PRICING and STATIC REPLICATION of FX QUANTO OPTIONS

Size: px
Start display at page:

Download "PRICING and STATIC REPLICATION of FX QUANTO OPTIONS"

Transcription

1 PRICING and STATIC REPLICATION of F QUANTO OPTIONS Fabio Mercurio Financial Models, Banca IMI 1 Inroducion 1.1 Noaion : he evaluaion ime. τ: he running ime. S τ : he price a ime τ in domesic currency of one uni of foreign currency. r d τ : he (deerminisic) domesic insananeous risk-free rae a ime τ. r f τ : he (deerminisic) foreign insananeous risk-free rae a ime τ. σ τ : he exchange rae (deerminisic) percenage volailiy a ime τ. : a srike price. ω: a flag for call (ω = 1) or pu (ω = 1). T,, T 2 : fuure imes. Q d : he domesic risk-neural measure. E d : expecaion under Q d. Q N : he probabiliy measure associaed wih he numeraire N. E N : expecaion under Q N. F τ : he σ-algebra generaed by S up o ime τ. 1 A : he indicaor funcion of he se A. C(, T, ): price a ime of a (plain-vanilla) call opion wih mauriy T and srike. P(, T, ): price a ime of a (plain-vanilla) pu opion wih mauriy T and srike. AoNC(, T, ): price a ime of an asse-or-nohing call wih mauriy T and srike. AoNP(, T, ): price a ime of an asse-or-nohing pu wih mauriy T and srike. QO(, T,, ω): price a ime of a quano opion wih mauriy T and srike. FSQO(,, T 2, ω): price a ime of a forward-sar quano opion wih forward-sar dae and mauriy T 2. QCq(,, T 2, ω): price a ime of a quano clique opion wih forward-sar dae and mauriy T Assumpions The exchange rae S is assumed o evolve under he domesic risk-neural measure Q d according o: ds τ = S τ [(r d τ r f τ ) dτ + σ τ dw τ 1

2 where W is a sandard Brownian moion under Q d. Seing S τ = S τ exp ( τ rf u du ), he dynamics of S under he measure Q S having S as numeraire is ds τ = S τ [(r d τ r f τ + σ 2 τ) dτ + σ τ d W τ (1) where W is a sandard Brownian moion under Q S. 1.3 Pricing The no-arbirage price a ime of he payoff H T a ime T is H = e RT r d u du E d [H T F Using S as numeraire, he ime -price becomes [ H = S E S HT F S T 2 Quano Opions Pricing of a Quano Opion S[ (2) = S e RT ru f du HT E F S T A quano opion pays ou a mauriy T he amoun [ω(s T ) + in foreign currency, which is equivalen o [ω(s T ) + S T in domesic currency: [ω(s T ) + S T T To price he payoff H T = [ω(s T ) + S T i is convenien o use formula (2). In fac QO(, T,, ω) = S e RT r f u du E S[(ωS T ω) + F This expecaion can be easily calculaed under (1), since i is equivalen o an nondiscouned Black-Scholes price for an underlying asse paying a coninuous dividend yield q τ = rτ f στ. 2 We hus obain: QO(, T,, ω) = ωs e RT d = ln S ru f du [S e RT (rd u ru+σ f u) 2 du Φ(ωd ) Φ(ωd 1 ) + T (rd u ru f σ2 u) du T σ u 2 du T (3) d 1 = d 2

3 Saic Replicaion of a Quano Opion In he call opion case, we have (S T ) + S T = S {ST >K} dk = 2 (S T K) + dk + (S T ) + (4) Therefore, a quano call can be saically replicaed by means of asse-or-nohing calls or, equivalenly, plain-vanilla calls as follows: QO(T, T,, 1) = AoNC(T, T, K) dk = 2 In he pu opion case, we have insead ( S T ) + S T = S {K>ST } dk = ( S T ) + 2 C(T, T, K) dk + C(T, T, ) (K S T ) + dk Therefore, a quano pu can be saically replicaed by means of asse-or-nohing pus or, equivalenly, plain-vanilla pus as follows: QO(T, T,, 1) = AoNP(T, T, K) dk = P(T, T, ) 2 P(T, T, K) dk 3 Forward-Sar Quano Opions Pricing of a Forward-Sar Quano Opion A forward-sar quano opion pays ou a mauriy T 2 > he amoun [ω(s T2 S T1 ) + in foreign currency, which is equivalen o [ω(s T2 S T1 ) + S T2 in domesic currency: [ω(s T2 S T1 ) + S T2 T 2 Since we can wrie FSQO(,, T 2, ω) = e R r d u du E d [QO(, T 2, S T1, ω) F using formula (3) and calculaing he (risk-neural) second momen of S T1 condiional on 3

