ADVANCED FORECASTING MODELS USING SAS SOFTWARE


 Anissa Black
 3 years ago
 Views:
Transcription
1 ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting of a single time series. In such situations, we can only relate the series to its own past and do not explicitly use the information contained in other pertinent time series. In many cases, however, a time series is not only related to its own past, but may also be influenced by the present and past values of other time series. The models that can accommodate such situation are referred as the Transfer function models (Box et al, 1994). Transfer function models, which are extensions of familiar linear regression models, have been widely used in various fields of research. In macroeconomics, transfer function models can be used to study the dynamic interrelationships among the variables in an economic system. In marketing, these models are used to determine the factors, such as advertisement, competition, or economic conditions that may affect the sale of certain products. Because of its close relationship with regression models, transfer function models are also referred to as dynamic regression models (Pankratz, 1983). Transfer function approach to modeling a time series is a multivariate way of modeling the various lag structures found in the data. It is similar to a distributed lag model in traditional econometrics. There may seem to be a close relationship between the Transfer Function models and multiple regressions (OLS). But the transfer function models differ from the regression model in the way they use the explanatory variables to forecast the dependent variable. The simple transfer function models assume contemporaneous relationship between explanatory variables and the dependent variable (forecast of the explanatory variable at time t+1 explains the behavior of dependent variable at the time t+1). General Transfer Function models extend the simple transfer function approach to include previous, or lagged, values of the explanatory variables (General transfer function can use the forecasts of the explanatory variable at the time t+1 to explain the behavior of dependent variable at time t+2). The transfer function models can use more than one explanatory variable, but the explanatory variables must be linearly independent of each other. The transfer function models use forecast values of the explanatory variables to forecast the values of the dependent variables. The variability in the forecasts of the explanatory variables is incorporated into the forecasts of the dependent variable. To model the dependent variable with simple transfer function model, we need to perform more task than that required for the regression model. The following steps are involved in the modeling of simple transfer function: Identify the model to describe the explanatory variables Estimate a model for the explanatory variables Identify and estimate the regression model for the dependent variable, using the explanatory variables and an appropriate error process Forecast the dependent variable 257
2 Thus, we have to model the explanatory variable before using them to model the dependent variable and then forecast with the transfer function model. Forecasting with regression model does not require any modeling of explanatory variables. 7.1 Example of Transfer Function Model For example, suppose we want to model the effect of an advertising campaign on sales. As we know, the effect of an advertising campaign lasts for some time beyond the end of the campaign. Hence, monthly sales figures (y) may be modeled as a function of the advertising expenditure in each of the past few months. We will model the sales series as a regression against the advertising expenditure from the current month and the past few months. We can use the PROC ARIMA to carry out a simple Transfer Function Model. This is illustrated by the following SAS statements: data sale; title Estimate the Model for the dependent Variable ; title "t=time y=sale volume x = advertising expenditure"; input t y x; datalines;
3 ; proc print data=sale; run; proc arima data=sale; identify var=y crosscorr=(x) noprint; estimate input =((1 2 3)x); run; The output for the above SAS code is given below Estimate the Model for the dependent Variable t=time y=sale volume x = advertising expenditure The ARIMA Procedure Conditional Least Squares Estimation Standard Approx Parameter Estimate Error t Value Pr > t Lag Variable Shift MU < y 0 NUM x 0 NUM1, x 0 NUM1, x 0 NUM1, x 0 Constant Estimate Variance Estimate Std Error Estimate AIC SBC Number of Residuals 33 * AIC and SBC do not include log determinant. Correlations of Parameter Estimates Variable y x x x x Parameter MU NUM1 NUM1,1 NUM1,2 NUM1,3 y MU x NUM x NUM1, x NUM1, x NUM1,
