Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541


 Augusta Fields
 1 years ago
 Views:
Transcription
1 Using An Ordered Logistic Regression Model with SAS Vartanian: SW 541 libname in1 >c:\=; Data first; Set in1.extract; A=1; PROC LOGIST OUTEST=DD MAXITER=100 ORDER=DATA; OUTPUT OUT=CC XBETA=XB P=PROB; MODEL EDUC=POVDUM ; WEIGHT WEIGHT; *EDUC IS A 4 LEVEL ORDERED VARIABLE FOR LEVEL OF EDUCATION. Each of the categories is mutually exclusive. P=prob will give the probability estimate for the likelihood of reaching particular levels of education. For each of the observations, SAS will create 3 observations B a different probability estimate for each of these levels. One of the levels is an excluded category, and we can determine the likelihood of that event by subtraction. Data F; set DD; Rename pov=cpov; drop _type_; A=1; Data G; Merge F CC; by A; Xb_npov=xbcpov*pov; Xb_pov=xb_npov+cpov; PR_NPOV=(EXP(XB_NPOV))/(1+EXP(XB_NPOV)); PR_POV=(EXP(XB_POV))/(1+EXP(XB_POV)); DATA F;RETAIN _LEVEL_;SET G; PROC SORT;BY _LEVEL_; PROC MEANS;VAR PROB _LEVEL_ PR_NPOV PR_POV; BY _LEVEL_ ; run; There are 3 different levels that SAS will determine probability estimates for B one for each of the intercept values. What we need to do is simply run a proc means by the particular level to determine the probability estimates for each level. In other words, SAS is creating a probability estimate for 3 of the levels (out of 4) and will give the probability of being in the particular level for each individual. Thus for person 1 (or case 1), SAS creates 3 observations for this case, with probability estimates for each case by the level or category of D:\WP60\LECT2.PHD\LOGIST\ORDLOG1.WPD Page 1
2 education. Person 1 will have 3 separate observations with a newly created variable name _level_ indicating which level the probability estimate is for. To determine the probability estimate for level 1, we need to only examine those cases where the probability estimate is for level 1. What I=ve done above is determined mean values (by using proc means) by the particular _level_, which will give separate mean values for the different levels. Level 1 is the excluded category from the analysis, so we will only get probabilities for levels 2, 3 and 4. The probability estimate for Level 2 gives the probability of being a college graduate or having some college or being a high school graduate. (If we had a level 1 probability estimate, it would merely tell us the probability of being a college grad or having some college or graduating from high school or dropping out of high school. In other words, the value of this will always be 1.) For level 3, the probability estimates indicate the probability of some college or being a college graduate. The probability estimates for level 4 indicate the likelihood of graduating from college. Hence, the only probability we really know is the probability of graduating from college. We can then subtract the probability of graduating from college from the probability of either graduating from college or going to college to determine the probability of going to college. If we=d like to determine the probability of graduating from high school, we could subtract the probability of graduating from college or going to college from the probability for level 2 (graduating from college, going to college or graduating from high school). To determine the probability of dropping out of high school, we could subtract the probability of level 2 (graduating from college, going to college or graduating from high school) from 1. The reason for this difficulty in determining probability estimates is because the model is based on cumulative probabilities. Note that the bottom category is being a college graduate. You must look at the order that SAS puts the different levels B or look to the ordered values in SAS. Here, ordered value=1 is Educ=4. Ordered value=2 is Educ=3, etc. The interpretation of the intercepts are as follows: Intercept1 log odds of being a college grad versus having some college, being a high school grad or being a high school dropout. In other words, this is the log odds of being in the lowest ordered value category relative to all other categories. Intercept2 log odds of being a college grad or having some college D:\WP60\LECT2.PHD\LOGIST\ORDLOG1.WPD Page 2
3 relative to being a high school graduate or being a high school dropout. Or, the log odds of being in the bottom two ordered categories relative to being in the top two ordered categories. Intercept3 log odds of being a college grad or having some college or being a high school graduate relative to being a high school dropout. Or, the log odds of being in the bottom 3 ordered categories relative to being in the top ordered category. For a further explanation of how to use ordered logistic regression, see Categorical Data Analysis Using the SAS System, pages , by Maura E. Stokes, Charles S. Davis and Gary G. Koch, from the SAS Institute, Results The LOGISTIC Procedure Data Set: WORK.Z Response Variable: EDUC Response Levels: 4 Number of Observations: 1884 Weight Variable: WEIGHT Sum of Weights: 1884 Link Function: Logit Response Profile Ordered Total Value EDUC Count Weight Since SAS puts these values in the order, I have reordered them with the sort command (above) and the data=order command (also above). Score Test for the Proportional Odds Assumption ChiSquare = with 2 DF (p=0.0001) The chisquare test above indicates if we can assume that the b coefficients have proportional effects on the different levels of the dependent variable. Since we would reject D:\WP60\LECT2.PHD\LOGIST\ORDLOG1.WPD Page 3
