Energy Transfer in a Flash-Light. (Teacher Copy)

Size: px
Start display at page:

Download "Energy Transfer in a Flash-Light. (Teacher Copy)"

Transcription

1 Energy Transfer in a Flash-Light (Teacher Copy) Florida Sunshine State Standards Benchmark: SC.B AA The student identifies forms of energy and explains that they can be measured and compared. (Also assess SC.B and SC.B ) Objectives: SC.B AA I can identify different forms of energy and discuss how energy can be transformed from one from to another. Background Knowledge: Energy is the ability to do work. Work is done when a force causes an object to move in the direction of the applied force. Kinetic energy is energy of motion and depends on mass and speed. All objects have kinetic energy. Potential energy is stored energy or the energy an object has due to its position. There are several forms of energy, i.e.: mechanical, chemical, electrical, electromagnetic (including visible light), nuclear, thermal (heat), light, and sound. All forms of energy can be measured and compared. An energy conversion is a change from one form of energy to another. An example of an energy conversion would be when you turn on a fan; electrical energy from the power plant to the electrical outlet causes the blade on the fan to turn. This is an example of electrical energy converting to mechanical energy. Due to friction, some energy is always converted into thermal energy during an energy conversion. As a result, energy conversions are never 100% efficient. Energy is conserved within a closed system because energy cannot be created or destroyed; it can only be changed from one form to another. The loss of useful energy from a system to its surroundings causes the amount of disorder to increase. Electricity is a flow of energy by the movement of electrons. If an electrical appliance is to work properly, there must be a supply of electrons and they must be able o flow through a complete circuit. When the circuit is broken, the electrons are stopped and the appliance does not work. There are several components of a circuit that can be easily demonstrated using a simple flashlight. The circuit must have an energy source, such as a power outlet or batteries. The battery is stored potential energy. When the circuit is complete; it will release chemical energy as kinetic energy. A wire or metal conductor must connect the positive source of the battery to a light bulb which

2 connects back to the negative source of the battery. This creates an electric circuit path along which negative charges can flow. There are several transformations that occur during this simple experiment. Chemical energy is converted into electrical energy when the circuit is complete. To complete the circuit a switch can be turned on, this is an example of mechanical energy. Some of the electrical energy is then converted to light energy when the bulb lights up. Light energy is converted to thermal (heat) energy, when the bulb feels warm. If using a wire conductor you may feel the wire get warm. As electrical energy is carried through the wire, some of it is converted into thermal energy as resistance. Materials: (per group) Mini tree lights and wires Cardboard toilet paper tube or paper towel tube Two rubber bands (¼ in. width) 6 cm x 10 cm aluminum foil strip Masking tape Two C or D batteries Scissors Assorted objects to be used as a switch Engage: At the beginning of the class, turn off the lights in the classroom, light a match and let it burn for a few minutes and then turn on a flashlight. Ask the students to compare and contrast the role of energy in both objects. Explore: Procedures: 1. Tape the batteries together with the negative end of one battery to the positive end of the other battery. Wrap one of the rubber bands around the batteries (end to end) so that they are firmly held together, maintaining contact between the two opposite-charged ends. 2. Fold an aluminum foil strip in half lengthwise, so that you have a strip 3cm x 10cm. Fold the strip in half lengthwise one more time so that it is 1.5cm wide. Finally, reinforce the strip with a 9cm piece of masking tape placed along one side of the strip. 3. At the negative end of the batteries, slip the piece of foil under the rubber band so that it makes contact with this end of the battery. 4. Tape the light bulb with connecting wires to the positive end of the batteries. 5. Cut the cardboard tube lengthwise and wrap securely the two batteries inside. Tape the cardboard wrap with masking tape to create a tight hold for the batteries.

3 6. Leave the foil strip outside of the tube. Create a switch from an object that is a conductor. Attached the switch to the cardboard tube and foil. 7. Slip the stripped end of one of the light bulb wires under the rubber band so that it contacts the positive end of the batteries. 8. The foil strip that is attached to the negative end of the batteries should be long enough to reach the stripped end of the other light bulb wire. If using an object for a switch make sure it is connected to the end of the foil and is able to make contact with the wire. 9. Touch the end of the wire to the foil or switch and watch your flashlight glow. Explain: 1. Draw the flashlight in the box below. At each point in the sketch list the energy transformations that took place in the circuit. Label at least five energy transformations. 2. Explain the energy transfer: The energy stored in the batteries changed to energy as the electrons were flowing through the circuit. The batteries have energy which is transformed into energy in the wires and then into energy. 3. Turning the switch on and off was an example of 4. Some energy increased the temperature of the flashlight, becoming Draw and label the energy transformations that took place in the flashlight. Elaborate: Reading First Through Science - Have students read I Knew an Old Woman: Energy Conversions, pp Complete the follow up questions.

