Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Intra-year Cash Flow Patterns: A Simple Solution for an Unnecessary Appraisal Error"

Transcription

1 Intra-year Cash Flow Patterns: A Smple Soluton for an Unnecessary Apprasal Error By C. Donald Wggns (Professor of Accountng and Fnance, the Unversty of North Florda), B. Perry Woodsde (Assocate Professor of Fnance, the College of Charleston), and Dlp D. Kare (Assocate Professor of Accountng and Fnance, the Unversty of North Florda) he Journal of Real Estate Apprasal and Economcs Wnter 1991 Introducton he apprasal and academc communtes have spent much tme and effort n recent years developng and refnng apprasal technques to make them as theoretcally correct and practcally applcable as possble. As a result, ncome apprasal technques such as dscounted cash flow and captalzaton of earnngs are commonly used n the apprasal of ncome producng real property and closely held busnesses. hese technques are theoretcally sound and have become the prmary valuaton methods for many apprasers. However, the hgh degree of dffculty of forecastng future revenues, expenses, profts and cash flows result n some unavodable applcaton problems. Actual results almost always devate from forecasts to some degree because of unforeseeable events and condtons, changng relatonshps between costs and revenues, changes n government polcy and other factors. Many of these problems are unavodable and the appraser s task s to lmt errors as much as possble through analyss. Whatever ther theoretcal soundness, there s one error bult nto most apprasal tools as they are commonly appled. hs error concerns the ntra-year tmng of cash flows and returns. Apprasal technques such as captalzaton of earnngs, Ellwood formulae and dscounted cash flow as they are most often appled nherently assume that ncome or cash flows occur at the end of each year. hs s obvously not realstc n the vast majorty of cases. he resultng apprased values may be sgnfcantly n error because of ths techncal assumpton mplct n the valuaton tool. he apprasal process s dffcult enough wthout havng known errors bult n an apprasal technque, especally f the errors are sgnfcant. hs artcle dscusses the problem and proposes a smple soluton. Assumptons Made n Income Apprasal Models he essence of the ncome approach to apprasal s that the value of a property reflects the present value of future benefts of property ownershp as measured by ncome or cash flows. he apprasal of an ncome producng property generally nvolves the use of an ncome valuaton model n addton to market determned multples of sales, earnngs or cash flow and cost approaches. here are several ncome approaches whch range from a smple net operatng ncome (NOI) captalzaton model to elaborate, comprehensve dscounted cash flow models. All ncome approaches requre determnaton of three crtcal factors whch determne the value of the property: return to the nvestor, tmng of the return, and rsk, whch determnes the requred yeld or dscount rate. he defnton of the return to the nvestor depends on the apprasal method employed. For example, the NOI captalzaton method uses operatng cash

2 flows pror to debt servce. Apprasals based on cash flows to equty use cash flows after debt servce. he dscount rate, also known as the yeld rate, reflects the nvestor s requred rate of return based on the rsk and type of property nterest beng valued. hs rate can be an all equty rate n whch the returns to be dscounted are after-tax cash flows to equty. Alternatvely, n net operatng ncome technques the yeld rate reflects returns to both debt and equty. he thrd factor, tmng of returns, takes nto account when cash flows and profts are receved and then adjusts to present value. he assumpton that ncome or cash flow wll be receved at specfc ponts n tme s bult nto all of the apprasal methods and t s ths assumpton that s a common source of error n apprasals. Some texts and artcles nclude dscussons of monthly or other cash flow patterns and some apprasers adjust for monthly cash flows (1, 487, 538)(2, 70). However, most sources and apprasals assume year end recepts. For example, he Apprasal of Real Estate contans an extensve dscusson of how mortgage equty can be used to determne captalzaton rates for ncome captalzaton models (1, ). All of the applcatons presented assume that the NOI s receved at the end of each year. Other authors also present valuaton models whch usually specfy annual returns and annual dscountng (2, )(3, )(4, 73-84). he reason that property returns are measured on an annual bass s lkely due to conventon and the fact that t s smply more convenent to accumulate and project data on an annual bass. In realty, however, cash flows almost never are receved ether at the begnnng or at the end of the year but are spread out over the entre year. Many cash recepts, dsbursements and debt servce payments occur monthly due to normal bllng procedures, payment schedules, loan contracts and other agreement. For some propertes, cash flows may be even more frequent. Busness revenues normally are receved daly whle payroll and other cash expenses may be ncurred weekly, bweekly or n other patterns. Other expendtures, such as taxes, may be pad quarterly or annually. Realzable net benefts for nvestors, whether measured as cash flows to equty or some other measure, occur n the same pattern as the flow of recepts and expendtures. hus monthly cash flows approxmate realty much more closely than annual cash flows even though most apprasals assume yearly flows. Even f cash flows do not occur strctly n a monthly pattern, the monthly assumpton wll be accurate enough for use n almost all cases and s a substantal mprovement over the assumpton of year end recepts. Adjustment for Monthly Cash Flows Cash flows follow one of three patterns- annutes, perpetutes and uneven. Every apprasal usng an ncome approach ncludes at least one of these and many nclude two or all three. Determnng the present value of any of these nvolves an assumpton as to when cash flows wll be receved wthn each year of the lfe of the apprased property. he problem of assumng year end rather than ntra-year cash flows apples to each pattern. Annutes

