Stochastic Claims Reserving under Consideration of Various Different Sources of Information


 Chrystal Nichols
 1 years ago
 Views:
Transcription
1 Stochastc Clams Reservng under Consderaton of Varous Dfferent Sources of Informaton Dssertaton Zur Erlangung der Würde des Dotors der Wrtschaftswssenschaften der Unverstät Hamburg vorgelegt von Sebastan Happ geb. am n Tübngen Hamburg, Jul 2014
2 Vorstzender: Prof. Dr. Bernhard Arnold (Unverstät Hamburg) Erstgutachter (Supervsor): Prof. Dr. Mchael Merz (Unverstät Hamburg) Zwetgutachter (CoSupervsor): Prof. Dr. Maro V. Wüthrch (ETH Zürch) Datum der Dsputaton:
3 Acnowledgements Durng my dploma studes n mathematcs and busness admnstraton at the Eberhard Karls Unverstät Tübngen Prof. Dr. Mchael Merz started teachng at unversty as an assstant professor at the department of busness admnstraton. Ths gave me the chance to attend hs lecture seres on selected topcs n actuaral scence. Vstng these lectures I got a fundamental nsght n practcal problems n quanttatve rs management and nsurance and how they can be approached by mathematcal statstcal concepts. Ths awaened my deep nterest n actuaral scence. At ths pont I would le to express my deepest grattude to my supervsor Mchael Merz for gvng me the chance to pursue a PhD at the faculty of busness admnstraton n Hamburg. Not only dd he support me n scentfc ssues but also n personal matters. I am deeply grateful to my cosupervsor Prof. Dr. Maro V. Wüthrch from ETH Zürch for hs great support and nvaluable advce n our jont contrbutons. He permanently supported me wth hs vast nowledge and experence n actuaral scence. Moreover, I would le to than my coauthor René Dahms for hs valuable collaboraton. My thans also go to the whole team, namely T. Gummersbach, J. Heberle, NhaNgh Huynh, A. Johannssen, A. RuzMerno and A. Thomas at the char of mathematcs and statstcs n busness admnstraton at Unverstät Hamburg under the admnstraton and supervson of Mchael Merz for ts support. I would le to than Marco Bretg for hs valuable dscussons. Fnally, I than my wfe Svetlana for her confdence and support n all those years. Sebastan Happ
4
5 Contents 1 Introducton 1 2 Reservng Problem Insurance Contracts and Process of Clams Settlement Data Bass n a Nonlfe Insurance Company Classcal Vew Extended Vew Predcton Problem Inflaton Predcton Precson Mean Squared Error of Predcton Clams Development Result Classcal DstrbutonFree Clams Reservng Methods General Notaton Chan Ladder Method Bayes Chan Ladder Method Complementary Loss Rato Method Bornhuetter Ferguson Method Munch Chan Ladder Method (Bayesan) Lnear Stochastc Reservng Methods Lnear Stochastc Reservng Methods Classcal Clams Reservng Methods as LSRMs Parameter Estmaton for LSRMs Predcton of Future Clam Informaton Bayesan Lnear Stochastc Reservng Methods Classcal Bayesan Clams Reservng Methods as Bayesan LSRMs Predcton of Future Clam Informaton Credblty for Lnear Stochastc Reservng Methods I
6 II Contents Mean Squared Error of Predcton Specal Case: Mean Squared Error of Predcton for the Bayes CL Method Clams Development Result Specal Case: Clams Development Result for the Bayes CL Method Example Bayesan LSRM Conclusons PadIncurred Chan Reservng Method Notaton and Model Assumptons Oneyear Clams Development Result Expected Ultmate Clam at Tme J Mean Squared Error of Predcton of the Clams Development Result Sngle Accdent Years Aggregated Accdent Years Example PIC Reservng Method Conclusons PadIncurred Chan Reservng Method wth Dependence Modelng Notaton and Model Assumptons Ultmate Clam Predcton for Known Parameters Θ Estmaton of Parameter Θ Predcton Uncertanty Example PIC Reservng Method wth Dependence Modelng Conclusons Solvency Regulatory Requrements on Reserves MaretValue Margn Solvency Captal Requrements Fnal Regulatory Reserves Smplfcatons for Regulatory Solvency Requrements Example for Regulatory Reserves Conclusons and Outloo 125 Data Sets 133