4 the null hypothesis, reject the proportional effects assumption. Thus, we could run separate logistic regression models for each of level of the dependent variable. Model Fitting Information and Testing Global Null Hypothesis BETA=0 Intercept Intercept and Criterion Only Covariates ChiSquare for Covariates AIC SC LOG L with 1 DF (p=0.0001) Score with 1 DF (p=0.0001) 2 Log L tells us if the model is significant or not (much like the F value in OLS regression). The p value gives the exact level of significance. Analysis of Maximum Likelihood Estimates Parameter Standard Wald Pr > Standardized Odds Variable DF Estimate Error ChiSquare ChiSquare Estimate Ratio INTERCP INTERCP INTERCP POVDUM This indicates that those who grow up poor have less education than those who do not grow up poor. We determine probability estimates using these coefficient estimates. The probability estimates are given below. Intercept1 tell us the log odds of being a college grad relative to those who are not college grads. Intercept2 indicates the log odds of being a college graduate or having some college relative to those who are high school graduates or high school dropouts. Intercept3 indicates the log odds of being a college grad, having some college or having a high school degree relative to being a high school dropout. D:\WP60\LECT2.PHD\LOGIST\ORDLOG1.WPD Page 4
5 Probability Estimates 1. LIKELIHOOD OF COLLEGE GRAD, SOME COLLEGE OR HIGH SCHOOL GRADUATION. Response Value=2 PROB Estimated Probability _LEVEL_ Response Value PR_NPOV PR_POV LIKELIHOOD OF COLLEGE GRADUATION OR SOME COLLEGE Response Value=3 PROB Estimated Probability _LEVEL_ Response Value PR_NPOV PR_POV LIKELIHOOD OF COLLEGE GRADUATION Response Value=4 PROB Estimated Probability _LEVEL_ Response Value PR_NPOV PR_POV From these probabilities, we know that the overall likelihood of graduating from college is.274 and we could also easily determine the probability of dropping out by subtracting.9214 from 1 (=.0786). The likelihood of going to college (but not graduating) = =.357. The likelihood of getting a high school degree = =.290. We could also determine these probability estimates for those who are in poverty during childhood and those who are not. D:\WP60\LECT2.PHD\LOGIST\ORDLOG1.WPD Page 5
VI. Introduction to Logistic Regression
VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models
More informationdata on Down's syndrome
DATA a; INFILE 'downs.dat' ; INPUT AgeL AgeU BirthOrd Cases Births ; MidAge = (AgeL + AgeU)/2 ; Rate = 1000*Cases/Births; LogRate = Log( (Cases+0.5)/Births ); LogDenom = Log(Births); age_c = MidAge  30;
More information5. Ordinal regression: cumulative categories proportional odds. 6. Ordinal regression: comparison to single reference generalized logits
Lecture 23 1. Logistic regression with binary response 2. Proc Logistic and its surprises 3. quadratic model 4. HosmerLemeshow test for lack of fit 5. Ordinal regression: cumulative categories proportional
More informationGeneralized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationBasic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS OneSample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
More informationThis can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
OneDegreeofFreedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
More informationA Tutorial on Logistic Regression
A Tutorial on Logistic Regression Ying So, SAS Institute Inc., Cary, NC ABSTRACT Many procedures in SAS/STAT can be used to perform logistic regression analysis: CATMOD, GENMOD,LOGISTIC, and PROBIT. Each
More informationStatistics, Data Analysis & Econometrics
Using the LOGISTIC Procedure to Model Responses to Financial Services Direct Marketing David Marsh, Senior Credit Risk Modeler, Canadian Tire Financial Services, Welland, Ontario ABSTRACT It is more important
More informationDeveloping Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@
Developing Risk Adjustment Techniques Using the SAS@ System for Assessing Health Care Quality in the lmsystem@ Yanchun Xu, Andrius Kubilius Joint Commission on Accreditation of Healthcare Organizations,
More informationOrdinal Regression. Chapter
Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe
More informationln(p/(1p)) = α +β*age35plus, where p is the probability or odds of drinking
Dummy Coding for Dummies Kathryn Martin, Maternal, Child and Adolescent Health Program, California Department of Public Health ABSTRACT There are a number of ways to incorporate categorical variables into
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationSUGI 29 Statistics and Data Analysis
Paper 19429 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,
More informationLogistic Regression With SAS
Logistic Regression With SAS Please read my introductory handout on logistic regression before reading this one. The introductory handout can be found at. Run the program LOGISTIC.SAS from my SAS programs
More informationBeginning Tutorials. PROC FREQ: It s More Than Counts Richard Severino, The Queen s Medical Center, Honolulu, HI OVERVIEW.
