# Statistics 100A Homework 1 Solutions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two places can contain any letter of alphabet, 1 of 26 possibilities. The last five places can contain any single digit number, 1 of 10 possibilities If we consider each place an experiment with n i outcomes, then the generalized basic principle of counting implies that the total number of possibilities 7 n i = = = 67,600,000 i=1 (b) Repeat part (a) under the assumption that no letter or number can be repeated in a single license plate. Again, the first two places can contain any letter of alphabet, 1 of 26 possibilities. Once we have drawn a letter for the first place, that letter is no longer available for the second place. The last five places can contain any single digit number, 1 of 10 possibilities. Once a number has been chosen for the first place, it is no longer available for the next place and so on n i = = 19,656,000 i=1 2. How many outcome sequences are possible when a die is rolled four times, where we say, for instance, that the outcome is 3, 4, 3, 1 if the first roll landed on a 3, the second on 4, the third on 3, and the fourth on a 1? This is almost identical to the previous problem. Rather than each experiment being a place on a license plate, each experiment in this problem is the number of pips showing on a single die. which yields a result of 6 4 = 1,

2 5. or years, telephone area codes in the United tates and Canada consisted of a sequence of three digits. The first digit was an integer between 2 and 9; the second digit was either 0 or 1; the third digit was any integer between 1 and 9. How many area codes were possible? How many area codes starting with a 4 were possible? The first digit must be between 2 and 9 so there are 8 possibilities. The second digit must be 0 or 1 so there are 2 possibilities. inally, the last digit can be any number between 1 and 0, so there are 9 possibilities. which yields a result of = To answer the second question, we just place a constraint on the first digit. ince the first digit must be 4, there is only possibility for the first digit, not 8 as in the previous part. which yields a result of = (a) In how many ways can 3 boys and 3 girls sit in a row? The problem does not explicitly state how many chairs there are in the row, so we will assume that there are 6 chairs, one for each person. ince there is no restriction on gender, it is irrelevant to the problem. We might as well find the number of ways to seat 6 children in a row, which is 6! = 720. (b) In how many ways can 3 boys and 3 girls sit in a row if the boys and the girls are each to sit together. In other words, boys are seated in one section of the row, and girls are seated in the other section of the row. There are two possible ways to seat these groups B B B B B B Within the boy section, there are 3! ways to arrange the boys. Within the girl section, there are 3! ways to arrange the girls. In total, there are 2 3! 3! = 72 ways to seat 3 boys and 3 girls in a row such that the boys sit together and the girls sit together. (c) In how many ways if only the boys must sit together? Now, only the boys must sit as a group and the girls fill in the empty chairs. There are several (4) ways this is possible B B B B B B B B B B B B There are 4 ways to pick the group of seats the boys must occupy. Within this boy section, there are 3! ways to arrange the boys. Although the girls are spread throughout the row, there are still 3! ways to arrange the girls. There are 4 3! 3! = 144 ways to arrange the boys and girls if the boys must sit together. 2