7 Lst of Fgures 2.1 Generc tme lne of the clams settlement process Classcal vew (extended vew): Generc runoff trapezod of the mth LoB (clam nformaton) for m {1,..., M} and ncremental clams payments (clam nformaton) of accdent year and development year wth + = I Data set D I observable at tme I and data set D I+1 observable at tme I Reserves R I based on D I at tme I, updated reserves R I+1 based on D I+1 at tme I + 1 and the resultng clams development result CDR M,I σfelds (sets of observatons): B,  all clam nformaton n accdent year up to development year, D  all clam nformaton up to development year, D n  all clam nformaton up to accountng year n and D n  the unon of all nformaton n D and D n σfelds (sets of observatons): D  all clam nformaton up to development year, D n  all clam nformaton up to accountng year n and D n  the unon of all nformaton n D and D n Development factors for BUs 1 3 n the classcal LSRM and credblty development factor F 0 I,Cred {0,..., 10} for BU Cumulatve clams payments P,j and ncurred losses I,j observed at tme t = J both leadng to the ultmate loss P,J = I,J Updated cumulatve clams payments P,j and ncurred losses I,j observed at tme t = J Emprcal densty for the oneyear CDR (blue lne) from smulatons and ftted Gaussan densty wth mean 0 and standard devaton (dotted red lne) QQplot for lower quantles q (0, 0.1) to compare the left tal of the emprcal densty for the oneyear CDR wth the left tal of the ftted Gaussan densty wth mean 0 and standard devaton III
8 IV Lst of Fgures 6.1 Correlaton estmators ˆρ l for ρ l for l {0, 1, 2, 3} as a functon of the number of observatons used for the estmaton Reserves consst of BEL, MVM (together satsfyng accountng condton) and SCR (satsfyng the nsurance contract condton) The calbrated lognormal dstrbuton wth µ = and σ = used as an approxmaton for the dstrbuton of the quantty S21 M + BEL21 and correspondng expected value, VaR and ES for the securty level α = Bestestmate valuaton of labltes BEL 20, maretvalue margn MVM 20 (together satsfyng accountng condton) and solvency captal requrements SCR 20 (satsfyng the nsurance contract condton) leadng to the overall reserves
9 Lst of Tables 2.1 Classcal rs characterstcs: Reserves and CDR and the correspondng frst two moments Reserves and predcton uncertanty Indvdual LoB and overall CDR uncertanty Ultmate clam predcton and predcton uncertanty for the oneyear CDR calculated by the ECLR method for clams payments and ncurred losses (cf. Dahms [16] and Dahms et al. [18]) and by the PIC method, respectvely Ratos msep 1/2 CDR /msep1/2 Ultmate calculated by the ECLR method for clams payments and ncurred losses (cf. Dahms et al. [18]) and calculated by the PIC method, respectvely Lefthand sde: development trangle wth cumulatve clams payments P,j ; rghthand sde: development trangle wth ncurred losses I,j ; both leadng to the same ultmate clam P,J = I,J Uncorrelated case and three explct choces for correlatons Clams reserves n the classcal PIC model and PIC model wth dependence Predcton uncertanty msep 1/2 for the classcal PIC model and the PIC model wth dependence Predcted ncremental clam nformaton for LoB 1, 2 and Expected pattern of BEL for calendar years n = 20,..., Cumulatve clams payments Incurred losses Busness unt Busness unt Busness unt Cumulatve clams payments P,j, + j 21, from a motor thrd party lablty Incurred losses I,j, + j 21, from a motor thrd party lablty V
10
11 1 Introducton Recent developments n (fnancal) marets have shown that unexpected negatve events may have a tremendous mpact on a wde range of fnancal nsttutons such as bans, funds, nvestment and nsurance companes. Often such events are followed by serous problems rangng from economc depresson wth hgh unemployment rates, a decrease n common wealth and bad medcal mantenance to socal rots. Governmental authortes and regulatory nsttutons have been establshed to adopt and develop regulatory framewors for the fnancal ndustry, n order to reduce negatve mpact of such events and to avod collateral damage on other parts of the economy n the future. In Germany the Federal Fnancal Supervsory Authorty (BaFn) supervses bans, fnancal servces provder, nsurance companes as well as securtes tradng. Moreover, n response to the fnancal crss the European Unon (EU) created the European System of Fnancal Supervson, whch conssts of three European Supervsory Authortes: 1. European Banng Authorty (EBA) for the European banng sector 2. European Insurance and Occupatonal Pensons Authorty (EIOPA) for the nsurance sector 3. European Securtes and Marets Authorty (ESMA) for securtes tradng For the banng sector the correspondng regulatory framewor called Basel II was developed by the Basel Commttee on Banng Supervson and s currently replaced by ts successor Basel III. Insurance companes n Europe are controlled by the regulatory framewor called Solvency II. In Swtzerland the regulaton of all fnancal nsttutons ncludng nsurance companes s provded by the Swss Fnancal Marets Authorty (FINMA) wth the correspondng regulaton framewors Basel II and Basel III for the banng sector and the Swss Solvency Test (SST) for the nsurance ndustry. For an nsurance company there are two ways a regulatory framewor can be looed at. a) From the perspectve of nvestors and the management: The functon and the exstence of the company must be mantaned n the md/long term run to generate earnngs for the nvestors and the management. Moreover, these earnngs should be maxmzed 1