4 F, we obain FSQO(,, T 2, ω) = ωs 2 e R (ru r d u+σ f u) 2 du RT 2 ru f [ert du 2 T (r d 1 u ru+σ f u) 2 du Φ(ωd ) Φ(ωd 1 ) d = T2 (ru d ru f σ2 u) du σu 2 du d 1 = d (5) Saic Replicaion of a Forward-Sar Quano Opion The saic replicaion of he value a ime of a forward-sar quano opion boils down o he saic replicaion of S 2, boh in he call and pu cases. We hen use (4), wih = and T =, hus obaining S 2 = S T1 1 {ST1 >K} dk = 2 (S T1 K) + dk Therefore, he squared exchange rae can be saically replicaed by means of asse-ornohing calls or, equivalenly, plain-vanilla calls as follows: S 2 = AoNC(,, K) dk = 2 C(,, K) dk Remark 3.1. If he evaluaion ime lies, insead, in he inerval (, T 2 ), a forward-sar quano opion is equivalen o a quano opion wih a given srike (he previously se S T1 ). We hen refer o he previous secion for is pricing and replicaion. 4 Quano Cliques Pricing of a Quano Clique A quano clique opion pays ou a mauriy T 2 > he amoun [ω(s T2 S T1 )/S T1 + in foreign currency, which is equivalen o [ω(s T2 S T1 )/S T1 + S T2 in domesic currency: [ω S T 2 S T1 S T1 + S T2 T 2 4

5 Since he ime T 2 -payoff of a quano clique is equal o ha of he corresponding forwardsar quano opion divided by S T1, he same applies o he corresponding values a ime : QCq(,, T 2, ω) = FSQO(,, T 2, ω) S T1 By (5), he calculaion of he ime -price boils down o he calculaion of he (risk-neural) expecaion of S T1 condiional on F. We obain QCq(,, T 2, ω) = ωs e RT 2 ru f [ert du 2 T (r d 1 u rf u+σu 2) du Φ(ωd ) Φ(ωd 1 ) d = T2 (ru d ru f σ2 u) du (6) d 1 = d Saic Replicaion of a Quano Clique The quano clique value a ime is linear in S T1. A saic replicaion is hen achieved by buying a proper amoun of foreign currency S. Remark 4.1. If he evaluaion ime lies, insead, in he inerval (, T 2 ), a quano clique is equivalen o a consan by a quano opion wih a given srike, where he inverse of he consan and he srike are equal o he known value of S T1. We hen refer o he relaed secion for is pricing and replicaion. 5

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process,

= r t dt + σ S,t db S t (19.1) with interest rates given by a mean reverting Ornstein-Uhlenbeck or Vasicek process, Chaper 19 The Black-Scholes-Vasicek Model The Black-Scholes-Vasicek model is given by a sandard ime-dependen Black-Scholes model for he sock price process S, wih ime-dependen bu deerminisic volailiy σ

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

Stochastic Calculus and Option Pricing

Stochastic Calculus and Option Pricing Sochasic Calculus and Opion Pricing Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Sochasic Calculus 15.450, Fall 2010 1 / 74 Ouline 1 Sochasic Inegral 2 Iô s Lemma 3 Black-Scholes

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

Option Pricing Under Stochastic Interest Rates

Option Pricing Under Stochastic Interest Rates I.J. Engineering and Manufacuring, 0,3, 8-89 ublished Online June 0 in MECS (hp://www.mecs-press.ne) DOI: 0.585/ijem.0.03. Available online a hp://www.mecs-press.ne/ijem Opion ricing Under Sochasic Ineres

More information

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis

Credit Index Options: the no-armageddon pricing measure and the role of correlation after the subprime crisis Second Conference on The Mahemaics of Credi Risk, Princeon May 23-24, 2008 Credi Index Opions: he no-armageddon pricing measure and he role of correlaion afer he subprime crisis Damiano Brigo - Join work

