Interest and Transition Rates in Life Insurance Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies

More information

Longevity 11 Lyon 7-9 September 2015

Longevity 11 Lyon 7-9 September 2015 Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

More information

Verification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing

Verification Theorems for Models of Optimal Consumption and Investment with Retirement and Constrained Borrowing MATHEMATICS OF OPERATIONS RESEARCH Vol. 36, No. 4, November 2, pp. 62 635 issn 364-765X eissn 526-547 364 62 hp://dx.doi.org/.287/moor..57 2 INFORMS Verificaion Theorems for Models of Opimal Consumpion

More information

Cointegration: The Engle and Granger approach

Cointegration: The Engle and Granger approach Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be non-saionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

ABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION

ABSTRACT KEYWORDS. Markov chain, Regulation of payments, Linear regulator, Bellman equations, Constraints. 1. INTRODUCTION QUADRATIC OPTIMIZATION OF LIFE AND PENSION INSURANCE PAYMENTS BY MOGENS STEFFENSEN ABSTRACT Quadraic opimizaion is he classical approach o opimal conrol of pension funds. Usually he paymen sream is approximaed

More information

Debt Policy, Corporate Taxes, and Discount Rates

Debt Policy, Corporate Taxes, and Discount Rates Commens Welcome Deb Policy, Corporae Taxes, and Discoun Raes Mark Grinbla and Jun iu UCA Firs Version: December 25, 21 Curren Version: November 7, 22 Grinbla and iu are boh from he Anderson School a UCA.

More information

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

Differential Equations in Finance and Life Insurance

Differential Equations in Finance and Life Insurance Differenial Equaions in Finance and Life Insurance Mogens Seffensen 1 Inroducion The mahemaics of finance and he mahemaics of life insurance were always inersecing. Life insurance conracs specify an exchange

More information

Black Scholes Option Pricing with Stochastic Returns on Hedge Portfolio

Black Scholes Option Pricing with Stochastic Returns on Hedge Portfolio EJTP 3, No. 3 006 9 8 Elecronic Journal of Theoreical Physics Black Scholes Opion Pricing wih Sochasic Reurns on Hedge Porfolio J. P. Singh and S. Prabakaran Deparmen of Managemen Sudies Indian Insiue

More information

Market Models for Inflation

Market Models for Inflation Marke Models for Inflaion Ferhana Ahmad Lady Margare Hall Universiy of Oxford A hesis submied for he degree of Msc. in Mahemaical and Compuaional Finance Triniy 2008 This work is dedicaed o my family,

More information

Life insurance cash flows with policyholder behaviour

Life insurance cash flows with policyholder behaviour Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK-2100 Copenhagen Ø, Denmark PFA Pension,

More information

HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES?

HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES? HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES? WALTER SCHACHERMAYER AND JOSEF TEICHMANN Absrac. We compare he opion pricing formulas of Louis Bachelier and Black-Meron-Scholes

More information

Dynamic Information. Albina Danilova Department of Mathematical Sciences Carnegie Mellon University. September 16, 2008. Abstract

Dynamic Information. Albina Danilova Department of Mathematical Sciences Carnegie Mellon University. September 16, 2008. Abstract Sock Marke Insider Trading in Coninuous Time wih Imperfec Dynamic Informaion Albina Danilova Deparmen of Mahemaical Sciences Carnegie Mellon Universiy Sepember 6, 28 Absrac This paper sudies he equilibrium

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Chapter 6: Business Valuation (Income Approach)

Chapter 6: Business Valuation (Income Approach) Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he

More information

Jump-Diffusion Option Valuation Without a Representative Investor: a Stochastic Dominance Approach

Jump-Diffusion Option Valuation Without a Representative Investor: a Stochastic Dominance Approach ump-diffusion Opion Valuaion Wihou a Represenaive Invesor: a Sochasic Doance Approach By Ioan Mihai Oancea and Sylianos Perrakis This version February 00 Naional Bank of Canada, 30 King Sree Wes, Torono,

More information

The Path Integral Approach to Financial Modeling and Options Pricing?

The Path Integral Approach to Financial Modeling and Options Pricing? Compuaional Economics : 9 63, 998. 9 c 998 Kluwer Academic Publishers. Prined in he Neherlands. The Pah Inegral Approach o Financial Modeling and Opions Pricing? VADIM LINETSKY Financial Engineering Program,

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

EURODOLLAR FUTURES AND OPTIONS: CONVEXITY ADJUSTMENT IN HJM ONE-FACTOR MODEL

EURODOLLAR FUTURES AND OPTIONS: CONVEXITY ADJUSTMENT IN HJM ONE-FACTOR MODEL EURODOLLAR FUTURES AND OPTIONS: CONVEXITY ADJUSTMENT IN HJM ONE-FACTOR MODEL MARC HENRARD Absrac. In his noe we give pricing formlas for differen insrmens linked o rae fres ero-dollar fres. We provide

More information

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates Pricing Guaraneed Minimum Wihdrawal Benefis under Sochasic Ineres Raes Jingjiang Peng 1, Kwai Sun Leung 2 and Yue Kuen Kwok 3 Deparmen of Mahemaics, Hong Kong Universiy of Science and echnology, Clear

More information

Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach

Option-Pricing in Incomplete Markets: The Hedging Portfolio plus a Risk Premium-Based Recursive Approach Working Paper 5-81 Business Economics Series 21 January 25 Deparameno de Economía de la Empresa Universidad Carlos III de Madrid Calle Madrid, 126 2893 Geafe (Spain) Fax (34) 91 624 968 Opion-Pricing in