12 2 1 Introducton (proft maxmzaton). b) From the perspectve of regulatory authortes: Fnancal lqudty of the nsurance company must be provded even n tmes of extreme fnancal dstress and phases of an extraordnary accumulaton of clam compensaton payments. The ablty of the nsurer to pay losses has to be mantaned n almost all realstc scenaros to prevent losses for the polcyholders and to elmnate wderangng negatve effects on the whole economy. Smlar to Basel II, the Solvency II regulatory framewor s subdvded nto three man pllars to ncorporate the man deas of the regulatory authortes pont of vew: Pllar I: Mnmum Standard and Implementaton Maret consstent valuaton of assets and labltes Internal models, bestestmate reserves, techncal provsons, solvency captal requrements, target captal and own funds Pllar II: Supervsor Revew and Control Group supervson Supervsory revew process Governance Pllar III: Dsclosure Supervsory transparency Accountablty Reportng and dsclosure For detals on the techncal standards, further gudelnes and nformaton, see the Webste of EIOPA 1. For the basc structure of the SST we refer to the Webste of FINMA 2. In ths thess we focus on the the frst pllar. Moreover, one has to dstngush between lfe and nonlfe nsurance busness, snce the contract specfcatons, rs drvers and payoff patterns and hence the methodologc means of approachng and modelng lfe and nonlfe contract labltes dffer substantally. For an llustraton of ths fact we refer to the examples gven n Chapter 7 n Wüthrch Merz [62]. An ntroducton on stochastc models n lfe nsurance can be found n Gerber [26] and Koller [35]. It s crucal to eep n mnd that from now on throughout the thess we wll strctly deal wth nonlfe nsurance busness. The frst pllar n nonlfe nsurance has been subject to many quanttatve scentfc studes, see Wüthrch Merz [63] and [62] for an overvew, snce t s drectly assocated wth the 1 https://eopa.europa.eu/actvtes/nsurance/solvency 2
13 3 problem of the management and quantfcaton of (random) future cash flows. These cash flows typcally arse from assets and clams payments, see Wüthrch Merz [62]. The correspondng feld of study to analyze (random) rs outcomes and assocated loss lablty cash flows n nsurance wth mathematcal and statstcal methods s called actuaral scence. Actuaral scence comprses the followng aspects: 1. Evaluaton of (random) outstandng loss lablty cash flows and settngup of suffcent reserves to meet these labltes 2. Evaluaton of assets and ts assocated rs 3. Level of premums n polces 4. Rensurance 5. Asset lablty management (ALM) comprsng all prevous aspects All stated aspects have an mpact on the process of future cash flows and are therefore crucal for management purposes n nsurance companes. That means that actuaral scence s drectly assocated wth the central problem n nsurance companes of predctng future cash flows. Therefore, the crucal tas and man goal of actuares s the predcton of (random) future cash flows. Among the fve aspects stated above we focus n ths thess on the frst aspect,.e. the feld of predctng future outstandng loss labltes. In actuaral scence ths feld s called clams reservng. Clams reservng belongs to the man tass of a nonlfe actuary, snce clams reserves are the bggest poston on a balance sheet of a nonlfe nsurance company and must therefore be predcted very precsely. Therefore, n ths doctoral thess we wll focus on the tas of predctng future loss labltes and calculatng the correspondng reserves needed to cover these outstandng loss labltes n nonlfe nsurance companes. For ths predcton problem there are often varous sources of nformaton avalable. Most classcal clams reservng methods are very lmted w.r.t. the sources of nformaton they can ncorporate. We present n ths thess two powerful models whch can cope wth several sources of nformaton n a mathematcally consstent way. The frst model generalzes most wdely used dstrbutonfree clams reservng methods. Ths provdes a new perspectve and new possbltes for dstrbutonfree clams modelng and s subject to Part II of ths thess. The second method s an mportant representatve of the class of dstrbutonal clams reservng methods whch can cope wth two dfferent data sources often avalable n nsurance practce. Ths s subject to Part III. The thess s closed up by Part IV dscussng some central aspects of clams reservng under new solvency requrements le Solvency II or SST.