More information

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets

A Generalized Bivariate Ornstein-Uhlenbeck Model for Financial Assets A Generalized Bivariae Ornsein-Uhlenbeck Model for Financial Asses Romy Krämer, Mahias Richer Technische Universiä Chemniz, Fakulä für Mahemaik, 917 Chemniz, Germany Absrac In his paper, we sudy mahemaical

More information

Pricing Fixed-Income Derivaives wih he Forward-Risk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK-8 Aarhus V, Denmark E-mail: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs

More information

Optimal Investment and Consumption Decision of Family with Life Insurance

Optimal Investment and Consumption Decision of Family with Life Insurance Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker

More information

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates

Pricing Guaranteed Minimum Withdrawal Benefits under Stochastic Interest Rates Pricing Guaraneed Minimum Wihdrawal Benefis under Sochasic Ineres Raes Jingjiang Peng 1, Kwai Sun Leung 2 and Yue Kuen Kwok 3 Deparmen of Mahemaics, Hong Kong Universiy of Science and echnology, Clear

More information

The option pricing framework

The option pricing framework Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.

More information

T ϕ t ds t + ψ t db t,

T ϕ t ds t + ψ t db t, 16 PRICING II: MARTINGALE PRICING 2. Lecure II: Pricing European Derivaives 2.1. The fundamenal pricing formula for European derivaives. We coninue working wihin he Black and Scholes model inroduced in

More information

Valuation of Credit Default Swaptions and Credit Default Index Swaptions

Valuation of Credit Default Swaptions and Credit Default Index Swaptions Credi Defaul Swapions Valuaion of Credi Defaul Swapions and Marek Rukowski School of Mahemaics and Saisics Universiy of New Souh Wales Sydney, Ausralia Recen Advances in he Theory and Pracice of Credi

More information

Carol Alexander ICMA Centre, University of Reading. Aanand Venkatramanan ICMA Centre, University of Reading

Carol Alexander ICMA Centre, University of Reading. Aanand Venkatramanan ICMA Centre, University of Reading Analyic Approximaions for Spread Opions Carol Alexander ICMA Cenre, Universiy of Reading Aanand Venkaramanan ICMA Cenre, Universiy of Reading 15h Augus 2007 ICMA Cenre Discussion Papers in Finance DP2007-11

More information

Foreign Exchange and Quantos

Foreign Exchange and Quantos IEOR E4707: Financial Engineering: Coninuous-Time Models Fall 2010 c 2010 by Marin Haugh Foreign Exchange and Quanos These noes consider foreign exchange markes and he pricing of derivaive securiies in

More information

UNIVERSITY OF CALGARY. Modeling of Currency Trading Markets and Pricing Their Derivatives in a Markov. Modulated Environment.

UNIVERSITY OF CALGARY. Modeling of Currency Trading Markets and Pricing Their Derivatives in a Markov. Modulated Environment. UNIVERSITY OF CALGARY Modeling of Currency Trading Markes and Pricing Their Derivaives in a Markov Modulaed Environmen by Maksym Terychnyi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL

More information

An accurate analytical approximation for the price of a European-style arithmetic Asian option

An accurate analytical approximation for the price of a European-style arithmetic Asian option An accurae analyical approximaion for he price of a European-syle arihmeic Asian opion David Vyncke 1, Marc Goovaers 2, Jan Dhaene 2 Absrac For discree arihmeic Asian opions he payoff depends on he price

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model

A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model A Vega-Gamma Relationship for European-Style or Barrier Options in the Black-Scholes Model Fabio Mercurio Financial Models, Banca IMI Abstract In this document we derive some fundamental relationships

More information

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate

Valuation of Life Insurance Contracts with Simulated Guaranteed Interest Rate Valuaion of Life Insurance Conracs wih Simulaed uaraneed Ineres Rae Xia uo and ao Wang Deparmen of Mahemaics Royal Insiue of echnology 100 44 Sockholm Acknowledgmens During he progress of he work on his

More information

New Pricing Framework: Options and Bonds

New Pricing Framework: Options and Bonds arxiv:1407.445v [q-fin.pr] 14 Oc 014 New Pricing Framework: Opions and Bonds Nick Laskin TopQuark Inc. Torono, ON, M6P P Absrac A unified analyical pricing framework wih involvemen of he sho noise random

More information

Dependent Interest and Transition Rates in Life Insurance

Dependent Interest and Transition Rates in Life Insurance Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies

More information

12. Market LIBOR Models

12. Market LIBOR Models 12. Marke LIBOR Models As was menioned already, he acronym LIBOR sands for he London Inerbank Offered Rae. I is he rae of ineres offered by banks on deposis from oher banks in eurocurrency markes. Also,

More information

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension

Pricing Black-Scholes Options with Correlated Interest. Rate Risk and Credit Risk: An Extension Pricing Black-choles Opions wih Correlaed Ineres Rae Risk and Credi Risk: An Exension zu-lang Liao a, and Hsing-Hua Huang b a irecor and Professor eparmen of inance Naional Universiy of Kaohsiung and Professor

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

Modelling of Forward Libor and Swap Rates

Modelling of Forward Libor and Swap Rates Modelling of Forward Libor and Swap Raes Marek Rukowski Faculy of Mahemaics and Informaion Science Warsaw Universiy of Technology, -661 Warszawa, Poland Conens 1 Inroducion 2 2 Modelling of Forward Libor

More information

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average

Optimal Stock Selling/Buying Strategy with reference to the Ultimate Average Opimal Sock Selling/Buying Sraegy wih reference o he Ulimae Average Min Dai Dep of Mah, Naional Universiy of Singapore, Singapore Yifei Zhong Dep of Mah, Naional Universiy of Singapore, Singapore July

More information

Variance Swap. by Fabrice Douglas Rouah

Variance Swap. by Fabrice Douglas Rouah Variance wap by Fabrice Douglas Rouah www.frouah.com www.volopa.com In his Noe we presen a deailed derivaion of he fair value of variance ha is used in pricing a variance swap. We describe he approach

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

A general decomposition formula for derivative prices in stochastic volatility models

A general decomposition formula for derivative prices in stochastic volatility models A general decomposiion formula for derivaive prices in sochasic volailiy models Elisa Alòs Universia Pompeu Fabra C/ Ramón rias Fargas, 5-7 85 Barcelona Absrac We see ha he price of an european call opion

More information

An Interest Rate Swap Volatility Index and Contract

An Interest Rate Swap Volatility Index and Contract Anonio Mele QUASaR Yoshiki Obayashi Applied Academics LLC Firs draf: November 10, 2009. This version: June 26, 2012. ABSTRACT Ineres rae volailiy and equiy volailiy evolve heerogeneously over ime, comoving

More information

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...

Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100... Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The Black-Scholes Shl Ml Moel... pricing opions an calculaing

More information

Pricing exotic options. with an implied integrated variance

Pricing exotic options. with an implied integrated variance Pricing exoic opions wih an implied inegraed variance Ruh Kaila Ocober 13, 212 Absrac In his paper, we consider he pricing of exoic opions using wo opion-implied densiies: he densiy of he implied inegraed

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

Longevity 11 Lyon 7-9 September 2015

Longevity 11 Lyon 7-9 September 2015 Longeviy 11 Lyon 7-9 Sepember 2015 RISK SHARING IN LIFE INSURANCE AND PENSIONS wihin and across generaions Ragnar Norberg ISFA Universié Lyon 1/London School of Economics Email: ragnar.norberg@univ-lyon1.fr

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance Finance Leers, 003, (5), 6- Skewness and Kurosis Adjused Black-Scholes Model: A Noe on Hedging Performance Sami Vähämaa * Universiy of Vaasa, Finland Absrac his aricle invesigaes he dela hedging performance

More information

Exotic electricity options and the valuation of electricity generation and transmission assets

Exotic electricity options and the valuation of electricity generation and transmission assets Decision Suppor Sysems 30 2001 383 392 wwwelseviercomrlocaerdsw Exoic elecriciy opions and he valuaion of elecriciy generaion and ransmission asses Shi-Jie Deng a,), Blake Johnson b, Aram Sogomonian c

More information

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL 54 Journal of Marine Science and echnology, Vol. 13, No. 1, pp. 54-60 (2005) HE DEERMINAION OF POR FACILIIES MANAGEMEN FEE WIH GUARANEED VOLUME USING OPIONS PRICING MODEL Kee-Kuo Chen Key words: build-and-lease

More information

Pricing Futures and Futures Options with Basis Risk

Pricing Futures and Futures Options with Basis Risk Pricing uures and uures Opions wih Basis Risk Chou-Wen ang Assisan professor in he Deparmen of inancial Managemen Naional Kaohsiung irs niversiy of cience & Technology Taiwan Ting-Yi Wu PhD candidae in