3 (d) In how many ways if no two people of the same sex are allowed to sit together? This is just another way of saying alternating seats boy/girl. There are two ways to alternate sexes: B B B B B B Within each gender there are 3! ways to arrange the children. There are 2 3! 3! = 72 ways to arrange the boys and girls in an alternating way. There is another way to solve this problem. irst, we note that there is no gender restriction on the first person, so we can choose one of 6 children to sit in the first seat. The second seat must be for a student of the opposite sex, of which there are 3. The third seat again must be someone of the opposite sex of chair number 2, so there are 2 possibilities (1 was already chosen for chair number 1 and so on) Using this method, there are = 72 ways to arrange the boys and girls in an alternating way. 8. How many different letter arrangements can be made from the letters (a) luke The word LUK contains 5 distinct letters, so there are 5! = 120 arrangements. (b) Propose Now we have the case where letters appear more than once. The key here is to consider each character in entire word to be n distinct objects that are partitioned into non-overlapping subgroups, one for each unique letter in the word. Let n be the number of letters in the word PROPO, so n = 7 and let r be the number of unique letters in the word PROPO, so r = 5. We now must find the size of each subgroup, n i. or P, n 1 = 2 and for O, n 2 = 2. or R, n 3 = 1; for, n 3 = 1; for n 4 = 1. With this information, we use the multinomial coefficient: (c) Mississippi n! n 1 n 2... n r = 7! 2!2!1!1!1! = 7! 4 = 1,260 Again, we use the multinomial coefficient with n = 11, r = 4. or M, n 1 = 1; for I, n 2 = 4; for, n 3 = 4; for P, n 4 = 2. (d) Arrange n! = 11! n 1 n 2... n r 1!4!4!2! = 34,650 n! n 1 n 2... n r = 7! 2!2! = 7! 4 = 1,260 3

4 9. A child has 12 blocks, of which 6 are black, 4 are red, 1 is white, and 1 is blue. If the child puts the blocks in a line, how many arrangements are possible? (why would a child care?) We are given a set of 12 distinct blocks that are dividing into 4 non-overlapping groups. We use the multinomial coefficient. n! = 12! = 27, 720 n 1 n 2... n r 6!4!1!1! 15. A dance class consists of 22 students, 10 women, and 12 men. If 5 men and 5 women are to be chosen and then paired off, how many results are possible? Of the 10 women in the class, we must choose 5 of them and of the 12 men in the class, we must choose 5 of them. We do not worry about the pairing off right now. We know the solution is going to contain the term ( 10 5 ) ( 12 5 ) Now what to do about the pairing? We know that we must pair 5 men to 5 women. Consider the first man (or the first woman, whichever). He can be paired to any of 5 women, so there are 5 possible pairings for him. Once this man is paired to a woman, that man and woman are no longer available for pairing. Consider the second man. ince one woman has already been paired, he has 4 possible pairings. The third man then has 3 possible pairings and so on. Thus, the number of pairings possible is = 5!. Then the total number of ways to choose 5 men and 5 women from 12 men and 10 women and then pair them off is ( 10 5 ) ( 12 5 ) 5! = 23,950, If 8 new teachers are to be divided among 4 schools, how many divisions are possible? What if each school must receive 2 teachers? The problem is not clearly written, however, we just want to find the number of ways of placing 8 new teachers into 4 schools with no restriction on the number assigned to each school. We consider each of the 8 teachers, and the fact that they have 4 possible schools to be assigned to o there are 4 8 = 65, 536 divisions possible In the second part of the problem, we still have 8 distinct teachers that must be divided into 4 non-overlapping groups (schools), but now we impose the restriction that each school receives exactly 2 teachers. We have jumped back to the multinomial coefficient. Here, n = 8 and r = 4 and n i = 2, 1 i r. n! = 8! n 1 n 2... n r 2!2!2!2! = 8! 2 4 = 2,520 4