4 Evaluate: 1. When a light is turned on, electrical energy is converted to light and heat energy. Which of the following best describes the balance of energy in this system? A. The sum of the heat and light energy produced is greater than the electric energy flowing into the bulb. B. The electric energy flowing into the bulb is greater than the sum of C. The heat energy produced is greater than the electric energy that flows into the bulb. D. The electric energy that flows into the bulb is equal to the sum of ANS. D 2. In active solar heating systems, water absorbs heat from the sun. This heat is then transferred to air that is pumped through a building. Some of the heat absorbed by the water is not transferred to the air and is lost. Why is the heat lost? A. Heat is destroyed. B. Heat is transferred to light energy. C. The energy transfer is not 100% efficient. D. Water evaporates and can t transfer energy. ANS. C

5 Energy Transfer in a Flash Light (Student Copy) Objectives: SC.B AA I can identify different forms of energy and discuss how energy can be transformed from one from to another. Background Knowledge: Energy is the ability to do work. Work is done when a force causes an object to move in the direction of the applied force. Kinetic energy is energy of motion and depends on mass and speed. All objects have kinetic energy. Potential energy is stored energy or the energy an object has due to its position. There are several forms of energy, i.e.: mechanical, chemical, electrical, electromagnetic (including visible light), nuclear, thermal (heat), light, and sound. All forms of energy can be measured and compared. An energy conversion is a change from one form of energy to another. An example of an energy conversion would be when you turn on a fan; electrical energy from the power plant to the electrical outlet causes the blade on the fan to turn. This is an example of electrical energy converting to mechanical energy. Due to friction, some energy is always converted into thermal energy during an energy conversion. As a result, energy conversions are never 100% efficient. Energy is conserved within a closed system because energy cannot be created or destroyed; it can only be changed from one form to another. The loss of useful energy from a system to its surroundings causes the amount of disorder to increase. Electricity is a flow of energy by the movement of electrons. If an electrical appliance is to work properly, there must be a supply of electrons and they must be able o flow through a complete circuit. When the circuit is broken, the electrons are stopped and the appliance does not work. Materials: (per group) Mini tree lights and wires Cardboard toilet paper tube or paper towel tube Two rubber bands (¼ in. width) 6 cm x 10 cm aluminum foil strip Masking tape Two C or D batteries Scissors Assorted objects to be used as a switch

6 Explore: Procedures: 1. Tape the batteries together with the negative end of one battery to the positive end of the other battery. Wrap one of the rubber bands around the batteries (end to end) so that they are firmly held together, maintaining contact between the two opposite-charged ends. 2. Fold an aluminum foil strip in half lengthwise, so that you have a strip 3cm x 10cm. Fold the strip in half lengthwise one more time so that it is 1.5cm wide. Finally, reinforce the strip with a 9cm piece of masking tape placed along one side of the strip. 3. At the negative end of the batteries, slip the piece of foil under the rubber band so that it makes contact with this end of the battery. 4. Tape the light bulb with connecting wires to the positive end of the batteries. 5. Cut the cardboard tube lengthwise and wrap securely the two batteries inside. Tape the cardboard wrap with masking tape to create a tight hold for the batteries. 6. Leave the foil strip outside of the tube. Create a switch from an object that is a conductor. Attached the switch to the cardboard tube and foil. 7. Slip the stripped end of one of the light bulb wires under the rubber band so that it contacts the positive end of the batteries. 8. The foil strip that is attached to the negative end of the batteries should be long enough to reach the stripped end of the other light bulb wire. If using an object for a switch make sure it is connected to the end of the foil and is able to make contact with the wire. 9. Touch the end of the wire to the foil or switch and watch your flashlight glow. Explain: 1. Draw the flashlight in the box below. At each point in the sketch list the energy transformations that took place in the circuit. Label at least five energy transformations. 2. Explain the energy transfer: The energy stored in the batteries changed to energy as the electrons were flowing through the circuit. The batteries have energy which is transformed into energy in the wires and then into energy. 3. Turning the switch on and off was an example of 4. Some energy increased the temperature of the flashlight, becoming