14 4 1 Introducton Outlne Ths thess s dvded nto four parts: Part I: In the frst part (Chapter 2) the classcal clams reservng problem s ntroduced. We consder the assocated general predcton problem and pont out whch data sources have been used n classcal as well as n stateoftheart clams reservng methods for the predcton of future loss labltes. Moreover we show how the ncorporated predcton uncertanty s classcally quantfed n long term as well as n short term rs consderatons. Part II: In the second part (Chapters 3 and 4) we brefly present wdely used classcal clams reservng methods. Followng Dahms [17] and Dahms Happ [15] all these methods are then merged n a general stateoftheart dstrbutonfree clams reservng framewor n Chapter 4. Ths model framewor comprses almost all dstrbutonfree clams reservng methods. Moreover, t allows for the ncorporaton of varous sources of nformaton for the predcton process and hence provdes a new perspectve and possbltes of dstrbutonfree clams reservng. Part III: In contrary to Part II ths part s subject to dstrbutonal clams reservng. In the model class of dstrbutonal clams reservng methods we consder n Chapters 5 and 6 an mportant representatve, the padncurred chan (PIC) reservng method presented n Merz Wüthrch [46]. Followng Happ et al. [30] and Happ Wüthrch [31] we consder for ths method the quantfcaton of the oneyear reservng rs and generalze the classcal PIC method so that dependence structures n the data can be approprately captured. Moreover, the whole predctve dstrbuton of the clams development result s derved va MonteCarlo (MC) methods. Part IV: In ths part (Chapter 7) we pont out central regulatory requrements ncluded n recent solvency framewors le SST or Solvency II. These solvency requrements are not coherent wth most classcal clams reservng methods. We pont out smplfcaton methods proposed n the SST and show how they mae most clams reservng methods accessble for these solvency requrements. We close up ths part by presentng an example where reserves are calculated regardng the SST reservng requrements.
15 2 Reservng Problem 2.1 Insurance Contracts and Process of Clams Settlement An nsurance contract s an agreement of two partes: For a fxed payment (nsurance premum) the nsurer (nsurance company) oblges to pay a fnancal compensaton to the nsured (polcyholder) n the case of an occurrence of some well defned (random) future event n a well specfed tme perod. In the case of such an event at a certan date (occurrence date) durng the nsured perod, the nsured person reports the clam to the nsurance company at the socalled reportng (notfcaton) date. The tme between the occurrence and the reportng date s called reportng delay. After the reportng of the clam the nsurance company verfes whether all nsurance contract specfcatons are fulflled so that the nsurer has to provde coverage of the clam. If ths s the case, the nsurance company starts payments for the fnancal compensaton of the clam n accordance to the contract specfcatons. Ths clams settlement process typcally conssts of one or more payments to the polcyholder. It ends wth the closure date where no further clams payments are expected and the clam s (presumably) completely settled and closed. The tme lne of typcal nonlfe nsurance clams from occurrence to the fnal settlement s llustrated n Fgure 2.1. Tme delays from occurrence to notfcaton and from settlement process to the premum nsured perod occurrence notfcaton closure clams payments Fgure 2.1: Generc tme lne of the clams settlement process tme closure date are typcal for nonlfe nsurance clams and can be caused by dfferent reasons: Delays when ncurred clam events are not mmedately reported to the nsurance company Fnal clam amounts are determned over a long perod of tme (up to several decades) Jurdcal nspecton of a clam. The lablty of the nsurance company to pay for the clam 5
16 6 2 Reservng Problem s to be determned Court decsons leadng to payment adjustments, reverse transactons of already pad compensatons or addtonal clams payments These tme delays often lead to a very slow clams settlement process wth clams payments far n the future (up to several decades). Ths shows that the very nature of nsurance busness (.e. underwrtng rss through nsurance contracts) often causes a very slow settlement process and the predcton of ths process becomes a central pont of nterest. For a more detaled dscusson on that topc, see Wüthrch Merz [63]. General Remar: In nonlfe nsurance busness many clam characterstcs (occurrence date, frequency of clams, severty of a clam, clam settlement pattern, clams payments, etc.) are subject to randomness and can not be predcted wthout uncertanty. Hence, probablty theory and statstcs provde sutable mathematcal tools for dealng wth those clam characterstcs. Thereby, t s assumed that the very nature and the behavor of these clam characterstcs do not change too fast over tme. Ths assumpton s requred to utlze past observatons for predctng purposes and to reveal systematc propertes (behavor) of the quanttes under consderaton. For ths reason we model all quanttes of nterest n a stochastc framewor as random varables, whch are defned on a common probablty space (Ω, D, P). 