3 Although not a common stuaton, apprasals may nvolve the annuty cash flow patter n whch the annual cash flows are essentally level over the project s lfe. For example, a project may have cash flows of $15,000 per year for fve years: End of: Year 1 Year 2 Year 3 Year 4 Year 5 $15,000 $15,000 $15,000 $15,000 $15,000 If end of year cash flows are assumed as they are n most prnted present value tables, fnancal calculators and spreadsheets, the formula to value the annuty s: (1) 1 1 N (1 nom ) PVA( nom, N) = R X = R X PVIFA( nom, N) nom where: PVA( nom,n) R PVIFA ( nom,n) nom N = present value of the annuty, = annuty payment per year, = present value nterest factor for man yearly annuty, = nomnal annual nterest (or dscount) rate, and = number of years over whch the payments occur. Assumng a requred return of 12 percent results n a value of $54,072. However f the project really produces the cash flow monthly, the above formula msstates the pattern and value of the cash flows. he pattern s actually $1,250 per month for 60 months. Month 1 Month 2 Month 3 Month 4 Month 60 $1,250 $1,250 $1,250 $1,250 $1,250 o fnd the present value of ths stream, a monthly dscount rate must be appled. An annual effectve nterest rate of 12 percent compounded annually does not translate to a monthly rate of 1 percent. he formula used to fnd the monthly compounded rate mplct n a nomnal annual rate s: (2) where: m m =(1+ nom ) 1/12 1 = effectve monthly nterest rate. hus the monthly nterest rate mplct n an annual rate of 12 percent s: (3) m =(1.12) 1/12 1 = he annuty formula for monthly cash flows s: (4)

4 PVIFA( m 1 1 (1 ),12N) = m 12N m where: PVIFA( m,12n)= present value nterest factor for monthly annuty. Applyng ths monthly rate to the above example results n a present value of $56,985 as opposed to the $54,072 value calculated based on annual flows. hus, an appraser usng ths technque wth annual cash flows and an annual yeld rate has a bult-n error n the fnal value of 5.4 percent. hs error s due solely to the mathematcal assumptons mplct n the present value equaton and not to normal forecastng dffcultes. In many cases, apprasers use prnted present value tables that assume annual cash flows. A table of adjustment factors can be derved to adjust these tables to the monthly cash flow assumpton usng the followng equaton: (5) PVIFA( AdjustmentFactor = PVIFA( m,12n) nom, N) he adjustment factors vary wth nterest rates but not wth the number of years and thus only a sngle adjustment factor s need for each nterest rate. he adjustment factors for annual nterest rates varyng from 8 percent to 30 percent appear n able 1. able 1 Annual Monthly Adjustment Factors Annual Interest Rate Adjustment Factor Annual Interest Rate Adjustment Factor 1% % he example gven above can be used to llustrate the use of the table. A present value of $54,072 was calculated for the fve year stream of annual cash flows of $15,000 usng a yeld rate of 12