7 Draw and label the energy transformations that took place in the flashlight. Elaborate: Reading First Through Science - Have students read I Knew an Old Woman: Energy Conversions, pp Complete the follow up questions. Evaluate: 3. When a light is turned on, electrical energy is converted to light and heat energy. Which of the following best describes the balance of energy in this system? E. The sum of the heat and light energy produced is greater than the electric energy flowing into the bulb. F. The electric energy flowing into the bulb is greater than the sum of G. The heat energy produced is greater than the electric energy that flows into the bulb. H. The electric energy that flows into the bulb is equal to the sum of ANS. D 4. In active solar heating systems, water absorbs heat from the sun. This heat is then transferred to air that is pumped through a building. Some of the heat absorbed by the water is not transferred to the air and is lost. Why is the heat lost? E. Heat is destroyed. F. Heat is transferred to light energy. G. The energy transfer is not 100% efficient. H. Water evaporates and can t transfer energy. ANS. C

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Energy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in

More information

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy

More information

Exploring Energy. Third - Fifth TEKS. Vocabulary

Exploring Energy. Third - Fifth TEKS. Vocabulary Exploring Energy Third - Fifth TEKS Third Grade: 3.5A, 3.5B, 3.5C, 3.6A Fourth Grade: 4.5A, 4.5B, 4.6A, 4.6B, 4.6C Fifth Grade: 5.5A, 5.6A, 5.6B Vocabulary conductor, convection, conversions, electrical,

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

Forms of Energy. Freshman Seminar

Forms of Energy. Freshman Seminar Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

BUILDING A BASIC CIRCUIT

BUILDING A BASIC CIRCUIT Teacher Information BUILDING A BASIC CIRCUIT NSES9-12.2 Physical Science: Interactions of Energy and Matter Adaptations Some adaptations and modifications that may assist a student with visual and/or other

More information

Energy Test Study Guide

Energy Test Study Guide Name: Energy Test Study Guide (Test Dates: A Day May 5 th B Day May 6 th ) USE YOUR INTERACTIVE NOTEBOOK TO STUDY CLASSROOM ASSIGNMENTS, LABS, FORMATIVE ASSESSMENTS, AND HOMEWORK. ENERGY AND THE TWO MAIN

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

Basic Forms of Energy:

Basic Forms of Energy: Background Information: Energy can be defined in many different ways: the ability to do work, the ability to the change the properties of a material, or simply the ability to do something. Energy is a

More information

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Science Tutorial TEK 6.9C: Energy Forms & Conversions Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

More information

Electrical Circuits Design Project. Project Guide Free Digital Sampler!

Electrical Circuits Design Project. Project Guide Free Digital Sampler! Electrical Circuits Design Project Project Guide Free Digital Sampler! Table of Contents Electrical Circuits Design Project Digital Sampler Project Guide Project Guide: Table of Contents Teacher Background

More information

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites

Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Introduction to Forms of Energy

Introduction to Forms of Energy FORMS OF ENERGY LESSON PLAN 2.1 Introduction to Forms of Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the

More information

Uses of Energy. reflect. look out!

Uses of Energy. reflect. look out! reflect Take a moment to think about three common objects: a flashlight, a computer, and a toaster. A flashlight provides light. A computer stores information and displays it on a screen. A toaster cooks

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Textbook pp. 148-153

Textbook pp. 148-153 Textbook pp. 148-153 ENERGY is the ability to do WORK or cause change Name 2 things that ARE energy or that HAVE energy WORK is when a FORCE moves an object a FORCE is a push or a pull There are two main

More information

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9

UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES. Science 9 UNIT D ELECTRICAL PRINCIPLES & TECHNOLOGIES Science 9 LEARNING GOALS Investigate and interpret devices that convert various forms of energy Describe technologies for the transfer and control of electrical

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

Radiant Energy Definition

Radiant Energy Definition Radiant Energy Definition: the energy of electromagnetic waves; this includes radio, microwave, infrared, visible, ultraviolet, x-ray, and gamma waves Solar panels Radiant Energy Examples of energy transformations:

More information

Lesson 2 - Design a Robot. Grades: 6-8

Lesson 2 - Design a Robot. Grades: 6-8 Lesson 2 - Design a Robot Grades: 6-8 Essential Questions: What steps do manufacturers take to design and build a product? What role does robotics have in manufacturing? How have robotics changed how products

More information

Mechanical Energy. Mechanical Energy is energy due to position or motion.