2.2 Data Bass n a Nonlfe Insurance Company In general, nsurance companes group polces (nsurance contracts) wth smlar rs characterstcs or comparable contract specfcatons nto suffcently homogeneous nsurance portfolos. Ths s often done by Lnes of Busness (LoB), but can be subdvded further nto smaller unts. Typcal LoBs are: Motor thrd party, product lablty, prvate and commercal property, commercal lablty, health nsurance, etc. An nsurance company has to put provsons asde, n order to cover future loss labltes arsng from these grouped nsurance portfolos. For ths reason an accurate predcton of future loss labltes and the assocated cash flows n the clam settlement process s of central nterest. Ths predcton can be based on varous sources of nformaton Classcal Vew In the classcal vew the predcton of future loss labltes s often based on the nformaton of the past observed development of the settlement process tself. Classcal clams reservng
17 2.2 Data Bass n a Nonlfe Insurance Company 7 lterature often assumes that an nsurance company has, after groupng of ndvdual contracts, M 1 nearly homogeneous portfolos. All clams, whch occur n year, are called clams n accdent year {0,..., I}, where I s the current year. The number of years between accdent year and the year of the actual clams payment s called development year {0,..., J}, wth J beng the total number of development years. It s usually assumed that I J and that all clams are completely settled n development year J,.e. there are no clams payments beyond development year J. For models consderng clams payments beyond development year J by means of socalled tal factors, see Mac [40] and Merz Wüthrch [42]. We denote all payments for accdent year and development year n the mth portfolo (m {1,..., M}) by S, m and say that all clams payments Sm, wth + = n and n {0,..., I + J} belong to accountng year n. Ths notaton s called ncremental clams representaton n the actuaral lterature, because we consder clams payments S, m n accdent year and development year of the mth portfolo. In the actuaral lterature (cf. Wüthrch Merz [63]) the cumulatve clams payments representaton of the clam settlement process s also used. In ths representaton one consders cumulated amounts n accdent year up to development year defned by C m, := S,j, m (2.1) j=0 where all clams payments whch belong to accdent year up to development year n the mth portfolo are aggregated. At tme n {0,..., I + J} all clams payments S, m wth + n and 1 m M are observed and generate the σfeld D n := σ { S, m + n, 0 I, 0 J, 1 m M } = σ { C, m + n, 0 I, 0 J, 1 m M }. Moreover, we denote the resultng fltraton by D := (D n ) 0 n I+J leadng to the probablty space wth fltraton (Ω, D, D, P). The two representatons (ncremental or cumulatve representaton) are commonly used n the clams reservng lterature, and t manly depends on the model choce whether the ncremental or the cumulatve representaton s used. The settlement process of the mth portfolo n the ncremental as well as n the cumulatve clams payments representaton s llustrated n clams development (runoff) trapezods where accdent years {0,..., I} and development years {0,..., J} are gven by the rows and the columns, respectvely. Ths means the ncremental clams payments n accdent year and development year of the mth portfolo are postoned n the th row and the th column n the mth development trapezod, see Fgure 2.2. (2.2) We wll see n Chapter 4 that the ncremental clams payments representaton s an approprate choce for almost all dstrbutonfree clams reservng methods. Moreover, the ncremental representaton s advantageous f one s nterested n the valuaton of outstandng loss labl
18 8 2 Reservng Problem development years 1 m J 0 1 accdent years... D I S m, I... to be predcted Fgure 2.2: Classcal vew (extended vew): Generc runoff trapezod of the mth LoB (clam nformaton) for m {1,..., M} and ncremental clams payments (clam nformaton) of accdent year and development year wth + = I tes va valuaton portfolos, see Wüthrch Merz [62]. However, we swtch to the cumulated clams payments representaton, f helpful (Chapters 5 and 6) Extended Vew Besde the clam settlement process data there are often other sources of nformaton avalable for the predcton of loss labltes: Settlement processes of other correlated portfolos Data of collectves whch may nfluence the settlement process under consderaton Incurred losses: Clams payments plus ndvdual case dependent loss reserves Pror ultmate clam estmates: Ths nformaton may nclude prcng arguments Insured volume Number and sze of contracts etc. Recent publcatons n actuaral scence consder new models whch allow for ncludng some of these sources of nformaton n a mathematcally consstent way, see for example Dahms [17] and Merz Wüthrch [46]. In these models S, m and Cm, do not necessarly only correspond