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

Life insurance cash flows with policyholder behaviour

Life insurance cash flows with policyholder behaviour Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK-2100 Copenhagen Ø, Denmark PFA Pension,

More information

Why we have always used the Black-Scholes-Merton option pricing formula

Why we have always used the Black-Scholes-Merton option pricing formula Why we have always used he Black-Scholes-Meron opion pricing formula Charles J. Corrado Deakin Universiy Melbourne, Ausralia April 4, 9 Absrac Derman and aleb (he Issusions of Dynamic Hedging, 5 uncover

More information

Optimal Time to Sell in Real Estate Portfolio Management

Optimal Time to Sell in Real Estate Portfolio Management Opimal ime o Sell in Real Esae Porfolio Managemen Fabrice Barhélémy and Jean-Luc Prigen hema, Universiy of Cergy-Ponoise, Cergy-Ponoise, France E-mails: fabricebarhelemy@u-cergyfr; jean-lucprigen@u-cergyfr

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert

UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES. Nadine Gatzert UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN UNIVERSAL LIFE POLICIES Nadine Gazer Conac (has changed since iniial submission): Chair for Insurance Managemen Universiy of Erlangen-Nuremberg Lange Gasse

More information

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT

ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE CONTRACTS IN GAUSSIAN FINANCIAL ENVIRONMENT Teor Imov r.amaem.sais. Theor. Probabiliy and Mah. Sais. Vip. 7, 24 No. 7, 25, Pages 15 111 S 94-9(5)634-4 Aricle elecronically published on Augus 12, 25 ON THE PRICING OF EQUITY-LINKED LIFE INSURANCE

More information

Equities: Positions and Portfolio Returns

Equities: Positions and Portfolio Returns Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi

More information

Arbitrage-free pricing of Credit Index Options. The no-armageddon pricing measure and the role of correlation after the subprime crisis

Arbitrage-free pricing of Credit Index Options. The no-armageddon pricing measure and the role of correlation after the subprime crisis Arbirage-free pricing of Credi Index Opions. The no-armageddon pricing measure and he role of correlaion afer he subprime crisis Massimo Morini Banca IMI, Inesa-SanPaolo, and Dep. of uan. Mehods, Bocconi

More information

A Tale of Two Indices

A Tale of Two Indices PEER CARR is he direcor of he Quaniaive Finance Research group a Bloomberg LP and he direcor of he Masers in Mahemaical Finance program a he Couran Insiue of New York Universiy NY. pcarr4@bloomberg.com

More information

Introduction to Arbitrage Pricing

Introduction to Arbitrage Pricing Inroducion o Arbirage Pricing Marek Musiela 1 School of Mahemaics, Universiy of New Souh Wales, 252 Sydney, Ausralia Marek Rukowski 2 Insiue of Mahemaics, Poliechnika Warszawska, -661 Warszawa, Poland

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

SPEC model selection algorithm for ARCH models: an options pricing evaluation framework Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

Technical Appendix to Risk, Return, and Dividends

Technical Appendix to Risk, Return, and Dividends Technical Appendix o Risk, Reurn, and Dividends Andrew Ang Columbia Universiy and NBER Jun Liu UC San Diego This Version: 28 Augus, 2006 Columbia Business School, 3022 Broadway 805 Uris, New York NY 10027,

More information

Pricing American Options under the Constant Elasticity of Variance Model and subject to Bankruptcy

Pricing American Options under the Constant Elasticity of Variance Model and subject to Bankruptcy Pricing American Opions under he Consan Elasiciy of Variance Model and subjec o Bankrupcy João Pedro Vidal Nunes ISCTE Business School Complexo INDEG/ISCTE, Av. Prof. Aníbal Beencour, 1600-189 Lisboa,

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß **

IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION. Tobias Dillmann * and Jochen Ruß ** IMPLICIT OPTIONS IN LIFE INSURANCE CONTRACTS FROM OPTION PRICING TO THE PRICE OF THE OPTION Tobias Dillmann * and Jochen Ruß ** ABSTRACT Insurance conracs ofen include so-called implici or embedded opions.