Mechanical Energy. Mechanical Energy is energy due to position or motion. Mechanical Energy Mechanical Energy is energy due to position or motion. Position: This means that matter can have energy even though it is not moving. If you knock something off of your kitchen counter,

More information

OBJECTIVES THE STUDENTS WILL: Participate in cooperative problem solving in a group setting.

OBJECTIVES THE STUDENTS WILL: Participate in cooperative problem solving in a group setting. ICE CAPADES THE POWER OF INSULATION GRADE LEVEL: Upper Elementary/Middle School (High School with extensions) SUBJECT AREA: Sciences, Mathematics DURATION: Preparation time 30 minutes Activity time: One

More information

Sample. What Electricity Can Do LESSON 2. Overview and Objectives. Background

Sample. What Electricity Can Do LESSON 2. Overview and Objectives. Background What Electricity Can Do Overview and Objectives Background Light bulbs are such an integral part of everyday life that most people can t imagine being without them. Because people tend to take light bulbs

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM

Student Reader. Energy Systems UNIT 7. E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Student Reader UNIT 7 Energy Systems E5 Student Reader v. 8.0 Unit 7 Page 1 2012 KnowAtom TM Front Cover: The cover shows a photograph of a sled that is not in motion. The movement of a sled from one place

More information

Energy Chains Grade Seven

Energy Chains Grade Seven Ohio Standards Connection: Physical Science Benchmark D Describe that energy takes many forms, some forms represent kinetic energy and some forms represent potential energy; and during energy transformations

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy What is Energy? The ability to cause change Energy notes entry # 4 11/5 Potential Energy Kinetic Energy Definitions Dependent on Examples Forms of Potential Energy Definition

More information

How to Make a Solar Cooker Kristi Jerger s 5th grade class

How to Make a Solar Cooker Kristi Jerger s 5th grade class How to Make a Solar Cooker Kristi Jerger s 5th grade class Dublin, Ohio Public Schools Credits: Marlin Languis, Emeritus Professor, Ohio State University Zep Wallace, Computer Specialist, Dublin Ohio Public

More information

The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc.

The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc. Teacher s Guide to Third and Fourth Grade Reading and Writing Exercises for The Magic School Bus and the Electric Field Trip Written by Joanna Cole Illustrated by Bruce Degen 1997, Scholastic Inc. ISBN

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

More information

7 TH GRADE SCIENCE REVIEW

7 TH GRADE SCIENCE REVIEW 7 TH GRADE SCIENCE REVIEW The motion of an object is always judged with respect to some other object or point. When an object changes position over time relative to a reference point, the object is in

More information

This Little Light of Mine: Understanding Light Bulbs By Tracy Empson

This Little Light of Mine: Understanding Light Bulbs By Tracy Empson This Little Light of Mine: Understanding Light Bulbs By Tracy Empson INTRODUCTION This lesson will introduce students to the basic mechanics of how light bulbs work. Students will explore the different

More information

Build A Simple Electric Motor (example #1)

Build A Simple Electric Motor (example #1) PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

More information

Energy Transformation Lab

Energy Transformation Lab Energy Transformation Lab Lab Response Page You will fill in the blanks with the energy form that matches that object. Use thermal instead of heat and radiant instead of light. You may double check your

More information

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12 WindWise Education T ransforming the Energy of Wind into Powerful Minds A Curriculum for Grades 6 12 Notice Except for educational use by an individual teacher in a classroom setting this work may not

More information

In science, energy is the ability to do work. Work is done when a force causes an

In science, energy is the ability to do work. Work is done when a force causes an What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

More information

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

More information

Solar Heating and You

Solar Heating and You Solar Heating and You DOE/CH10093-272 FS 118 August 1994 The sun gives us energy in two forms: light and heat. For many years, people have been using the sun s energy to make their homes brighter and warmer.