19 2.2 Data Bass n a Nonlfe Insurance Company 9 anymore to ncremental clams payments and cumulatve clams payments (.e. nformaton from the clam settlement process). They may also represent some other sources of nformaton stated above, for example ncurred losses data, see the PIC reservng method n Merz Wüthrch [46], or pror ultmate clam estmates, see the Bornhuetter Ferguson (BF) method n Mac [39]. Therefore, t s necessary to extend the denotaton of S, m of the classcal vew, snce we focus n the actuaral contrbutons of ths thess on such new model classes, see Chapters 4 6. Throughout the thess S, m denotes the mth (m {1,..., M}) clam nformaton of accdent year {0,..., I} and development year {0,..., J} and not necessarly only the clams payments as t s convenent n classcal clams reservng methods. These clam nformaton may besde the clams payments process contan ncurred losses, see Merz Wüthrch [46] and Dahms [16], receved premum and the average loss rato, see Bühlmann [11], pror ultmate clam estmates, see Mac [39] and Arbenz Salzmann [6], clam volume nformaton, see Dahms [17], or other addtonal sources of nformaton. By a slght abuse of notaton we wll call also m {1,..., M} the mth clam nformaton by dentfyng the ndex m wth ts assocated clam nformaton S, m. In the extended vew some clam nformaton S, m do not generate any loss lablty cash flows n the future and thus do not have to be predcted. Therefore, we defne M := { m M S m, generates loss lablty cash flows }. (2.3) By defnton M s the set of clam nformaton whch generate cash flows, see (2.3), and s therefore of central nterest for clams reservng and rs management. Remars 2.1 (Set M) In most classcal clams reservng methods, each clam nformaton m M s gven by the clams payments of an nsurance portfolo of a specfc LoB, see Chapter 3 for examples. However, ths s not always the case. In Example 1 n Dahms [17] there s a clam nformaton m M of subrogaton payments. Ths shows that M may besde the clams payments of dfferent LoBs also contan other clam nformaton whch also generate cash flows. That means that the clam nformaton n M are not explctly restrcted to clams payments of dfferent nsurance portfolos. However, for a smpler nterpretaton of the set M one may thn of each clam nformaton m M as clams payments arsng from an nsurance portfolo of a certan LoB. As a consequence of the defnton of M, the set of all clam nformaton {1,..., M} s dvded nto dsjont subsets M {1,..., M} and M c = {1,..., M}\M. The clam nformaton m M have already been dscussed above. The set M c of clam nformaton s not of central nterest for rs management and clams reservng, because t does not generate any loss lablty cash flows. However, clam nformaton out of M c are utlzed n many models for the predcton of clam nformaton m M under consderaton,.e. they contan nformaton, whch are requred for
20 10 2 Reservng Problem the predcton of clam nformaton m M. To name only a few of them, an ultmate clam estmate (as a clam nformaton m M c ) s ncorporated for the predcton of clams payments (as a clam nformaton m M) n the BF method, see Secton 3.5, ncurred losses are used for the predcton of clams payments n the extended complementary loss rato (ECLR) method, see Dahms [16], and n the PIC reservng method, see Chapters 5 and 6, or volume measures are ncluded for clams payments predctons n the addtve loss reservng (ALR) method n Merz Wüthrch [44]. In analogy to the classcal vew, clam nformaton m {1,..., M} n the extended vew are also llustrated n development (runoff) trapezods, see Fgure 2.2. Notatonal Conventon: Unless otherwse ndcated we wor n ths thess wthn the extended vew,.e. we assume that a set of M 1 clam nformaton (sources of nformaton) s avalable today,.e at tme I. In ths extended vew all clam nformaton m M generate loss lablty cash flows and hence have to be predcted, whereas clam nformaton m M c are used only for the predcton of clam nformaton m M. 2.3 Predcton Problem As mentoned n the prevous secton nsurance companes often have varous sources of nformaton (clam nformaton) for the predcton of future loss labltes cash flows S, m wth m M. We wor n the extended vew,.e. we assume that M 1 clam nformaton m {1,..., M} (as mentoned above we dentfy m by ts correspondng clam nformaton S, m ) are avalable today (at tme I). The set of clam nformaton generatng cash flows s denoted by M {1,..., M}. A reservng actuary has to predct today (at tme I) and at all future tmes up to the fnal runoff,.e. at tmes n {I,..., I + J 1}, the outstandng loss lablty cash flows. These are gven for clam nformaton m M and accdent year {I J + 1,..., I} at tme n {I,..., I + J 1} by (an empty sum s defned by zero) R m n := J j=n +1 S m,j. By summaton of (2.4a) over all clam nformaton of nterest,.e. aggregated outstandng loss labltes of accdent year gven by R n := m M R m n = m M J j=n +1 S m,j (2.4a) m M, we obtan the (2.4b)
Modelling The Claims Development Result For Solvency Purposes
Modelng the lams evelopment Result For olvency Purposes Modellng The lams evelopment Result For olvency Purposes Mchael Merz Maro V. Wüthrch Abstract We assume that the clams lablty process satses the
More informationEstimating Total Claim Size in the Auto Insurance Industry: a Comparison between Tweedie and ZeroAdjusted Inverse Gaussian Distribution
Avalable onlne at http:// BAR, Curtba, v. 8, n. 1, art. 3, pp. 3747, Jan./Mar. 2011 Estmatng Total Clam Sze n the Auto Insurance Industry: a Comparson between Tweede and ZeroAdjusted Inverse Gaussan
More informationA Structure for General and Specc Market Rsk Eckhard Platen 1 and Gerhard Stahl Summary. The paper presents a consstent approach to the modelng of general and specc market rsk as dened n regulatory documents.