Paper 6925 PROC FREQ: It s More Than Counts Richard Severino, The Queen s Medical Center, Honolulu, HI ABSTRACT The FREQ procedure can be used for more than just obtaining a simple frequency distribution
More informationSAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
More informationProbability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540
Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of
More informationSome Issues in Using PROC LOGISTIC for Binary Logistic Regression
Some Issues in Using PROC LOGISTIC for Binary Logistic Regression by David C. Schlotzhauer Contents Abstract 1. The Effect of Response Level Ordering on Parameter Estimate Interpretation 2. Odds Ratios
More informationWednesday PM. Multiple regression. Multiple regression in SPSS. Presentation of AM results Multiple linear regression. Logistic regression
Wednesday PM Presentation of AM results Multiple linear regression Simultaneous Stepwise Hierarchical Logistic regression Multiple regression Multiple regression extends simple linear regression to consider
More informationCRJ Doctoral Comprehensive Exam Statistics Friday August 23, :00pm 5:30pm
CRJ Doctoral Comprehensive Exam Statistics Friday August 23, 23 2:pm 5:3pm Instructions: (Answer all questions below) Question I: Data Collection and Bivariate Hypothesis Testing. Answer the following
More informationHow Do We Test Multiple Regression Coefficients?
How Do We Test Multiple Regression Coefficients? Suppose you have constructed a multiple linear regression model and you have a specific hypothesis to test which involves more than one regression coefficient.
More informationData Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
More informationUsing Stata 11 & higher for Logistic Regression Richard Williams, University of Notre Dame, Last revised March 28, 2015
Using Stata 11 & higher for Logistic Regression Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised March 28, 2015 NOTE: The routines spost13, lrdrop1, and extremes are
More informationSegmentation For Insurance Payments Michael Sherlock, Transcontinental Direct, Warminster, PA
Segmentation For Insurance Payments Michael Sherlock, Transcontinental Direct, Warminster, PA ABSTRACT An online insurance agency has built a base of names that responded to different offers from various
More informationSTATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 SigmaRestricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
More informationLogistic Regression. http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests
Logistic Regression http://faculty.chass.ncsu.edu/garson/pa765/logistic.htm#sigtests Overview Binary (or binomial) logistic regression is a form of regression which is used when the dependent is a dichotomy
More informationLogistic regression diagnostics
Logistic regression diagnostics Biometry 755 Spring 2009 Logistic regression diagnostics p. 1/28 Assessing model fit A good model is one that fits the data well, in the sense that the values predicted
More informationCHAPTER 9: SERIAL CORRELATION
Serial correlation (or autocorrelation) is the violation of Assumption 4 (observations of the error term are uncorrelated with each other). Pure Serial Correlation This type of correlation tends to be
More informationDisplaying and comparing correlated ROC curves with the SAS System
Displaying and comparing correlated ROC curves with the SAS System Barbara Schneider, University of Vienna, Austria ABSTRACT Diagnosis is an essential part of clinical practice. Much medical research is
More informationOverview Classes. 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7)