More information

PRICING AND PERFORMANCE OF MUTUAL FUNDS: LOOKBACK VERSUS INTEREST RATE GUARANTEES

PRICING AND PERFORMANCE OF MUTUAL FUNDS: LOOKBACK VERSUS INTEREST RATE GUARANTEES PRICING AND PERFORMANCE OF MUUAL FUNDS: LOOKBACK VERSUS INERES RAE GUARANEES NADINE GAZER HAO SCHMEISER WORKING PAPERS ON RISK MANAGEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAGEMEN

More information

A Simple Approach to CAPM, Option Pricing and Asset Valuation

A Simple Approach to CAPM, Option Pricing and Asset Valuation A imple Approach o CAPM, Opion Pricing and Asse Valuaion Riccardo Cesari (*) Universià di Bologna, Dip. Maemaes, viale Filopani, 5 406 Bologna, Ialy E-mail: rcesari@economia.unibo.i Carlo D Adda Universià

More information

An Optimal Selling Strategy for Stock Trading Based on Predicting the Maximum Price

An Optimal Selling Strategy for Stock Trading Based on Predicting the Maximum Price An Opimal Selling Sraegy for Sock Trading Based on Predicing he Maximum Price Jesper Lund Pedersen Universiy of Copenhagen An opimal selling sraegy for sock rading is presened in his paper. An invesor

More information

ARCH 2013.1 Proceedings

ARCH 2013.1 Proceedings Aricle from: ARCH 213.1 Proceedings Augus 1-4, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference

More information

VARIABLE STRIKE OPTIONS IN LIFE INSURANCE GUARANTEES

VARIABLE STRIKE OPTIONS IN LIFE INSURANCE GUARANTEES Opions in life insurance guaranees VARIABLE SRIKE OPIONS IN LIFE INSURANCE GUARANEES Piera MAZZOLENI Caholic Universiy Largo Gemelli,, (03) Milan, Ialy piera.mazzoleni(a)unica.i Absrac Variable srike opions

More information

Time-inhomogeneous Lévy Processes in Cross-Currency Market Models

Time-inhomogeneous Lévy Processes in Cross-Currency Market Models Time-inhomogeneous Lévy Processes in Cross-Currency Marke Models Disseraion zur Erlangung des Dokorgrades der Mahemaischen Fakulä der Alber-Ludwigs-Universiä Freiburg i. Brsg. vorgeleg von Naaliya Koval

More information

Modeling of Tradeable Securities with Dividends

Modeling of Tradeable Securities with Dividends Modeling of Tradeable Securiies wih Dividends Michel Vellekoop 1 & Hans Nieuwenhuis 2 April 7, 26 Absrac We propose a generalized framework for he modeling of radeable securiies wih dividends which are

More information

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.

More information

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities *

A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities * A Universal Pricing Framework for Guaraneed Minimum Benefis in Variable Annuiies * Daniel Bauer Deparmen of Risk Managemen and Insurance, Georgia Sae Universiy 35 Broad Sree, Alana, GA 333, USA Phone:

More information

arxiv:submit/1578408 [q-fin.pr] 3 Jun 2016

arxiv:submit/1578408 [q-fin.pr] 3 Jun 2016 Derivaive pricing for a muli-curve exension of he Gaussian, exponenially quadraic shor rae model Zorana Grbac and Laura Meneghello and Wolfgang J. Runggaldier arxiv:submi/578408 [q-fin.pr] 3 Jun 206 Absrac

More information

HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES?

HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES? HOW CLOSE ARE THE OPTION PRICING FORMULAS OF BACHELIER AND BLACK-MERTON-SCHOLES? WALTER SCHACHERMAYER AND JOSEF TEICHMANN Absrac. We compare he opion pricing formulas of Louis Bachelier and Black-Meron-Scholes

More information

Chapter 6 Interest Rates and Bond Valuation

Chapter 6 Interest Rates and Bond Valuation Chaper 6 Ineres Raes and Bond Valuaion Definiion and Descripion of Bonds Long-erm deb-loosely, bonds wih a mauriy of one year or more Shor-erm deb-less han a year o mauriy, also called unfunded deb Bond-sricly

More information

Individual Health Insurance April 30, 2008 Pages 167-170

Individual Health Insurance April 30, 2008 Pages 167-170 Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

More information

Credit risk. T. Bielecki, M. Jeanblanc and M. Rutkowski. Lecture of M. Jeanblanc. Preliminary Version LISBONN JUNE 2006

Credit risk. T. Bielecki, M. Jeanblanc and M. Rutkowski. Lecture of M. Jeanblanc. Preliminary Version LISBONN JUNE 2006 i Credi risk T. Bielecki, M. Jeanblanc and M. Rukowski Lecure of M. Jeanblanc Preliminary Version LISBONN JUNE 26 ii Conens Noaion vii 1 Srucural Approach 3 1.1 Basic Assumpions.....................................