More informationDocumentation for the TIMES Model PART I
Energy Technology Systems Analyss Programme http://www.etsap.org/tools.htm Documentaton for the TIMES Model PART I Aprl 2005 Authors: Rchard Loulou Uwe Remne Amt Kanuda Antt Lehtla Gary Goldsten 1 General
More informationSequential DOE via dynamic programming
IIE Transactons (00) 34, 1087 1100 Sequental DOE va dynamc programmng IRAD BENGAL 1 and MICHAEL CARAMANIS 1 Department of Industral Engneerng, Tel Avv Unversty, Ramat Avv, Tel Avv 69978, Israel Emal:
More informationOverhaul Overdraft Fees: Creating Pricing and Product Design Strategies with Big Data
Overhaul Overdraft Fees: Creatng Prcng and Product Desgn Strateges wth Bg Data Xao Lu, Alan Montgomery, Kannan Srnvasan September 30, 2014 Abstract In 2012, consumers pad an enormous $32 bllon overdraft
More informationAdverse selection in the annuity market when payoffs vary over the time of retirement
Adverse selecton n the annuty market when payoffs vary over the tme of retrement by JOANN K. BRUNNER AND SUSANNE PEC * July 004 Revsed Verson of Workng Paper 0030, Department of Economcs, Unversty of nz.
More informationRECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY:
Federco Podestà RECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY: THE CASE OF POOLED TIME SERIES CROSSSECTION ANALYSIS DSS PAPERS SOC 302 INDICE 1. Advantages and Dsadvantages of Pooled Analyss...
More informationThe Relationship between Exchange Rates and Stock Prices: Studied in a Multivariate Model Desislava Dimitrova, The College of Wooster
Issues n Poltcal Economy, Vol. 4, August 005 The Relatonshp between Exchange Rates and Stock Prces: Studed n a Multvarate Model Desslava Dmtrova, The College of Wooster In the perod November 00 to February
More informationSectorSpecific Technical Change
SectorSpecfc Techncal Change Susanto Basu, John Fernald, Jonas Fsher, and Mles Kmball 1 November 2013 Abstract: Theory mples that the economy responds dfferently to technology shocks that affect the producton
More informationOpt Out or Top Up? Voluntary Healthcare Insurance and the Public vs. Private Substitution
D I S C U S S I O N P A P E R S E R I E S IZA DP No. 5952 Opt Out or Top Up? Voluntary Healthcare Insurance and the Publc vs. Prvate Substtuton Danele Fabbr Chara Monfardn September 2011 Forschungsnsttut
More informationWorking Paper Multihoming in the market for payment media: Evidence from young Finnish consumers
econstor www.econstor.eu Der OpenAccessPublkatonsserver der ZBW LebnzInformatonszentrum Wrtschaft The Open Access Publcaton Server of the ZBW Lebnz Informaton Centre for Economcs Hyytnen, Ar; Takalo,
More informationEducational Expansion and its Heterogeneous Returns for Wage Workers
Dscusson Paper No. 07010 Educatonal Expanson and ts Heterogeneous Returns for Wage Workers Mchael Gebel and Fredhelm Pfeffer Dscusson Paper No. 07010 Educatonal Expanson and ts Heterogeneous Returns
More informationDo Firms Maximize? Evidence from Professional Football
Do Frms Maxmze? Evdence from Professonal Football Davd Romer Unversty of Calforna, Berkeley and Natonal Bureau of Economc Research Ths paper examnes a sngle, narrow decson the choce on fourth down n the
More informationDistributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
Foundatons and Trends R n Machne Learnng Vol. 3, No. 1 (2010) 1 122 c 2011 S. Boyd, N. Parkh, E. Chu, B. Peleato and J. Ecksten DOI: 10.1561/2200000016 Dstrbuted Optmzaton and Statstcal Learnng va the
More informationAssessing health efficiency across countries with a twostep and bootstrap analysis *
Assessng health effcency across countres wth a twostep and bootstrap analyss * Antóno Afonso # $ and Mguel St. Aubyn # February 2007 Abstract We estmate a semparametrc model of health producton process
More informationFinance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C.