5 Chapter 2 Problems 1. A box contains 3 marbles, 1 red, 1 green, and 1 blue. Consider an experiment that consists of taking 1 marble from the box, then replacing it in the box and drawing a second marble from the box. Describe the sample space. Repeat when the second marble is drawn without first replacing the first marble. Let R represent the red marble, the green marble, and B the blue marble. The sample space consists of all possible results of this experiment. Consider first drawing the red marble. The second draw can be either the red, green or blue marble and so on. The sample space will have size 3 3 since there are three possibilities for the first draw and three possibilities for the second draw. The sample space is = {(R, R), (R, ), (R, B), (, R), (, ), (, B), (B, R), (B, ), (B, B)} If after the first draw we do not replace the first marble, then the sample space has size 3 2 since there are three possibilities for the first draw and only two for the second draw. Then the sample space is = {(R, ), (R, B), (, R), (, B), (B, R), (B, )} 2. A die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample space of this experiment? Let n denote the event that n rolls are necessary to complete the experiment. What points of the sample space are contained in n? What is ( 1 n) c? irst let s consider the sample space. This is a fairly theoretical question, and it is not trivial. irst, consider an integer n that represents the number of rolls necessary for a 6 to appear. n takes on an any positive integer value, n 1. The sample space consists of all possible outcomes of this experiment which is difficult to write out, so we write it out abstractly instead. Let (x 1, x 2,..., x n 1, x n ) be the vector of possible outcomes of the experiment. ach x i is a number denoting the number of pips that show on the die on the ith experiment. We cannot stop here though. We must recall the constraints of the experiment. The experiment stops after a 6 is shown on the die and we consider this the nth run of the experiment. Thus, x n = 6. All of the other x i s prior to the nth run must be between 1 and 5: 1 x i 5, 1 i n 1. A correct response should have all of these features: 1) definition of n, 2) vector of possible outcomes, 3) vector correctly noted with the constraints. or the second part of the problem, we note that n is the event that n rolls are necessary to complete the experiment. The sample space is simply the vector x for the particular value of n. In this particular context, this question is redundant. The final part of the question asks us to consider ( 1 n) c. The union inside represents all n, that is roughly speaking, the events that the experiment stops after some n. The complement then is the event that a 6 never appears. 5

6 3. Two dice are thrown. Let be the event that the sum of the dice is odd; let be the event that at least one of the dice lands on 1; and let be the event that the sum is 5. Describe the events,,, c, and. (Note that = ) is the event that the sum of the dice is odd and at least one of the dice lands on 1. = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)} is the event that the sum of the dice is odd or at least one of the dice lands on 1. = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 3), (6, 5)} is the event that the sum of the dice is odd and the sum is 5. = {(1, 4), (4, 1)} is the event that the sum is odd and the sum is 5 and at least one of the dice shows a 1. = {(1, 4), (4, 1)} c is the event that the sum of the dice is odd and at least one of the dice is not a 1. c = {(2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 3), (6, 5)} 6. A hospital administrator codes incoming patients suffering from gunshot wounds according to whether or not they have insurance (coding 1 if they do and 0 if they do not) and according to their condition, which is rated as good (g), fair (f), or serious (s). Consider an experiment that consists of coding such a patient. (a) ive the sample space of this experiment. The sample space consists of all possible outcomes of this experiment. possible combinations of insurance codings and condition codings. That is, all = {(0, g), (0, f), (0, s), (1, g), (1, f), (1, s)} (b) Let A be the event that the patient is in serious condition. pecify the outcomes in A. iven that a person is in serious condition, there are only two possible outcomes in A: insured or not insured. = {(0, s), (1, s)} 6

7 (c) Let B be the event that the patient is uninsured. pecify the outcomes in B. iven that a person does not have insurance, there are only three possible outcomes: serious, good or fair. (d) ive all the outcomes in the event B c A. = {(0, g), (0, f), (0, s)} B c A is the event that the patient has insurance (does not not have insurance) or is in serious condition. = {(1, g), (1, f), (1, s), (0, s)} 7. Consider an experiment that consists of determining the type of job - either blue-collar or white-collar - and the political affiliation - Republican, Democratic, or Independent - of the 15 members of an adult soccer team. How many outcomes are (a) in the sample space The sample space consists of all possible outcomes of this experiment. or each player there are 3 2 = 6 possible outcomes, so the total number of outcomes is (b) in the event that at least one of the team members is a blue-collar worker. The phrase at least immediately implies to use the complement. We could extract the result by starting with the entire sample space, and then excluding the case that all 15 players are not blue collar. How many outcomes are possible if all 15 players are not blue collar? 3 1 = 3 because we have reduced the levels of job type by 1 by considering only white collar. The total number of outcomes is then (c) in the event that none of the team members considers himself or herself an Independent? If none of the team members considers themselves an Independent, then we have decreased the number of possible responses for political affiliation alone to 2. The total number of possible outcomes per player is then 2 2 = 4. or all 15 players, the total number of possible outcomes is