5 percent. he adjustment factor n able 1 for a 12 percent return s Multplyng ths factor by $54,072 results n an adjusted present value of $56,985, whch s the same as the present value calculated above usng monthly cash flows. For apprasers usng fnancal calculators, spreadsheets or computerzed apprasal software packages wth annual cash flows, the adjustment s the same. Smply multply the fnal value by the adjustment factor n able 1 for the approprate nterest rate. Alternatvely, the problem can be solved by usng monthly cash flows and the monthly nterest rate derved from Equaton (2) n the calculator, spreadsheet or software, f the software wll allow t. Perpetutes A more common pattern of cash flows assumed n apprasals s a perpetuty whch s used n cases n whch the stream of benefts s expected to be level each year and contnue forever or ts practcal equvalent. hs pattern s the bass for the wdely used captalzaton methods of NOI, net ncome and cash flows. A perpetuty assumng year end flows would appear as: End of: Year 1 Year 2 Year 3 nfnty $15,000 $15,000 $15,000 $15,000 he formula for calculatng the present value of ths pattern s: (6) NetOperatngIncome( NOI ) Pr esentvalue = OverallCaptalzatonRate Assumng a captalzaton rate of 12 percent, the present value of the above perpetuty s $125,000. However, f monthly cash flows are used, the pattern s actually: End of Month Year 1 Year 2 Infnty January February January February $1,250 $1,250 $1,250 $1,250 $1,250 Usng a monthly captalzaton rate of percent as calculated n Equaton (2), the present value s actually $131,734 from the monthly adaptaton of Equaton (6): (6B) Pr esentvalue = $ $131,734 he factors from able 1 also can be used to adjust perpetutes from year end to monthly cash flows. In ths case, the value of $125,000 multpled by the 12 percent adjustment factor of yelds the same adjusted value of $131,734 calculated above. Uneven Cash Flows In many cases, cash flows vary from perod to perod. In these stuatons, each cash flow s treated ndependently and the appraser values a seres of ndvdual flows usng the followng equaton for each: (7)

6 Pr esentvalue CF = (1 nom ) t CF X (1 1 nom ) CF XPVIF $ ( nom, ) where: Present Value = present value of Year s cash flow, CF = year end cash flow n Year, and PVIF$ ( nom,) = present value nterest factor for year s cash flow. For example, assume an ncome producng property s projected to have the followng annual, end of year cash flows: Year 1 Year 2 Year 3 $9,000 $12,000 $18,000 Usng the same requred yeld rate of 12 percent and Equaton (7), the present value of ths cash flow stream s $30,414. If the addtonal assumpton s made that these cash flows occur monthly, an adjustment dentcal to those above can be made. he $30,414 present value s multpled by the factor for 12 percent to arrve at an adjusted value of $32,053. he accuracy of ths adjustment can be proven by calculatng present values of each year s cash flow separately usng the monthly recept assumpton. As an llustraton, consder the cash flows n Year 3 of $1,500 per month. o fnd the value today of these cash flows, two steps must be completed. Frst, the cash flows must be dscounted to the begnnng of Year 3 usng the annuty factor for twelve perods wth the monthly nterest rate of percent as calculated above usng Equaton (4). he resultng amount s then dscounted to the present for two years usng the annual nterest rate of 12 percent. he two year dscountng perod s used because of the fact that dscountng the monthly flows establshes the value as of the begnnng of Year 3 whch s the same as the end of Year 2. hs pont s two years n the future from today. he process s llustrated as: Step 1: Dscount Year 3 s monthly cash flows to the begnnng of the year: Year 3: January February March November December $1,500 $1,500 $1,500 $1,500 $1,500 $1,500 $16,937 Value at begnnng of Year 3 (end of Year 2) Step 2: Dscount ths value to today: $16,937 Value at begnnng of Year 3 (end of Year 2) Value oday $13,502 he process s repeated for each year s cash flow and the values for each year are summed to arrve at fnal total value. Mathematcally, the calculaton s: hs fnal value s the same as calculated above usng the adjustment factor from able 1.