More information

Study Guide CCA week 12 - Key

Study Guide CCA week 12 - Key Study Guide CCA week 12 - Key Vocabulary to know: (define on separate paper & give an example of each) Electrical Energy Mechanical Energy Force Energy carried by electricity Ex: Toaster, Fan, Anything

More information

Low cost Electrostatic generators made from FunFlyStick toy

Low cost Electrostatic generators made from FunFlyStick toy Apparatus Competition 2009 AAPT Summer Meeting Ann Arbor, MI Low cost Electrostatic generators made from FunFlyStick toy Robert A. Morse St. Albans School, Mount St. Albans, Washington, DC 20016 202-537-6452

More information

SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP

SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP SOLAR ENERGY Solar Energy, Kit #6A: Efficiency of Solar Cells Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP PARC Contents: Topic Template 3 Introduction: Photovoltaic

More information

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence

PHYSICAL WORLD. Heat & Energy GOD S DESIGN. 4th Edition Debbie & Richard Lawrence PHYSICAL WORLD Heat & Energy GOD S DESIGN 4th Edition Debbie & Richard Lawrence God s Design for the Physical World is a complete physical science curriculum for grades 3 8. The books in this series are

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

More information

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

More information

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

More information

SUGGESTED ACTIVITIES

SUGGESTED ACTIVITIES SUGGESTED ACTIVITIES (Thermal Energy) From Invitations to Science Inquiry 2 nd Edition by Tik L. Liem: Activity Page Number Concept Warm a Bottle by Shaking 184 Heat, Friction The Confused Bottles 206

More information

Teacher Instruction Guide: Harnessing the Sun s Energy with a Solar-Powered Car. Derek Butler, LE Davey, Mike Laritz, Ben Meadows, and Claire Raycraft

Teacher Instruction Guide: Harnessing the Sun s Energy with a Solar-Powered Car. Derek Butler, LE Davey, Mike Laritz, Ben Meadows, and Claire Raycraft Teacher Instruction Guide: Harnessing the Sun s Energy with a Solar-Powered Car Derek Butler, LE Davey, Mike Laritz, Ben Meadows, and Claire Raycraft Context: The solar-powered car project is designed

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy

Science Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy Grade 05 Unit 04 Exemplar Lesson 01: Types of Energy This lesson is one approach to teaching the State Standards associated with this unit. Districts are encouraged to customize this lesson by supplementing

More information

ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars. Grade 6: Energy and Control Electricity

ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars. Grade 6: Energy and Control Electricity ASSESSMENT OF SCIENCE AND TECHNOLOGY ACHIEVEMENT PROJECT (ASAP) Science and Technology Exemplars Grade 6: Energy and Control Electricity Exemplar Task (6ECPT01/Dec 2000) ELECTRIFYING York University, Dec

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1 Solar Car Teach build learn renewable Energy! Page 1 of 1 Background Not only is the sun a source of heat and light, it s a source of electricity too! Solar cells, also called photovoltaic cells, are used

More information

5.8 A Differentiate among forms of energy including light, heat, electrical, and solar energy. FORMS OF ENERGY

5.8 A Differentiate among forms of energy including light, heat, electrical, and solar energy. FORMS OF ENERGY GRADE 4 Unit 03: Forms of Energy 2010 TEKS 1998 TEKS Curriculum and Instruction Considerations 4.6 The student knows that energy exists in many forms and can be observed in cycles, patterns and systems.

More information

Forms of Energy Explain

Forms of Energy Explain Forms of Energy Explain DIRECTIONS 1. For the Explain portion of the section, work through each slide 2. For each form there are three slides: 1. Introduce the form of energy 2. Give examples of the form

More information

Chapter 4 Forms of energy

Chapter 4 Forms of energy Chapter 4 Forms of energy Introduction This chapter compromises a set of activities that focuses on the energy sources and conversion. The activities illustrate The concept and forms of energy; The different

More information

Forms of Energy: Multiple Transformations : Teacher Notes

Forms of Energy: Multiple Transformations : Teacher Notes Forms of Energy: Multiple Transformations : Teacher Notes Introduction The focus of the investigation is to further define energy and realize that chains of energy transformations can occur. The VoltageCurrent,

More information

Video Component (15 min)

Video Component (15 min) The tree house detectives continue their quest for the solution to the case of the electrical mystery. Because they are eager to go swimming in their neighbor s pool, the tree house detectives hope that