8 Chapter 2 Theoretical xercises 6. Let,, and be three events. ind expressions for the events so that of,, and : (a) only occurs If occurs alone, that means that and do not occur c c. (b) both and but not occur o, we get c. (c) at least one of the events occurs. or these problems, it makes more sense to think about what to do first and perhaps then make the Venn diagram. The phrase at least implies we should consider the complement of the case none of the events occur. We represent none of the events occur as not, and not and not, c c c. Then, we just note the complement: ( c c c ) c which is the same as by De Morgan s laws. (d) at least two of the events occur. At least two of the events occur means that two of the events occur, or all three events occur. There are several ways that two of the events can occur:,,. We connect these cases using the union. 8

9 (e) all three occur This can be visualized as which can be represented as. (f) None of the events occur. This can be represented as an unshaded Venn diagram which means we are considering the complement of the union, ( ) c which is the same as c c c by demorgan s Laws. (g) at most one of them occurs. This means that either one of the events occur (and the other two do not), or none of the events occurs which is c c c c c c c c c. 9

10 (h) at most two of them occur. ither none of the events occur, one of the events occur (and the other two do not), or two of the events occur (and the other one does not). We just augment our response from the previous part with the case that two of the events occur. c c c c c c c c c c c c There is another, more compact way to do this by considering the complement. ince we are working with three events, the complement of at most two events is not all three events which is ( ) c. (i) exactly two of them occur. There are three ways two of the events can occur: c, c and c. We connect theses cases using the union: c c c. (j) at most three of them occur. This means that none of them occur, exactly one occurs (and the other two do not), exactly two occur (and the other does not), or all three occur. This exhausts all possibilities! The region depicted is the entire sample space,. 10

11 7. ind the simplest expression for the following events: The easiest way to approach this problem is to draw a separate Venn diagram for each expression in the conjunction, and then write an expression for the intersection of all the diagrams. (a) ( ) ( c ) The Venn diagram for ( ) is The Venn diagram for ( c ) is The region that appears in both diagrams (the intersection of both diagrams, if you will) if. (b) ( ) ( c ) ( c ) The Venn diagram for ( ) is 11

12 The Venn diagram for c is The Venn diagram for c is The intersection of all three diagrams is. 12

13 (c) ( ) ( ) The Venn diagram for ( ) is The Venn diagram for is The intersection is. 13

### Statistics 100A Homework 2 Solutions

Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

### Math/Stat 394 Homework 2

Math/Stat 39 Homework Due Wednesday Jan 18 1. Six awards are to be given out among 0 students. How many ways can the awards be given out if (a one student will win exactly five awards. (b one student will

### Chapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.

MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.

### Math 421: Probability and Statistics I Note Set 2

Math 421: Probability and Statistics I Note Set 2 Marcus Pendergrass September 13, 2013 4 Discrete Probability Discrete probability is concerned with situations in which you can essentially list all the

### Homework 3 (due Tuesday, October 13)

Homework (due Tuesday, October 1 Problem 1. Consider an experiment that consists of determining the type of job either blue-collar or white-collar and the political affiliation Republican, Democratic,

### Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

### Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions)

Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand Problem Set 1 (with solutions) About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years,

### Basic Probability Concepts

page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

### Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### Probability. Experiment - any happening for which the result is uncertain. Outcome the possible result of the experiment

Probability Definitions: Experiment - any happening for which the result is uncertain Outcome the possible result of the experiment Sample space the set of all possible outcomes of the experiment Event

### Introductory Problems

Introductory Problems Today we will solve problems that involve counting and probability. Below are problems which introduce some of the concepts we will discuss.. At one of George Washington s parties,