4 Autocorrelation Check of Residuals To Chi Pr > Lag Square DF ChiSq Autocorrelations Model for variable y Estimated Intercept The ARIMA Procedure Input Number 1 Input Variable x Numerator Factors Factor 1: B**(1) B**(2) B**(3) The CROSSCORR= option of the IDENTIFY statement prints sample crosscorrelation functions that show the correlation between the response series and the input series at different lags. The sample crosscorrelation function can be used to help identify the form of the transfer function appropriate for an input series. In this case, following model has been estimated. 2 3 Yt ( 0 1B 2B 3B ) X t at This example models the effect of advertising expenditure (x) on sale (y) as a linear function of the current and three most recent values of advertising expenditure (x). It is equivalent to a multiple linear regression of sale (y) on x, LAG(x), LAG2(x), and LAG3(x). This is an example of a transfer function with one numerator factor. The numerator factors for a transfer function for an input series are like the MA part of the ARMA model for the noise series. We can also use transfer functions with denominator factors. The denominator factors for a transfer function for an input series are like the AR part of the ARMA model for the noise series. Denominator factors introduce exponentially weighted, infinite distributed lags into the transfer function. To specify transfer functions with denominator factors, we place the denominator factors after a slash (/) in the INPUT= option. For example, the following statements estimate the advertising expenditure effect as an infinite distributed lag model with exponentially declining weights: proc arima data = sale; identify var = y crosscorr = x; estimate input = ( / (1) x ); run; The transfer function specified by these statements is as follows: 0 X t ( 1 1B) 260
5 This transfer function also can be written in the following equivalent form: i i 0 1 ( B i 1 1 This transfer function can be used with intervention inputs. When it is used with a pulse function input, the result is an intervention effect that dies out gradually over time. When it is used with a step function input, the result is an intervention effect that increases gradually to a limiting value. 2. Volatility Forecasting One of the main assumptions of the standard regression analysis and regression models with autocorrelated errors is that the variance, of the errors is constant. In many practical applications, this assumption may not be realistic. For example, in financial investment, it is generally agreed that stock markets volatility is rarely constant over time. Indeed, the study of the market volatility as it relates to time is the main interest for many researchers and investors. Such a model incorporating the possibility of a nonconstant error variance is called a heteroscedasticity model. Many approaches can be used to deal with heteroscedasticity. For example, the weighted regression is often used if the error variance at different times is known. In practice, however, the error variance is normally unknown; therefore, models to account for the heteroscedasticity are needed. Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. Volatility refers to the variability of the random (unforeseen) component of a time series. In economic theory, volatility connotes two principal concepts: variability and uncertainty; the former describing overall movement and the latter referring to movement that is unpredictable. There are various ways of measuring price volatility. The naïve approach involves treating all price movements as indicative of instability by calculating standard deviation of the price index. This approach does not account for predictable components like trends in the price evolution process thereby overstating the uncertainty. A better and useful method of measuring instability is by using the ratio method. In this method, the instability of the series is calculated by measuring the standard deviation of log (P t / P t1 ) over a period, where P t is price in period t and P t1 is the price in period t1. The third approach is the one which distinguishes between predictable and unpredictable components of price series, but the price volatility is assumed to remain time invariant. The fourth approach distinguishes not only between predictable and unpredictable components of prices but also allows the variance of unpredictable element to be time varying. Such time varying conditional variances can be estimated by using a Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. 8.1 ARCH The original model of autoregressive conditional heteroscedasticity (ARCH) introduced in Engle (1982) has the conditional variance equation 261
6 where the constraints on the coefficient are necessary to ensure that the conditional variance is always positive. This is the ARCH conditional variance specification, with a memory of p periods. This model captures the conditional hetroscedasticity of returns by using a moving average of past squared unexpected returns: if a major market movement in either direction occurred periods ago, then the effect will be to increase today s conditional variance. This means that we are more likely to have a large market move today, so large movements tend to follow large movement of either sign which is known as volatility clustering. 