Overview Classes 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7) 24 Loglinear models (8) 54 1517 hrs; 5B02 Building and
More informationLogistic (RLOGIST) Example #1
Logistic (RLOGIST) Example #1 SUDAAN Statements and Results Illustrated EFFECTS RFORMAT, RLABEL REFLEVEL EXP option on MODEL statement HosmerLemeshow Test Input Data Set(s): BRFWGT.SAS7bdat Example Using
More informationA LOGISTIC REGRESSION MODEL TO PREDICT FRESHMEN ENROLLMENTS Vijayalakshmi Sampath, Andrew Flagel, Carolina Figueroa
A LOGISTIC REGRESSION MODEL TO PREDICT FRESHMEN ENROLLMENTS Vijayalakshmi Sampath, Andrew Flagel, Carolina Figueroa ABSTRACT Predictive modeling is the technique of using historical information on a certain
More information1/2/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 When and why do we use logistic regression? Binary Multinomial Theory behind logistic regression Assessing the model Assessing predictors
More informationMultinomial and ordinal logistic regression using PROC LOGISTIC Peter L. Flom National Development and Research Institutes, Inc
ABSTRACT Multinomial and ordinal logistic regression using PROC LOGISTIC Peter L. Flom National Development and Research Institutes, Inc Logistic regression may be useful when we are trying to model a
More informationStatistics in Retail Finance. Chapter 2: Statistical models of default
Statistics in Retail Finance 1 Overview > We consider how to build statistical models of default, or delinquency, and how such models are traditionally used for credit application scoring and decision
More informationPROC LOGISTIC: Traps for the unwary Peter L. Flom, Independent statistical consultant, New York, NY
PROC LOGISTIC: Traps for the unwary Peter L. Flom, Independent statistical consultant, New York, NY ABSTRACT Keywords: Logistic. INTRODUCTION This paper covers some gotchas in SAS R PROC LOGISTIC. A gotcha
More informationCharles Secolsky County College of Morris. Sathasivam 'Kris' Krishnan The Richard Stockton College of New Jersey
Using logistic regression for validating or invalidating initial statewide cutoff scores on basic skills placement tests at the community college level Abstract Charles Secolsky County College of Morris
More informationStatistics 305: Introduction to Biostatistical Methods for Health Sciences
Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser
More informationLecture 20: Logit Models for Multinomial Responses
Lecture 20: Logit Models for Multinomial Responses Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South
More informationNominal and ordinal logistic regression
Nominal and ordinal logistic regression April 26 Nominal and ordinal logistic regression Our goal for today is to briefly go over ways to extend the logistic regression model to the case where the outcome
More informationLecture 19: Conditional Logistic Regression
Lecture 19: Conditional Logistic Regression Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina
More informationLogistic (RLOGIST) Example #3
Logistic (RLOGIST) Example #3 SUDAAN Statements and Results Illustrated PREDMARG (predicted marginal proportion) CONDMARG (conditional marginal proportion) PRED_EFF pairwise comparison COND_EFF pairwise
More informationMultivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
More informationThe ChiSquare Distributions
MATH 183 The ChiSquare Distributions Dr. Neal, WKU The chisquare distributions can be used in statistics to analyze the standard deviation " of a normally distributed measurement and to test the goodness
More informationConsider a study in which. How many subjects? The importance of sample size calculations. An insignificant effect: two possibilities.