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension Pricing Black-choles Opions wih Correlaed Ineres Rae Risk and Credi Risk: An Exension zu-lang Liao a, and Hsing-Hua Huang b a irecor and Professor eparmen of inance Naional Universiy of Kaohsiung and Professor

More information

Mortality Variance of the Present Value (PV) of Future Annuity Payments

Mortality Variance of the Present Value (PV) of Future Annuity Payments Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

How To Find Opimal Conracs In A Continuous Time Model

How To Find Opimal Conracs In A Continuous Time Model Appl Mah Opim (9) 59: 99 46 DOI.7/s45-8-95- OpimalCompensaionwihHiddenAcion and Lump-Sum Paymen in a Coninuous-Time Model Jakša Cvianić Xuhu Wan Jianfeng Zhang Published online: 6 June 8 Springer Science+Business

More information

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß **

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß ** IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION Tobias Dillmann * and Jochen Ruß ** ABSTRACT Insurance conracs ofen include so-called implici or embedded opions.

More information

Pricing Single Name Credit Derivatives

Pricing Single Name Credit Derivatives Pricing Single Name Credi Derivaives Vladimir Finkelsein 7h Annual CAP Workshop on Mahemaical Finance Columbia Universiy, New York December 1, 2 Ouline Realiies of he CDS marke Pricing Credi Defaul Swaps

More information

A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS

A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS A UNIFIED APPROACH TO MATHEMATICAL OPTIMIZATION AND LAGRANGE MULTIPLIER THEORY FOR SCIENTISTS AND ENGINEERS RICHARD A. TAPIA Appendix E: Differeniaion in Absrac Spaces I should be no surprise ha he differeniaion

More information

Distance to default. Credit derivatives provide synthetic protection against bond and loan ( ( )) ( ) Strap? l Cutting edge

Distance to default. Credit derivatives provide synthetic protection against bond and loan ( ( )) ( ) Strap? l Cutting edge Srap? l Cuing edge Disance o defaul Marco Avellaneda and Jingyi Zhu Credi derivaives provide synheic proecion agains bond and loan defauls. A simple example of a credi derivaive is he credi defaul swap,

More information

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities

Dynamic Option Adjusted Spread and the Value of Mortgage Backed Securities Dynamic Opion Adjused Spread and he Value of Morgage Backed Securiies Mario Cerrao, Abdelmadjid Djennad Universiy of Glasgow Deparmen of Economics 27 January 2008 Absrac We exend a reduced form model for

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

New Pricing Framework: Options and Bonds

New Pricing Framework: Options and Bonds arxiv:1407.445v [q-fin.pr] 14 Oc 014 New Pricing Framework: Opions and Bonds Nick Laskin TopQuark Inc. Torono, ON, M6P P Absrac A unified analyical pricing framework wih involvemen of he sho noise random

More information

Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds

Inventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds OPERATIONS RESEARCH Vol. 54, No. 6, November December 2006, pp. 1079 1097 issn 0030-364X eissn 1526-5463 06 5406 1079 informs doi 10.1287/opre.1060.0338 2006 INFORMS Invenory Planning wih Forecas Updaes:

More information

Optimal Time to Sell in Real Estate Portfolio Management

Optimal Time to Sell in Real Estate Portfolio Management Opimal ime o Sell in Real Esae Porfolio Managemen Fabrice Barhélémy and Jean-Luc Prigen hema, Universiy of Cergy-Ponoise, Cergy-Ponoise, France E-mails: fabricebarhelemy@u-cergyfr; jean-lucprigen@u-cergyfr

More information

A Re-examination of the Joint Mortality Functions

A Re-examination of the Joint Mortality Functions Norh merican cuarial Journal Volume 6, Number 1, p.166-170 (2002) Re-eaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

Optimal Consumption and Insurance: A Continuous-Time Markov Chain Approach

Optimal Consumption and Insurance: A Continuous-Time Markov Chain Approach Opimal Consumpion and Insurance: A Coninuous-Time Markov Chain Approach Holger Kraf and Mogens Seffensen Absrac Personal financial decision making plays an imporan role in modern finance. Decision problems

More information

Fixed Income Analysis: Securities, Pricing, and Risk Management

Fixed Income Analysis: Securities, Pricing, and Risk Management Fixed Income Analysis: Securiies, Pricing, and Risk Managemen Claus Munk This version: January 23, 2003 Deparmen of Accouning and Finance, Universiy of Souhern Denmark, Campusvej 55, DK-5230 Odense M,

More information

OpenGamma Quantitative Research Multi-curves: Variations on a Theme

OpenGamma Quantitative Research Multi-curves: Variations on a Theme OpenGamma Quaniaive Research Muli-curves: Variaions on a Theme Marc Henrard marc@opengamma.com OpenGamma Quaniaive Research n. 6 Ocober 2012 Absrac The muli-curves framework is ofen implemened in a way

More information

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

A MARTINGALE APPROACH APPLIED TO THE MANAGEMENT OF LIFE INSURANCES.

A MARTINGALE APPROACH APPLIED TO THE MANAGEMENT OF LIFE INSURANCES. A MARTINGALE APPROACH APPLIED TO THE MANAGEMENT OF LIFE INSURANCES. DONATIEN HAINAUT, PIERRE DEVOLDER. Universié Caholique de Louvain. Insiue of acuarial sciences. Rue des Wallons, 6 B-1348, Louvain-La-Neuve

More information