More information

SHB Gas Oil. Index Rules v1.3 Version as of 1 January 2013

SHB Gas Oil. Index Rules v1.3 Version as of 1 January 2013 SHB Gas Oil Index Rules v1.3 Version as of 1 January 2013 1. Index Descripions The SHB Gasoil index (he Index ) measures he reurn from changes in he price of fuures conracs, which are rolled on a regular

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

Carbon Trading. Diederik Dian Schalk Nel. Christ Church University of Oxford

Carbon Trading. Diederik Dian Schalk Nel. Christ Church University of Oxford Carbon Trading Diederik Dian Schalk Nel Chris Church Universiy of Oxford A hesis submied in parial fulfillmen for he MSc in Mahemaical inance April 13, 29 This hesis is dedicaed o my parens Nana and Schalk

More information

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract

Stochastic Volatility Models: Considerations for the Lay Actuary 1. Abstract Sochasic Volailiy Models: Consideraions for he Lay Acuary 1 Phil Jouber Coomaren Vencaasawmy (Presened o he Finance & Invesmen Conference, 19-1 June 005) Absrac Sochasic models for asse prices processes

More information

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619

Working Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619 econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;

More information

Introduction to Option Pricing with Fourier Transform: Option Pricing with Exponential Lévy Models

Introduction to Option Pricing with Fourier Transform: Option Pricing with Exponential Lévy Models Inroducion o Opion Pricing wih Fourier ransform: Opion Pricing wih Exponenial Lévy Models Kazuhisa Masuda Deparmen of Economics he Graduae Cener, he Ciy Universiy of New York, 365 Fifh Avenue, New York,

More information

Black Scholes Option Pricing with Stochastic Returns on Hedge Portfolio

Black Scholes Option Pricing with Stochastic Returns on Hedge Portfolio EJTP 3, No. 3 006 9 8 Elecronic Journal of Theoreical Physics Black Scholes Opion Pricing wih Sochasic Reurns on Hedge Porfolio J. P. Singh and S. Prabakaran Deparmen of Managemen Sudies Indian Insiue

More information

Risk Modelling of Collateralised Lending

Risk Modelling of Collateralised Lending Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

More information

INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE

INVESTMENT GUARANTEES IN UNIT-LINKED LIFE INSURANCE PRODUCTS: COMPARING COST AND PERFORMANCE INVESMEN UARANEES IN UNI-LINKED LIFE INSURANCE PRODUCS: COMPARIN COS AND PERFORMANCE NADINE AZER HAO SCHMEISER WORKIN PAPERS ON RISK MANAEMEN AND INSURANCE NO. 4 EDIED BY HAO SCHMEISER CHAIR FOR RISK MANAEMEN

More information

LECTURE 7 Interest Rate Models I: Short Rate Models

LECTURE 7 Interest Rate Models I: Short Rate Models LECTURE 7 Ineres Rae Models I: Shor Rae Models Spring Term 212 MSc Financial Engineering School of Economics, Mahemaics and Saisics Birkbeck College Lecurer: Adriana Breccia email: abreccia@emsbbkacuk

More information

European option prices are a good sanity check when analysing bonds with exotic embedded options.

European option prices are a good sanity check when analysing bonds with exotic embedded options. European opion prices are a good saniy check when analysing bonds wih exoic embedded opions. I s an old exam quesion. Arbirage-free economy where ZCB prices are driven 1-D BM, i.e. dp (, T ) = r()p (,

More information

The Generalized Extreme Value (GEV) Distribution, Implied Tail Index and Option Pricing

The Generalized Extreme Value (GEV) Distribution, Implied Tail Index and Option Pricing he Generalized Exreme Value (GEV) Disribuion, Implied ail Index and Opion Pricing Sheri Markose and Amadeo Alenorn his version: 6 December 200 Forhcoming Spring 20 in he Journal of Derivaives Absrac Crisis