Consider a study in which How many subjects? The importance of sample size calculations Office of Research Protections Brown Bag Series KB Boomer, Ph.D. Director, boomer@stat.psu.edu A researcher conducts
More informationLecture 16: Logistic regression diagnostics, splines and interactions. Sandy Eckel 19 May 2007
Lecture 16: Logistic regression diagnostics, splines and interactions Sandy Eckel seckel@jhsph.edu 19 May 2007 1 Logistic Regression Diagnostics Graphs to check assumptions Recall: Graphing was used to
More informationMultinomial and Ordinal Logistic Regression
Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,
More informationLogistic Models in R
Logistic Models in R Jim Bentley 1 Sample Data The following code reads the titanic data that we will use in our examples. > titanic = read.csv( + "http://bulldog2.redlands.edu/facultyfolder/jim_bentley/downloads/math111/titanic.csv
More informationLogistic Regression in Stata
Logistic Regression in Stata Danstan Bagenda, PhD MUSPH Danstan Bagenda, PhD, 1 Jan 2009 1 Logistic Regression in STATA The logistic regression programs in STATA use maximum likelihood estimation to generate
More informationLogistic Regression, Part III: Hypothesis Testing, Comparisons to OLS
Logistic Regression, Part III: Hypothesis Testing, Comparisons to OLS Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 22, 2015 This handout steals heavily
More informationThe general form of the PROC GLM statement is
Linear Regression Analysis using PROC GLM Regression analysis is a statistical method of obtaining an equation that represents a linear relationship between two variables (simple linear regression), or
More informationLecture 14: GLM Estimation and Logistic Regression
Lecture 14: GLM Estimation and Logistic Regression Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South
More informationGroup Comparisons: Differences in Composition Versus Differences in Models and Effects
Group Comparisons: Differences in Composition Versus Differences in Models and Effects Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised February 15, 2015 Overview.
More informationData Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank
Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through
More informationChapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
More informationPROC FREQ IS MORE THAN JUST SIMPLY GENERATING A 2BY2 TABLE
PROC FREQ IS MORE THAN JUST SIMPLY GENERATING A 2BY2 TABLE Wuchen Zhao, University of Southern California, Los Angeles, CA ABSTRACT The FREQ procedure is one of the most commonlyused statistical procedures
More informationAn Introduction to Logistic and Probit Regression Models. Chelsea Moore
An Introduction to Logistic and Probit Regression Models Chelsea Moore Goals Brief overview of logistic and probit models Example in Stata Interpretation within & between models Binary Outcome Examples:
More informationGeneralized Linear Mixed Modeling and PROC GLIMMIX
Generalized Linear Mixed Modeling and PROC GLIMMIX Richard Charnigo Professor of Statistics and Biostatistics Director of Statistics and Psychometrics Core, CDART RJCharn2@aol.com Objectives First ~80
More informationLogistic and Poisson Regression: Modeling Binary and Count Data. Statistics Workshop Mark Seiss, Dept. of Statistics
Logistic and Poisson Regression: Modeling Binary and Count Data Statistics Workshop Mark Seiss, Dept. of Statistics March 3, 2009 Presentation Outline 1. Introduction to Generalized Linear Models 2. Binary
More informationANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R.
ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. 1. Motivation. Likert items are used to measure respondents attitudes to a particular question or statement. One must recall
More informationDEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
More informationLecture 12: Generalized Linear Models for Binary Data
Lecture 12: Generalized Linear Models for Binary Data Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of
More informationTests for Two Survival Curves Using Cox s Proportional Hazards Model
Chapter 730 Tests for Two Survival Curves Using Cox s Proportional Hazards Model Introduction A clinical trial is often employed to test the equality of survival distributions of two treatment groups.
More informationBinary Logistic Regression
Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including
More informationCategorical Data Analysis: Logistic Regression
Categorical Data Analysis: Logistic Regression Haitao Chu, M.D., Ph.D. University of Minnesota H. Chu (UM) PubH 7406: Advanced Regression 1 / 30 5.1 Model Interpretation 5.1.1 Model Interpretation The
More informationCool Tools for PROC LOGISTIC
Cool Tools for PROC LOGISTIC Paul D. Allison Statistical Horizons LLC and the University of Pennsylvania March 2013 www.statisticalhorizons.com 1 New Features in LOGISTIC ODDSRATIO statement EFFECTPLOT
More informationMultinomial Logit Models
Multinomial Logit Models Ying So Warren F. Kuhfeld Abstract Multinomial logit models are used to model relationships between a polytomous response variable and a set of regressor variables. The term multinomial
More informationDeveloping Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics
Paper SD004 Developing Business Failure Prediction Models Using SAS Software Oki Kim, Statistical Analytics ABSTRACT The credit crisis of 2008 has changed the climate in the investment and finance industry.