### 33 Probability: Some Basic Terms

33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been

### 6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

### Example Interview INSTRUCTIONS FOR THE CHILD COMPETENCE INTERVIEW

Example Interview INSTRUCTIONS FOR THE CHILD COMPETENCE INTERVIEW The person you interview needs to be a parent (mother or father) but we are asking them to think about any child they choose. Explain the

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### A Simple Example. Sample Space and Event. Tree Diagram. Tree Diagram. Probability. Probability - 1. Probability and Counting Rules

Probability and Counting Rules researcher claims that 10% of a large population have disease H. random sample of 100 people is taken from this population and examined. If 20 people in this random sample

### ECE-316 Tutorial for the week May 11-15

ECE-316 Tutorial for the week May 11-15 Problem 4: Page 16 - (Refer to lecture notes part 1- slide 14,16) John, Jim, Jay and Jack have formed a band consisting of 4 instruments. If each of the boys can

### IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

### Jan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 50-54)

Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0- Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample

### Some Definitions about Sets

Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

### Mathematics Teachers Enrichment Program MTEP 2012 Probability Solutions

Mathematics Teachers Enrichment Program MTEP 202 Probability Solutions. List the sample space for each of the following experiments: a) A card is drawn from a deck of playing cards and you are interested

### Interlude: Practice Midterm 1

CONDITIONAL PROBABILITY AND INDEPENDENCE 38 Interlude: Practice Midterm 1 This practice exam covers the material from the first four chapters Give yourself 50 minutes to solve the four problems, which

### Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

### Statistics 100A Homework 3 Solutions

Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win \$ for each black ball selected and we

### 2 Elementary probability

2 Elementary probability This first chapter devoted to probability theory contains the basic definitions and concepts in this field, without the formalism of measure theory. However, the range of problems

### Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

### Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems

, Spring 2008 Word counting problems 1. Find the number of possible character passwords under the following restrictions: Note there are 26 letters in the alphabet. a All characters must be lower case

### Games ~ 1. Triangle Sum. Poly Pick. In & Out. Skittles. Cover Up. Home Run. Cross Nim. To and Fro. Thirty one. Put Down. One or Two.

Games ~ 1 List of Contents Triangle Sum Poly Pick In & Out Skittles Cover Up Home Run Cross Nim To and Fro Thirty one Put Down One or Two Triangle Sum Players take turns moving a single marker or counter

### Review of Probability

Review of Probability Table of Contents Part I: Basic Equations and Notions Sample space Event Mutually exclusive Probability Conditional probability Independence Addition rule Multiplicative rule Using

### Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

### Basic concepts in probability. Sue Gordon

Mathematics Learning Centre Basic concepts in probability Sue Gordon c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Set Notation You may omit this section if you are

### Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

### 1. De Morgan s Law. Let U be a set and consider the following logical statement depending on an integer n. We will call this statement P (n):

Math 309 Fall 0 Homework 5 Drew Armstrong. De Morgan s Law. Let U be a set and consider the following logical statement depending on an integer n. We will call this statement P (n): For any n sets A, A,...,

### Math227 Homework (Probability Practices) Name

Math227 Homework (Probability Practices) Name 1) Use the spinner below to answer the question. Assume that it is equally probable that the pointer will land on any one of the five numbered spaces. If the

### Sections 2.1, 2.2 and 2.4

SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

### PROBABILITY. Chapter Overview

Chapter 6 PROBABILITY 6. Overview Probability is defined as a quantitative measure of uncertainty a numerical value that conveys the strength of our belief in the occurrence of an event. The probability

### The numerator will be the number of bills that aren t fives (12) = 1 = = = 1 6

Section 4.2 Solutions: 1) In her wallet, Anne Kelly has 14 bills. Seven are \$1 bills, two are \$5 bills, four are \$10 bills and one is a \$20 bill. She passes a volunteer seeking donations for the Salvation