More information

Pricing Dynamic Insurance Risks Using the Principle of Equivalent Utility

Pricing Dynamic Insurance Risks Using the Principle of Equivalent Utility Scand. Acuarial J. 00; 4: 46 79 ORIGINAL ARTICLE Pricing Dynamic Insurance Risks Using he Principle of Equivalen Uiliy VIRGINIA R. YOUNG and THALEIA ZARIPHOPOULOU Young VR, Zariphopoulou T. Pricing dynamic

More information

A Market Model of Interest Rates with Dynamic Basis Spreads in the presence of Collateral and Multiple Currencies

A Market Model of Interest Rates with Dynamic Basis Spreads in the presence of Collateral and Multiple Currencies CIRJE-F-698 A Marke Model of Ineres Raes wih Dynamic Basis Spreads in he presence of Collaeral and Muliple Currencies Masaaki Fujii Graduae School of Economics, Universiy of Tokyo Yasufumi Shimada Capial

More information

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models

More information

Options and Volatility

Options and Volatility Opions and Volailiy Peer A. Abken and Saika Nandi Abken and Nandi are senior economiss in he financial secion of he Alana Fed s research deparmen. V olailiy is a measure of he dispersion of an asse price

More information

Sample Level 2 Editing

Sample Level 2 Editing Sample Level 2 Ediing A Laice Model for Opion Pricing Under GARCH-Jump Processes ABSTRACT This sudy posis a need for an innovaive discree-ime laice model This sudy inegraes he GARCH opion pricing ree of

More information

Cash-Lock Comparison of Portfolio Insurance Strategies

Cash-Lock Comparison of Portfolio Insurance Strategies Cash-Lock Comparison of Porfolio Insurance Sraegies Sven Balder Anje B. Mahayni This version: May 3, 28 Deparmen of Banking and Finance, Universiy of Bonn, Adenauerallee 24 42, 533 Bonn. E-mail: sven.balder@uni-bonn.de

More information

Indexing Executive Stock Options Relatively

Indexing Executive Stock Options Relatively Indexing Execuive Sock Opions Relaively Jin-Chuan Duan and Jason Wei Joseph L. Roman School of Managemen Universiy of Torono 105 S. George Sree Torono, Onario Canada, M5S 3E6 jcduan@roman.uorono.ca wei@roman.uorono.ca

More information

The Uncertain Mortality Intensity Framework: Pricing and Hedging Unit-Linked Life Insurance Contracts

The Uncertain Mortality Intensity Framework: Pricing and Hedging Unit-Linked Life Insurance Contracts The Uncerain Moraliy Inensiy Framework: Pricing and Hedging Uni-Linked Life Insurance Conracs Jing Li Alexander Szimayer Bonn Graduae School of Economics School of Economics Universiy of Bonn Universiy

More information

FX OPTION PRICING: RESULTS FROM BLACK SCHOLES, LOCAL VOL, QUASI Q-PHI AND STOCHASTIC Q-PHI MODELS

FX OPTION PRICING: RESULTS FROM BLACK SCHOLES, LOCAL VOL, QUASI Q-PHI AND STOCHASTIC Q-PHI MODELS FX OPTION PRICING: REULT FROM BLACK CHOLE, LOCAL VOL, QUAI Q-PHI AND TOCHATIC Q-PHI MODEL Absrac Krishnamurhy Vaidyanahan 1 The paper suggess a new class of models (Q-Phi) o capure he informaion ha he

More information

RISK-SHIFTING AND OPTIMAL ASSET ALLOCATION IN LIFE INSURANCE: THE IMPACT OF REGULATION. 1. Introduction

RISK-SHIFTING AND OPTIMAL ASSET ALLOCATION IN LIFE INSURANCE: THE IMPACT OF REGULATION. 1. Introduction RISK-SHIFTING AND OPTIMAL ASSET ALLOCATION IN LIFE INSURANCE: THE IMPACT OF REGULATION AN CHEN AND PETER HIEBER Absrac. In a ypical paricipaing life insurance conrac, he insurance company is eniled o a

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

Market Models for Inflation

Market Models for Inflation Marke Models for Inflaion Ferhana Ahmad Lady Margare Hall Universiy of Oxford A hesis submied for he degree of Msc. in Mahemaical and Compuaional Finance Triniy 2008 This work is dedicaed o my family,

More information