More informationPlease follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software
STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used
More informationSAS Syntax and Output for Data Manipulation:
Psyc 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling WithinPerson Change The models for this example come from Hoffman (in preparation) chapter 5. We will be examining
More informationCHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS. Table: 8 Perceived Usefulness of Different Advertisement Types
CHAPTER 5 COMPARISON OF DIFFERENT TYPE OF ONLINE ADVERTSIEMENTS 5.1 Descriptive Analysis Part 3 of Questionnaire Table 8 shows the descriptive statistics of Perceived Usefulness of Banner Ads. The results
More informationSurvey, Statistics and Psychometrics Core Research Facility University of NebraskaLincoln. LogRank Test for More Than Two Groups
Survey, Statistics and Psychometrics Core Research Facility University of NebraskaLincoln LogRank Test for More Than Two Groups Prepared by Harlan Sayles (SRAM) Revised by Julia Soulakova (Statistics)
More informationStatistical Modeling Using SAS
Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using
More informationCHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES
Examples: Monte Carlo Simulation Studies CHAPTER 12 EXAMPLES: MONTE CARLO SIMULATION STUDIES Monte Carlo simulation studies are often used for methodological investigations of the performance of statistical
More informationInternational Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA Email: peverso1@swarthmore.edu 1. Introduction
More informationA New Effect Modification P Value Test Demonstrated. Manoj B. Agravat, MPH, University of South Florida, SESUG 2009
Paper SD018 A New Effect Modification P Value Test Demonstrated Manoj B. Agravat, MPH, University of South Florida, SESUG 2009 Abstract: Effect modification P value is a method to determine if there is
More informationModeling Lifetime Value in the Insurance Industry
Modeling Lifetime Value in the Insurance Industry C. Olivia Parr Rud, Executive Vice President, Data Square, LLC ABSTRACT Acquisition modeling for direct mail insurance has the unique challenge of targeting
More informationIntroduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER
Introduction to Event History Analysis DUSTIN BROWN POPULATION RESEARCH CENTER Objectives Introduce event history analysis Describe some common survival (hazard) distributions Introduce some useful Stata
More informationFailure to take the sampling scheme into account can lead to inaccurate point estimates and/or flawed estimates of the standard errors.
Analyzing Complex Survey Data: Some key issues to be aware of Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 24, 2015 Rather than repeat material that is
More informationUnit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)
Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2way tables Adds capability studying several predictors, but Limited to
More informationLMM: Linear Mixed Models and FEV1 Decline
LMM: Linear Mixed Models and FEV1 Decline We can use linear mixed models to assess the evidence for differences in the rate of decline for subgroups defined by covariates. S+ / R has a function lme().
More informationLecture 18: Logistic Regression Continued
Lecture 18: Logistic Regression Continued Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina
More informationSydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.
Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More information11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.
Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationData Analysis for categorical variables and its application to happiness studies
Data Analysis for categorical variables and its application to happiness studies Thanawit Bunsit Department of Economics, University of Bath The economics of happiness and wellbeing workshop: building
More informationBest Practices in Using Large, Complex Samples: The Importance of Using Appropriate Weights and Design Effect Compensation
A peerreviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationLOGISTIC REGRESSION ANALYSIS
LOGISTIC REGRESSION ANALYSIS C. Mitchell Dayton Department of Measurement, Statistics & Evaluation Room 1230D Benjamin Building University of Maryland September 1992 1. Introduction and Model Logistic
More informationLogistic (RLOGIST) Example #7
Logistic (RLOGIST) Example #7 SUDAAN Statements and Results Illustrated EFFECTS UNITS option EXP option SUBPOPX REFLEVEL Input Data Set(s): SAMADULTED.SAS7bdat Example Using 2006 NHIS data, determine for
More informationStatistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 16233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationCorrelational Research
Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.
More informationPenalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20thcentury statistics dealt with maximum likelihood
More informationI L L I N O I S UNIVERSITY OF ILLINOIS AT URBANACHAMPAIGN
Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANACHAMPAIGN Linear Algebra Slide 1 of
More informationFraud Risk Prediction in MerchantBank Relationship using Regression Modeling
R E S E A R C H includes research articles that focus on the analysis and resolution of managerial and academic issues based on analytical and empirical or case research Fraud Risk Prediction in MerchantBank
More informationStatistics and Data Analysis
NESUG 27 PRO LOGISTI: The Logistics ehind Interpreting ategorical Variable Effects Taylor Lewis, U.S. Office of Personnel Management, Washington, D STRT The goal of this paper is to demystify how SS models
More informationSUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
More information