7 Year Monthly Cash Flow % Monthly Present Value Annuty Factor 12 months Present Value at Begnnng of Year 12% Present Value Factor Present Value 1 $ $8, $8, , , , , , ,502 Fnal Value: $32,053 Reverson Values Many apprasal technques, especally dscounted cash flow and dscounted earnngs, nvolve forecastng ndvdual uneven annual returns for a number of years and captalzng the perpetuty at the end of ths tme to establsh a termnal or reverson value. If annual returns are used n ths process, the same tmng error occurs. hus, reverson values should be adjusted n the same manner as annual cash flows. Md-Year Cash Flows A smple and approxmately correct alternatve to the monthly adjustment s to assume that all cash flows occur at md-year. Under ths assumpton, the adjustment factor for all present values becomes: (8) ApproxmateAdjustmentFactor = 1 nom For example, usng ths equaton for 12 percent the adjustment factor s compared to the factor of n able 1. he resultng values would be approxmately 0.4 percent dfferent. he md-year factor for 20 percent s compared to shown n able 1 or a dfference of 0.6 percent. hs observaton rases two mportant ponts. Frst, whle these dfferences are relatvely small, a bult-n error of approxmately 0.5 percent s large enough that many apprasers may want to use the adjustments n able 1 n the nterest of accuracy. Secondly, the closeness of the md-year adjustment to the more accurate factors presented n able 1 and ther substantal dfference from year end factors renforce the poston that an adjustment for ntra-year cash flow patterns should be made n order to avod errors. Summary As they are commonly descrbed n the lterature and appled n practce, apprasal technques have a bult-n conceptual error. hs error occurs because of the clearly unrealstc assumpton that annual cash flows occur at the end of the respectve years of a property s or busness s lfe. hs artcle dscusses the problem as t relates to the varous cash flow patterns encountered n

8 ncome property and closely held busness apprasals and develops a theoretcally sound, smple adjustment to correct t. Don Wggns, D.B.A, ASA, CVA, CPA/ABV / Don Wggns s presdent of both Busness Valuaton, Inc., a frm specalzng n busness valuatons, and Hertage Captal Group, Inc., a boutque nvestment bankng frm focusng on mddle market companes. Headquartered n Jacksonvlle, Florda, Wggns has over 30 years of experence advsng clents on a wde range of mergers and acqustons and fnance transactons, ncludng M&A, sales and dvesttures, captal placement, value enhancement, exst plannng and related busness owner transtons. He has advsed nternatonal and domestc companes and successfully led transactons n numerous sectors, ncludng busness servces, healthcare, dstrbuton and logstcs and manufacturng. Snce 1989, Busness Valuaton, Inc. has performed thousands of valuatons for professonal servce, as well as wholesale, retal and consumer product companes n a varety of ndustres ncludng healthcare, transportaton, logstcs and dstrbuton, manufacturng, technology and busness servces. Wth more than 30 years of experence, Hertage Captal Group, Inc. has earned a reputaton for negotatng hghly successful outcomes n both sell-sde and buy-sde transactons, mergers and acqustons, value enhancement pror to ext or transton, captal placement, debt management and numerous other busness deals. Hertage s customers nclude hundreds of busness owners of md-szed companes n the southeastern Unted States and, as a foundng-member of M&A Internatonal, lead numerous, successful nternatonal transactons. he Hertage team s extensve transactonal and operatonal experence provdes a vtal perspectve on the most effectve means of maxmzng value as measured n the market by ether potental nvestors, partners or buyers. Wth a broad reach throughout the marketplace, Hertage Captal Group mantans a keen focus on the unque needs of owners of mddle market companes. Member FINRA/SIPC he world s leadng M&A Allance.