More information

Processes Within an Ecosystem

Processes Within an Ecosystem Grade 7 Science, Quarter 1, Unit 1.1 Processes Within an Ecosystem Overview Number of instructional days: 23 (1 day = 50 minutes) Content to be learned Identify which biotic and abiotic factors affect

More information

Adapted from The NEED Project, Manassas, VA. Lesson 10 Overhead 1 of 8

Adapted from The NEED Project, Manassas, VA. Lesson 10 Overhead 1 of 8 Adapted from The NEED Project, Manassas, VA Lesson 10 Overhead 1 of 8 From The NEED Project, Manassas, VA Lesson 10 Overhead 2 of 8 Lesson 10 Overhead 3 of 8 Coal Fired Power Plant http://c1cleantechnicacom.wpengine.netdna-cdn.com/files/2011/10/coal_power_plant_datteln_2_crop1-e1318788714370.png

More information

ELECTRICITY UNIT SCIENCE AND TECHNOLGY- CYCLE 3 NAME GROUP. Teacher: Mr. D. Strina E-mail: dstrina@swlauriersb.qc.ca MC CAIG ELEMENTARY SCHOOL

ELECTRICITY UNIT SCIENCE AND TECHNOLGY- CYCLE 3 NAME GROUP. Teacher: Mr. D. Strina E-mail: dstrina@swlauriersb.qc.ca MC CAIG ELEMENTARY SCHOOL ELECTRICITY UNIT SCIENCE AND TECHNOLGY- CYCLE 3 NAME GROUP Teacher: Mr. D. Strina E-mail: dstrina@swlauriersb.qc.ca MC CAIG ELEMENTARY SCHOOL CLASS NOTES--- Atom An atom is the smallest particle characterizing

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

Section B: Electricity

Section B: Electricity Section B: Electricity We use mains electricity, supplied by power stations, for all kinds of appliances in our homes, so it is very important to know how to use it safely. In this chapter you will learn

More information

Solar Homes and Heat Sinks. Evaluation copy. empty bottle with screw-on cap

Solar Homes and Heat Sinks. Evaluation copy. empty bottle with screw-on cap Solar Homes and Heat Sinks Computer 15 Alternative energy sources are energy sources other than the nonrenewable fossil fuels coal, petroleum, and natural gas. Solar energy, or energy from the sun, is

More information

Circuits and the Flow of Electricity

Circuits and the Flow of Electricity Lesson Overview This lesson helps Girl Scouts learn about how electricity works within a simple circuit. Many vocabulary words must be introduced (located under things for the leader to know). This lesson

More information

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines

More information

Teacher Guide. Including Student Activities. Module 1: Tracing Energy Transformations

Teacher Guide. Including Student Activities. Module 1: Tracing Energy Transformations Teacher Guide Including Student Activities Module 1: Tracing Energy Transformations ACTIVITY GUIDE Module 1: Tracing Energy Transformations Summary: We use energy on a daily basis. We use it to make our

More information

Odyssey of the Mind Technology Fair. Simple Electronics

Odyssey of the Mind Technology Fair. Simple Electronics Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right

More information

SIZE. Energy. Non-Mechanical Energy. Mechanical Energy. Part II. Examples of Non-Mechanical Energy. Examples of Mechanical Energy.

SIZE. Energy. Non-Mechanical Energy. Mechanical Energy. Part II. Examples of Non-Mechanical Energy. Examples of Mechanical Energy. Energy Part II Non-Mechanical Energy Wait a minute if all energy is either kinetic or potential and TME = KE + PE then how can there possibly be such thing as non-mechanical energy!?!? Mechanical Energy

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Solar Powered System - 2 Student Objective Given a photovoltaic system will be able to name the component parts and describe their function in the PV system. will be able

More information

Stay Safe Around Electricity and Natural Gas Teacher s Guide

Stay Safe Around Electricity and Natural Gas Teacher s Guide Stay Safe Around Electricity and Natural Gas Teacher s Guide INTRODUCTION The Stay Safe Around Electricity and Natural Gas activity booklet can be used as a follow-up to a utility presentation or as a

More information

I Want To Hold Your Hand

I Want To Hold Your Hand 1 2004 2005 NASA SCI Files Series National Aeronautics and Space Administration I Want To Hold Your Hand Purpose To construct a robotic-like hand and to demonstrate how data are collected when using robotic

More information

Grade 5 Standard 4 Unit Test Static Electricity

Grade 5 Standard 4 Unit Test Static Electricity Grade 5 Standard 4 Unit Test Static Electricity Multiple Choice 1. Two objects have collected static electricity with the same charge. What would the objects do when placed near each other? A. repel B.