Fnance and Economcs Dscusson Seres Dvsons of Research & Statstcs and Monetary Affars Federal Reserve Board, Washngton, D.C. Banks as Patent Fxed Income Investors Samuel G. Hanson, Andre Shlefer, Jeremy
More informationCREDIT RISK AND EFFICIENCY IN THE EUROPEAN BANKING SYSTEMS: A THREESTAGE ANALYSIS*
CREDIT RISK AD EFFICIECY I THE EUROPEA BAKIG SYSTEMS: A THREESTAGE AALYSIS* José M. Pastor WPEC 998 Correspondenca a: José M. Pastor: Departamento de Análss Económco, Unverstat de Valènca, Campus dels
More informationReturn decomposing of absoluteperformance multiasset class portfolios. Working Paper  Nummer: 16
Return decomposng of absoluteperformance multasset class portfolos Workng Paper  Nummer: 16 2007 by Dr. Stefan J. Illmer und Wolfgang Marty; n: Fnancal Markets and Portfolo Management; March 2007; Volume
More informationWORKING PAPER SERIES INTERLINKING SECURITIES SETTLEMENT SYSTEMS A STRATEGIC COMMITMENT? NO. 427 / JANUARY 2005. by Karlo Kauko
WORKING PAPER SERIES NO. 427 / JANUARY 2005 CFS RESEARCH NETWORK ON CAPITAL MARKETS AND FINANCIAL INTEGRATION IN EUROPE INTERLINKING SECURITIES SETTLEMENT SYSTEMS A STRATEGIC COMMITMENT? by Karlo Kauko
More informationJournal of International Economics
Journal of Internatonal Economcs 79 (009) 31 41 Contents lsts avalable at ScenceDrect Journal of Internatonal Economcs journal homepage: www.elsever.com/locate/je Composton and growth effects of the current
More informationtématické články Measuring the Value of Urban Forest using the Hedonic Price Approach regionální studia
Measurng the Value of Urban Forest usng the Hedonc Prce Approach Odhad hodnoty městských lesů metodou hedoncké ceny Jan Melchar 1 jan.melchar@czp.cun.cz Charles Unversty Envronment Center Ondřej Vojáček
More informationThe Global Macroeconomic Costs of Raising Bank Capital Adequacy Requirements
W/1/44 The Global Macroeconomc Costs of Rasng Bank Captal Adequacy Requrements Scott Roger and Francs Vtek 01 Internatonal Monetary Fund W/1/44 IMF Workng aper IMF Offces n Europe Monetary and Captal Markets
More informationWorking Paper Risk and return of illiquid investments: A tradeoff for superannuation funds offering transferable accounts
Workng Paper Rsk and return of llqud nvestments: A tradeoff for superannuaton funds offerng transferable accounts Dr James Rchard Cummngs and Dr Katrna Ells November 2011 www.apra.gov.au Australan Prudental
More informationSchool tracking and development of cognitive skills additional results
ömmföäflsäafaäsflassflassflas fffffffffffffffffffffffffffffffffff Dscusson Papers School trackng and development of cogntve sklls addtonal results Sar Pekkala Kerr Wellesley College Tuomas Pekkarnen Aalto
More informationTHE ROLE OF COMMITMENT IN DYNAMIC CONTRACTS: EVIDENCE FROM LIFE INSURANCE*
THE ROLE OF COMMITMENT IN DYNAMIC CONTRACTS: EVIDENCE FROM LIFE INSURANCE* IGAL HENDEL AND ALESSANDRO LIZZERI We use data on lfe nsurance contracts to study the propertes of longterm contracts n a world
More informationThe Effects of Increasing Openness and Integration to the MERCOSUR on the Uruguayan Labour Market: A CGE Modeling Analysis 1.
The Effects of Increasng Openness and Integraton to the MERCOSUR on the Uruguayan Labour Market: A CGE Modelng Analyss 1. María Inés Terra 2, Marsa Buchel 2, Slva Laens 3, Carmen Estrades 2 November 2005
More informationInvoicing and Financial Forecasting of Time and Amount of Corresponding Cash Inflow
Dragan Smć Svetlana Smć Vasa Svrčevć Invocng and Fnancal Forecastng of Tme and Amount of Correspondng Cash Inflow Artcle Info:, Vol. 6 (2011), No. 3, pp. 014021 Receved 13 Janyary 2011 Accepted 20 Aprl
More informationThe Stochastic Guaranteed Service Model with Recourse for MultiEchelon Warehouse Management
The Stochastc Guaranteed Servce Model wth Recourse for MultEchelon Warehouse Management Jörg Rambau, Konrad Schade 1 Lehrstuhl für Wrtschaftsmathematk Unverstät Bayreuth Bayreuth, Germany Abstract The
More informationA Study of the Cosine DistanceBased Mean Shift for Telephone Speech Diarization
TASL046013 1 A Study of the Cosne DstanceBased Mean Shft for Telephone Speech Darzaton Mohammed Senoussaou, Patrck Kenny, Themos Stafylaks and Perre Dumouchel Abstract Speaker clusterng s a crucal
More information