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Using Series to Analyze Financial Situations: Present Value

Using Series to Analyze Financial Situations: Present Value 2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Level Annuities with Payments Less Frequent than Each Interest Period

Level Annuities with Payments Less Frequent than Each Interest Period Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

More information

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )

Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA ) February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs

More information

ANALYSIS OF FINANCIAL FLOWS

ANALYSIS OF FINANCIAL FLOWS ANALYSIS OF FINANCIAL FLOWS AND INVESTMENTS II 4 Annutes Only rarely wll one encounter an nvestment or loan where the underlyng fnancal arrangement s as smple as the lump sum, sngle cash flow problems

More information

10.2 Future Value and Present Value of an Ordinary Simple Annuity

10.2 Future Value and Present Value of an Ordinary Simple Annuity 348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

Study on Model of Risks Assessment of Standard Operation in Rural Power Network Study on Model of Rsks Assessment of Standard Operaton n Rural Power Network Qngj L 1, Tao Yang 2 1 Qngj L, College of Informaton and Electrcal Engneerng, Shenyang Agrculture Unversty, Shenyang 110866,

More information

Multiple discount and forward curves

Multiple discount and forward curves Multple dscount and forward curves TopQuants presentaton 21 ovember 2012 Ton Broekhuzen, Head Market Rsk and Basel coordnator, IBC Ths presentaton reflects personal vews and not necessarly the vews of

More information

Multiple-Period Attribution: Residuals and Compounding

Multiple-Period Attribution: Residuals and Compounding Multple-Perod Attrbuton: Resduals and Compoundng Our revewer gave these authors full marks for dealng wth an ssue that performance measurers and vendors often regard as propretary nformaton. In 1994, Dens

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000 Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

More information

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

More information

Small pots lump sum payment instruction

Small pots lump sum payment instruction For customers Small pots lump sum payment nstructon Please read these notes before completng ths nstructon About ths nstructon Use ths nstructon f you re an ndvdual wth Aegon Retrement Choces Self Invested

More information

Stress test for measuring insurance risks in non-life insurance

Stress test for measuring insurance risks in non-life insurance PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance

More information

Chapter 15: Debt and Taxes

Chapter 15: Debt and Taxes Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts

Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

3. Present value of Annuity Problems

3. Present value of Annuity Problems Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1-.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = -

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

An Overview of Financial Mathematics

An Overview of Financial Mathematics An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take

More information

To manage leave, meeting institutional requirements and treating individual staff members fairly and consistently.

To manage leave, meeting institutional requirements and treating individual staff members fairly and consistently. Corporate Polces & Procedures Human Resources - Document CPP216 Leave Management Frst Produced: Current Verson: Past Revsons: Revew Cycle: Apples From: 09/09/09 26/10/12 09/09/09 3 years Immedately Authorsaton:

More information

0.02t if 0 t 3 δ t = 0.045 if 3 < t

0.02t if 0 t 3 δ t = 0.045 if 3 < t 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution.

A) 3.1 B) 3.3 C) 3.5 D) 3.7 E) 3.9 Solution. ACTS 408 Instructor: Natala A. Humphreys SOLUTION TO HOMEWOR 4 Secton 7: Annutes whose payments follow a geometrc progresson. Secton 8: Annutes whose payments follow an arthmetc progresson. Problem Suppose

More information

Ameriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration

Ameriprise Financial Services, Inc. or RiverSource Life Insurance Company Account Registration CED0105200808 Amerprse Fnancal Servces, Inc. 70400 Amerprse Fnancal Center Mnneapols, MN 55474 Incomng Account Transfer/Exchange/ Drect Rollover (Qualfed Plans Only) for Amerprse certfcates, Columba mutual

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

Section 2.2 Future Value of an Annuity

Section 2.2 Future Value of an Annuity Secton 2.2 Future Value of an Annuty Annuty s any sequence of equal perodc payments. Depost s equal payment each nterval There are two basc types of annutes. An annuty due requres that the frst payment

More information

Chapter 15 Debt and Taxes

Chapter 15 Debt and Taxes hapter 15 Debt and Taxes 15-1. Pelamed Pharmaceutcals has EBIT of $325 mllon n 2006. In addton, Pelamed has nterest expenses of $125 mllon and a corporate tax rate of 40%. a. What s Pelamed s 2006 net