More information

Energy Conversions I. Unit of measure (most common one) Form Definition Example

Energy Conversions I. Unit of measure (most common one) Form Definition Example Energy Conversions I Energy can take many forms, but any one form can usually be converted into another. And no matter what form we talk about, we can use conversion factors to calculate equivalent amounts

More information

Bill-Bill-Bill-Bill-Bill

Bill-Bill-Bill-Bill-Bill Bill-Bill-Bill-Bill-Bill Time to pay props to the craziest science man alive. Give it up for Bill Nye. Pay attention to watt (that's an electricity joke) he's got to say 'cause here are some questions

More information

ELEMENTARY-LEVEL SCIENCE TEST

ELEMENTARY-LEVEL SCIENCE TEST 4THE UNIVERSITY OF THE STATE OF NEW YORK SPRING 2008 GRADE 4 ELEMENTARY-LEVEL SCIENCE TEST WRITTEN TEST Student Name School Name Print your name and the name of your school on the lines above. The test

More information

Station 1 Energy Presentations

Station 1 Energy Presentations Station 1 Energy Presentations Directions: One person from your group should create a Google Presentation. Your names, block, and topic should be on the first slide. Your group will be assigned one energy

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 Energy and Its Forms (pages 446 452) Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

More information

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below. Name Date Class The Atmosphere Guided Reading and Study Air Pressure This section describes several properties of air, including density and air pressure. The section also explains how air pressure is

More information

Energy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU

Energy & Conservation of Energy. Energy & Radiation, Part I. Monday AM, Explain: Energy. Thomas Birner, ATS, CSU Monday AM, Explain: Energy MONDAY: energy in and energy out on a global scale Energy & Conservation of Energy Energy & Radiation, Part I Energy concepts: What is energy? Conservation of energy: Can energy

More information

2. Room temperature: C. Kelvin. 2. Room temperature:

2. Room temperature: C. Kelvin. 2. Room temperature: Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

More information

Conservation of Momentum Greg Kifer

Conservation of Momentum Greg Kifer SCIENCE EXPERIMENTS ON FILE Revised Edition 6.7-1 Conservation of Momentum Greg Kifer Topic Conservation of momentum Time 1 hour! Safety Please click on the safety icon to view the safety precautions.

More information

ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

More information

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

What Is Heat? What Is Heat?

What Is Heat? What Is Heat? What Is Heat? Paul shivered inside the wood cabin. It was cold outside, and inside the cabin it wasn t much warmer. Paul could hear the rain beating down on the roof. Every few minutes there would be a

More information

Exam on Heat and Energy

Exam on Heat and Energy Exam on Heat and Energy True/False Indicate whether the statement is true or false. 1. Energy is the ability to cause change. 2. Energy is measured in joules. 3. When you ride a playground swing, your

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

Provided by TryEngineering - www.tryengineering.org

Provided by TryEngineering - www.tryengineering.org Provided by TryEngineering - Lesson Focus Lesson focuses on the engineering behind keeping food and other items cool. Students work in teams to develop a system to make an insulated liquid container that

More information

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work. Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,

More information

Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Science Benchmark: 06:06 Heat, light, and sound are all forms of energy. Heat can be transferred by radiation, conduction and convection. Visible light can be produced, reflected, refracted, and separated

More information

www.rkeducation.co.uk solutions for teaching and learning

www.rkeducation.co.uk solutions for teaching and learning Teacher Notes Transistor Astable Project Introduction The aim of this 7 week (2hr lessons) project is to design and manufacture an electronic product based on the transistor astable circuit. The project

More information

Preview of Period 2: Forms of Energy

Preview of Period 2: Forms of Energy Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of

More information

Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. ch 7 and 16 review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The heat released by a burning candle

More information

GETTING CURRENT: Generating Electricity Using a Magnet

GETTING CURRENT: Generating Electricity Using a Magnet GETTING CURRENT: Generating Electricity Using a Magnet PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30 minutes Activity: 1-2 45-minute class periods Summary

More information

13.10: How Series and Parallel Circuits Differ pg. 571

13.10: How Series and Parallel Circuits Differ pg. 571 13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of

More information