### Exam 1 Review Math 118 All Sections

Exam Review Math 8 All Sections This exam will cover sections.-.6 and 2.-2.3 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There is no time limit. It will consist

### Statistics 100A Homework 4 Solutions

Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

### Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

### Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

### A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### (Refer Slide Time: 01.26)

Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 27 Pigeonhole Principle In the next few lectures

### Study Manual for Exam P/Exam 1. Probability

Study Manual for Exam P/Exam 1 Probability Eleventh Edition by Krzysztof Ostaszewski Ph.D., F.S.A., CFA, M.A.A.A. Note: NO RETURN IF OPENED TO OUR READERS: Please check A.S.M. s web site at www.studymanuals.com

### AP Stats - Probability Review

AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

### Study Manual for Exam P/Exam 1. Probability

Study Manual for Exam P/Exam 1 Probability Seventh Edition by Krzysztof Ostaszewski Ph.D., F.S.A., CFA, M.A.A.A. Note: NO RETURN IF OPENED TO OUR READERS: Please check A.S.M. s web site at www.studymanuals.com

### Math 210. 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. (e) None of the above.

Math 210 1. Compute C(1000,2) (a) 499500. (b) 1000000. (c) 2. (d) 999000. 2. Suppose that 80% of students taking calculus have previously had a trigonometry course. Of those that did, 75% pass their calculus

### Grade 7/8 Math Circles Fall 2012 Probability

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Probability Probability is one of the most prominent uses of mathematics

### Math 117 Chapter 7 Sets and Probability

Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a well-defined collection of specific objects. Each item in the set is called an element or a member. Curly

### Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations)

Lesson Plans for (9 th Grade Main Lesson) Possibility & Probability (including Permutations and Combinations) Note: At my school, there is only room for one math main lesson block in ninth grade. Therefore,

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

### Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### number of equally likely " desired " outcomes numberof " successes " OR

Math 107 Probability and Experiments Events or Outcomes in a Sample Space: Probability: Notation: P(event occurring) = numberof waystheevent canoccur total number of equally likely outcomes number of equally

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### 36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

### Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

### Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 202. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments

### Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

### 7.5 Conditional Probability; Independent Events

7.5 Conditional Probability; Independent Events Conditional Probability Example 1. Suppose there are two boxes, A and B containing some red and blue stones. The following table gives the number of stones

### SOLUTIONS, Homework 6

SOLUTIONS, Homework 6 1. Testing out the identities from Section 6.4. (a) Write out the numbers in the first nine rows of Pascal s triangle. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1

### Spring 2007 Math 510 Hints for practice problems

Spring 2007 Math 510 Hints for practice problems Section 1 Imagine a prison consisting of 4 cells arranged like the squares of an -chessboard There are doors between all adjacent cells A prisoner in one

### 2.3. Relations. Arrow diagrams. Venn diagrams and arrows can be used for representing

2.3. RELATIONS 32 2.3. Relations 2.3.1. Relations. Assume that we have a set of men M and a set of women W, some of whom are married. We want to express which men in M are married to which women in W.

### RACE TO CLEAR THE MAT

RACE TO CLEAR THE MAT NUMBER Place Value Counting Addition Subtraction Getting Ready What You ll Need Base Ten Blocks, 1 set per group Base Ten Blocks Place-Value Mat, 1 per child Number cubes marked 1

### IEOR 4106: Introduction to Operations Research: Stochastic Models. SOLUTIONS to Homework Assignment 1

IEOR 4106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability Models, by Sheldon

### In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events.

Lecture#4 Chapter 4: Probability In this chapter, we use sample data to make conclusions about the population. Many of these conclusions are based on probabilities of the events. 4-2 Fundamentals Definitions:

### Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

### Name Date. Sample Spaces and Probability For use with Exploration 10.1

0. Sample Spaces and Probability For use with Exploration 0. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set

### Topic : Probability of a Complement of an Event- Worksheet 1. Do the following:

Topic : Probability of a Complement of an Event- Worksheet 1 1. You roll a die. What is the probability that 2 will not appear 2. Two 6-sided dice are rolled. What is the 3. Ray and Shan are playing football.