More information

Texas Instruments 30Xa Calculator

Texas Instruments 30Xa Calculator Teas Instruments 30Xa Calculator Keystrokes for the TI-30Xa are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the tet, check

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent

More information

LIFETIME INCOME OPTIONS

LIFETIME INCOME OPTIONS LIFETIME INCOME OPTIONS May 2011 by: Marca S. Wagner, Esq. The Wagner Law Group A Professonal Corporaton 99 Summer Street, 13 th Floor Boston, MA 02110 Tel: (617) 357-5200 Fax: (617) 357-5250 www.ersa-lawyers.com

More information

The program for the Bachelor degrees shall extend over three years of full-time study or the parttime equivalent.

The program for the Bachelor degrees shall extend over three years of full-time study or the parttime equivalent. Bachel of Commerce Bachel of Commerce (Accountng) Bachel of Commerce (Cpate Fnance) Bachel of Commerce (Internatonal Busness) Bachel of Commerce (Management) Bachel of Commerce (Marketng) These Program

More information

Interest Rate Forwards and Swaps

Interest Rate Forwards and Swaps Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (n-m) months, startng n m months: Example: Depostor wants to fx rate

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

The Current Employment Statistics (CES) survey,

The Current Employment Statistics (CES) survey, Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probablty-based sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,

More information

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

A Model of Private Equity Fund Compensation

A Model of Private Equity Fund Compensation A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs

More information

DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS?

DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS? DO LOSS FIRMS MANAGE EARNINGS AROUND SEASONED EQUITY OFFERINGS? Fernando Comran, Unversty of San Francsco, School of Management, 2130 Fulton Street, CA 94117, Unted States, fcomran@usfca.edu Tatana Fedyk,

More information

Construction Rules for Morningstar Canada Target Dividend Index SM

Construction Rules for Morningstar Canada Target Dividend Index SM Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property

More information

Return decomposing of absolute-performance multi-asset class portfolios. Working Paper - Nummer: 16

Return decomposing of absolute-performance multi-asset class portfolios. Working Paper - Nummer: 16 Return decomposng of absolute-performance mult-asset class portfolos Workng Paper - Nummer: 16 2007 by Dr. Stefan J. Illmer und Wolfgang Marty; n: Fnancal Markets and Portfolo Management; March 2007; Volume

More information

Activity Scheduling for Cost-Time Investment Optimization in Project Management

Activity Scheduling for Cost-Time Investment Optimization in Project Management PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta- San Sebastán, September 8 th -10 th 010 Actvty Schedulng

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Performance attribution for multi-layered investment decisions

Performance attribution for multi-layered investment decisions Performance attrbuton for mult-layered nvestment decsons 880 Thrd Avenue 7th Floor Ne Yor, NY 10022 212.866.9200 t 212.866.9201 f qsnvestors.com Inna Oounova Head of Strategc Asset Allocaton Portfolo Management

More information

On some special nonlevel annuities and yield rates for annuities

On some special nonlevel annuities and yield rates for annuities On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

A Critical Note on MCEV Calculations Used in the Life Insurance Industry

A Critical Note on MCEV Calculations Used in the Life Insurance Industry A Crtcal Note on MCEV Calculatons Used n the Lfe Insurance Industry Faban Suarez 1 and Steven Vanduffel 2 Abstract. Snce the begnnng of the development of the socalled embedded value methodology, actuares

More information

Tuition Fee Loan application notes

Tuition Fee Loan application notes Tuton Fee Loan applcaton notes for new part-tme EU students 2012/13 About these notes These notes should be read along wth your Tuton Fee Loan applcaton form. The notes are splt nto three parts: Part 1

More information

Mathematics of Finance

Mathematics of Finance Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY

More information

Uncrystallised funds pension lump sum payment instruction

Uncrystallised funds pension lump sum payment instruction For customers Uncrystallsed funds penson lump sum payment nstructon Don t complete ths form f your wrapper s derved from a penson credt receved followng a dvorce where your ex spouse or cvl partner had