### Probability (Day 1 and 2) Blue Problems. Independent Events

Probability (Day 1 and ) Blue Problems Independent Events 1. There are blue chips and yellow chips in a bag. One chip is drawn from the bag. The chip is placed back into the bag. A second chips is then

### Section 6-5 Sample Spaces and Probability

492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

### 11.5. A summary of this principle is now stated. The complement of a set FIGURE 8

11.5 The complement of a set FIGRE 8 Counting Problems Involving Not and Or When counting the number of ways that an event can occur (or that a task can be done), it is sometimes easier to take an indirect

### P (A B) = P (AB)/P (B).

1 Lecture 8 Conditional Probability Define the conditional probability of A given B by P (A B) = P (AB) P (B. If we roll two dice in a row the probability that the sum is 9 is 1/9 as there are four combinations

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Sets and Logic. Chapter Sets

Chapter 2 Sets and Logic This chapter introduces sets. In it we study the structure on subsets of a set, operations on subsets, the relations of inclusion and equality on sets, and the close connection

### Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0

Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0 This primer provides an overview of basic concepts and definitions in probability and statistics. We shall

### Generalizing Patterns: Table Tiles

Generalizing Patterns: Table Tiles MATHEMATICAL GOALS This lesson unit is intended to help you assess how well students are able to identify linear and quadratic relationships in a realistic context: the

### Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### number of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.

12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.

### Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

### P(A) = s n = Definitions. P - denotes a probability. A, B, and C - denote specific events. P (A) - Chapter 4 Probability. Notation for Probabilities

Chapter 4 Probability Slide 1 Definitions Slide 2 4-1 Overview 4-2 Fundamentals 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Probabilities

### Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

### Most of us would probably believe they are the same, it would not make a difference. But, in fact, they are different. Let s see how.

PROBABILITY If someone told you the odds of an event A occurring are 3 to 5 and the probability of another event B occurring was 3/5, which do you think is a better bet? Most of us would probably believe

### 4.3. Addition and Multiplication Laws of Probability. Introduction. Prerequisites. Learning Outcomes. Learning Style

Addition and Multiplication Laws of Probability 4.3 Introduction When we require the probability of two events occurring simultaneously or the probability of one or the other or both of two events occurring

### Example: If we roll a dice and flip a coin, how many outcomes are possible?

12.5 Tree Diagrams Sample space- Sample point- Counting principle- Example: If we roll a dice and flip a coin, how many outcomes are possible? TREE DIAGRAM EXAMPLE: Use a tree diagram to show all the possible

### MATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics

MATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you should

### Probability and Statistics

Probability and Statistics Activity: TEKS: What s the Difference? (7.10) Probability and statistics. The student recognizes that a physical or mathematical model can be used to describe the experimental

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch. - Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### Probability: Events and Probabilities

Probability: Events and Probabilities PROBABILITY: long-run relative frequency; likelihood or chance that an outcome will happen. A probability is a number between 0 and 1, inclusive, EVENT: An outcome

### MATH 3070 Introduction to Probability and Statistics Lecture notes Probability

Objectives: MATH 3070 Introduction to Probability and Statistics Lecture notes Probability 1. Learn the basic concepts of probability 2. Learn the basic vocabulary for probability 3. Identify the sample

### 1. The sample space S is the set of all possible outcomes. 2. An event is a set of one or more outcomes for an experiment. It is a sub set of S.

1 Probability Theory 1.1 Experiment, Outcomes, Sample Space Example 1 n psychologist examined the response of people standing in line at a copying machines. Student volunteers approached the person first

### Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen

### Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the