More information

Mathematics of Finance

Mathematics of Finance 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty;Amortzaton Chapter 5 Revew Extended Applcaton:Tme, Money, and Polynomals Buyng a car

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management

ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces

More information

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value 8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at

More information

The Application of Fractional Brownian Motion in Option Pricing

The Application of Fractional Brownian Motion in Option Pricing Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING

Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING 260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore

More information

On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optimal Control of a Cascade of Hydro-Electric Power Stations On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

More information

Methods for Calculating Life Insurance Rates

Methods for Calculating Life Insurance Rates World Appled Scences Journal 5 (4): 653-663, 03 ISSN 88-495 IDOSI Pulcatons, 03 DOI: 0.589/dos.wasj.03.5.04.338 Methods for Calculatng Lfe Insurance Rates Madna Movsarovna Magomadova Chechen State Unversty,

More information

Depreciation of Business R&D Capital

Depreciation of Business R&D Capital Deprecaton of Busness R&D Captal U.S. Bureau of Economc Analyss Abstract R&D deprecaton rates are crtcal to calculatng the rates of return to R&D nvestments and captal servce costs, whch are mportant for

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

STAMP DUTY ON SHARES AND ITS EFFECT ON SHARE PRICES

STAMP DUTY ON SHARES AND ITS EFFECT ON SHARE PRICES STAMP UTY ON SHARES AN ITS EFFECT ON SHARE PRICES Steve Bond Mke Hawkns Alexander Klemm THE INSTITUTE FOR FISCAL STUIES WP04/11 STAMP UTY ON SHARES AN ITS EFFECT ON SHARE PRICES Steve Bond (IFS and Unversty

More information

Bond futures. Bond futures contracts are futures contracts that allow investor to buy in the

Bond futures. Bond futures contracts are futures contracts that allow investor to buy in the Bond futures INRODUCION Bond futures contracts are futures contracts that allow nvestor to buy n the future a theoretcal government notonal bond at a gven prce at a specfc date n a gven quantty. Compared

More information

RELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT

RELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE

More information

Abstract # 015-0399 Working Capital Exposure: A Methodology to Control Economic Performance in Production Environment Projects

Abstract # 015-0399 Working Capital Exposure: A Methodology to Control Economic Performance in Production Environment Projects Abstract # 015-0399 Workng Captal Exposure: A Methodology to Control Economc Performance n Producton Envronment Projects Dego F. Manotas. School of Industral Engneerng and Statstcs, Unversdad del Valle.

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Mathematics of Finance

Mathematics of Finance CHAPTER 5 Mathematcs of Fnance 5.1 Smple and Compound Interest 5.2 Future Value of an Annuty 5.3 Present Value of an Annuty; Amortzaton Revew Exercses Extended Applcaton: Tme, Money, and Polynomals Buyng

More information

Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School

Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School Robust Desgn of Publc Storage Warehouses Yemng (Yale) Gong EMLYON Busness School Rene de Koster Rotterdam school of management, Erasmus Unversty Abstract We apply robust optmzaton and revenue management

More information

Traffic-light extended with stress test for insurance and expense risks in life insurance

Traffic-light extended with stress test for insurance and expense risks in life insurance PROMEMORIA Datum 0 July 007 FI Dnr 07-1171-30 Fnansnspetonen Författare Bengt von Bahr, Göran Ronge Traffc-lght extended wth stress test for nsurance and expense rss n lfe nsurance Summary Ths memorandum

More information

Little s Law & Bottleneck Law

Little s Law & Bottleneck Law Lttle s Law & Bottleneck Law Dec 20 I professonals have shunned performance modellng consderng t to be too complex and napplcable to real lfe. A lot has to do wth fear of mathematcs as well. hs tutoral

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143 1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña

A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Reporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide

Reporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide Reportng Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (ncludng SME Corporate), Soveregn and Bank Instructon Gude Ths nstructon gude s desgned to assst n the completon of the FIRB

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1. HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher

More information

Section 2.3 Present Value of an Annuity; Amortization

Section 2.3 Present Value of an Annuity; Amortization Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw $1,000.00

More information