8.2 Vanilla GARCH The generalization of Engle s ARCH model by Bollerslev (1986) adds q autoregressive terms to the moving averages of squared unexpected returns. Then it takes the form The parsimonious GARCH (1, 1) model, which has just one lagged error square and one autoregressive terms, is most commonly used: It is equivalent to an infinite ARCH model, with exponentially declining weights on the past squared errors. In the above model, the sum of The sum of gives the degree of persistence of volatility in the series. The closer the sum to 1, greater is the tendency of volatility to persist for longer time. If the sum exceeds 1, it is indicative of an explosive series with a tendency to meander away from mean value. The GARCH estimates are being used to identify periods of high volatility and volatility clustering. The constant determines the longterm average level of volatility to which GARCH forecasts converge. Unlike the lag and returns coefficients, its value is quite sensitive to the length of data period used to estimate the model. If a period of many years is used, during which there were extreme markets movements, then the estimates of will be high. 8.3 Integrated GARCH When we can put and we write the GARCH (1, 1) model as This is a nonstationary GARCH model called the integrated GARCH (IGARCH) model, for which term structure forecasts do not converge. Our main interest in the IGARCH model is that when it is equivalent to an infinite Exponentially Weighted Moving Average (EWMA). 8.4 Example for GARCH modeling In this example, we consider the bivariate series containing 46 monthly observations on Mumbai and Delhi spot prices for onion from January 1988 to October 1991, measured in rupees per 1000 grams (Rs/kg). Mumbai is the main market for Maharashtra which is one of the major onion growing states. Objective is to examine whether one can predict the Delhi spot price from the current spot price of Mumbai using time series regression model. This is the situation of regression with time series errors and unequal variances. 262
7 Title1 'Spot prices of onion in Delhi and Mumbai'; Title2 '(January 1988 to October 1991)'; DATA onion; Observations = _N_; INPUT Year Month Delhi Mumbai; CARDS;
8 ; PROC AUTOREG DATA=Onion; MODEL Delhi = Mumbai /NLAG=1 GARCH=(Q=1); OUTPUT OUT=Onion R=Residual P=Predicted LCL=Low95CL UCL=Up95CL; RUN; PROC PRINT DATA=Onion; RUN; The output for the above SAS code is given below Spot prices of onion in Delhi and Mumbai (January 1988 to October 1991) The AUTOREG Procedure Dependent Variable Oklahoma Ordinary Least Squares Estimates SSE DFE 44 MSE Root MSE SBC AIC Regress RSquare Total RSquare DurbinWatson Standard Approx Variable DF Estimate Error t Value Pr > t Intercept Mumbai <
9 Estimates of Autocorrelations Lag Covariance Correlation ******************** ********* Preliminary MSE Estimates of Autoregressive Parameters Standard Lag Coefficient Error t Value Algorithm converged. The AUTOREG Procedure GARCH Estimates SSE Observations 46 MSE Uncond Var. Log Likelihood Total RSquare SBC AIC Normality Test Pr > ChiSq Table: Estimation of the GARCH(0,1) model Standard Approx Variable DF Estimate Error t Value Pr > t Intercept Mumbai <.0001 AR <.0001 ARCH ARCH Obs Predicted Residual Low95CL Up95CL Observations Year Month Delhi Mumbai
10 The detailed interpretation of above analyses will be discussed in the class. References Bolerslev, Tim (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994). Time Series Analysis: Forecasting and Control, Pearson Education, Delhi. Croxton, F.E., Cowden, D.J. and Klein, S.(1979). Applied General Statistics. Prentice Hall of India Pvt. Ltd., New Delhi. Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (1998). Forecasting Methods and Applications, 3 rd Edition, John Wiley, New York. Pankratz, A. (1983). Forecasting with univariate Box Jenkins models: concepts and cases, John Wiley, New York. 266
Chapter 7 The ARIMA Procedure. Chapter Table of Contents
Chapter 7 Chapter Table of Contents OVERVIEW...193 GETTING STARTED...194 TheThreeStagesofARIMAModeling...194 IdentificationStage...194 Estimation and Diagnostic Checking Stage...... 200 Forecasting Stage...205
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS Ramasubramanian V. I.A.S.R.I., Library Avenue, New Delhi 110 012 ram_stat@yahoo.co.in 1. Introduction A Time Series (TS) is a sequence of observations ordered in time. Mostly these
More informationTIME SERIES ANALYSIS
TIME SERIES ANALYSIS L.M. BHAR AND V.K.SHARMA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi0 02 lmb@iasri.res.in. Introduction Time series (TS) data refers to observations
More informationRob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
More informationTIMESERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE
TIMESERIES ANALYSIS, MODELLING AND FORECASTING USING SAS SOFTWARE Ramasubramanian V. IA.S.R.I., Library Avenue, Pusa, New Delhi 110 012 ramsub@iasri.res.in 1. Introduction Time series (TS) data refers
More information16 : Demand Forecasting
16 : Demand Forecasting 1 Session Outline Demand Forecasting Subjective methods can be used only when past data is not available. When past data is available, it is advisable that firms should use statistical
More informationER Volatility Forecasting using GARCH models in R
Exchange Rate Volatility Forecasting Using GARCH models in R Roger Roth Martin Kammlander Markus Mayer June 9, 2009 Agenda Preliminaries 1 Preliminaries Importance of ER Forecasting Predicability of ERs
More informationChapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
More informationGetting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationChapter 27 Using Predictor Variables. Chapter Table of Contents
Chapter 27 Using Predictor Variables Chapter Table of Contents LINEAR TREND...1329 TIME TREND CURVES...1330 REGRESSORS...1332 ADJUSTMENTS...1334 DYNAMIC REGRESSOR...1335 INTERVENTIONS...1339 TheInterventionSpecificationWindow...1339
More informationPITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU
PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard
More informationSome useful concepts in univariate time series analysis
Some useful concepts in univariate time series analysis Autoregressive moving average models Autocorrelation functions Model Estimation Diagnostic measure Model selection Forecasting Assumptions: 1. Nonseasonal
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationUnivariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
More information5. Multiple regression
5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful
More informationBooth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm
Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has
More informationForecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model
Tropical Agricultural Research Vol. 24 (): 23 (22) Forecasting of Paddy Production in Sri Lanka: A Time Series Analysis using ARIMA Model V. Sivapathasundaram * and C. Bogahawatte Postgraduate Institute
More informationTime Series Analysis
Time Series Analysis Forecasting with ARIMA models Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos (UC3MUPM)
More informationVolatility in the Overnight MoneyMarket Rate in Bangladesh: Recent Experiences PN 0707
Volatility in the Overnight MoneyMarket Rate in Bangladesh: Recent Experiences PN 0707 Md. Shahiduzzaman* Mahmud Salahuddin Naser * Abstract This paper tries to investigate the pattern of volatility in
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationEconometric Modelling for Revenue Projections
Econometric Modelling for Revenue Projections Annex E 1. An econometric modelling exercise has been undertaken to calibrate the quantitative relationship between the five major items of government revenue
More informationAnalysis and Computation for Finance Time Series  An Introduction
ECMM703 Analysis and Computation for Finance Time Series  An Introduction Alejandra González Harrison 161 Email: mag208@exeter.ac.uk Time Series  An Introduction A time series is a sequence of observations
More informationData Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
More informationSoftware Review: ITSM 2000 Professional Version 6.0.
Lee, J. & Strazicich, M.C. (2002). Software Review: ITSM 2000 Professional Version 6.0. International Journal of Forecasting, 18(3): 455459 (June 2002). Published by Elsevier (ISSN: 01692070). http://0
More informationCharles University, Faculty of Mathematics and Physics, Prague, Czech Republic.
WDS'09 Proceedings of Contributed Papers, Part I, 148 153, 2009. ISBN 9788073781019 MATFYZPRESS Volatility Modelling L. Jarešová Charles University, Faculty of Mathematics and Physics, Prague, Czech
More informationThis can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
OneDegreeofFreedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
More informationBasic Statistical and Modeling Procedures Using SAS
Basic Statistical and Modeling Procedures Using SAS OneSample Tests The statistical procedures illustrated in this handout use two datasets. The first, Pulse, has information collected in a classroom
More informationPreholiday Returns and Volatility in Thai stock market
Preholiday Returns and Volatility in Thai stock market Nopphon Tangjitprom Martin de Tours School of Management and Economics, Assumption University Bangkok, Thailand Tel: (66) 858156177 Email: tnopphon@gmail.com
More informationRandom effects and nested models with SAS
Random effects and nested models with SAS /************* classical2.sas ********************* Three levels of factor A, four levels of B Both fixed Both random A fixed, B random B nested within A ***************************************************/
More informationTime Series Analysis: Basic Forecasting.
Time Series Analysis: Basic Forecasting. As published in Benchmarks RSS Matters, April 2015 http://web3.unt.edu/benchmarks/issues/2015/04/rssmatters Jon Starkweather, PhD 1 Jon Starkweather, PhD jonathan.starkweather@unt.edu
More informationPromotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc.
Promotional Analysis and Forecasting for Demand Planning: A Practical Time Series Approach Michael Leonard, SAS Institute Inc. Cary, NC, USA Abstract Many businesses use sales promotions to increase the
More informationJava Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Nonnormal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
More informationFORECASTING AND TIME SERIES ANALYSIS USING THE SCA STATISTICAL SYSTEM
FORECASTING AND TIME SERIES ANALYSIS USING THE SCA STATISTICAL SYSTEM VOLUME 2 Expert System Capabilities for Time Series Modeling Simultaneous Transfer Function Modeling Vector Modeling by LonMu Liu
More informationTime Series Analysis
JUNE 2012 Time Series Analysis CONTENT A time series is a chronological sequence of observations on a particular variable. Usually the observations are taken at regular intervals (days, months, years),
More informationMGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal
MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims
More informationVI. Introduction to Logistic Regression
VI. Introduction to Logistic Regression We turn our attention now to the topic of modeling a categorical outcome as a function of (possibly) several factors. The framework of generalized linear models
More informationForecasting the US Dollar / Euro Exchange rate Using ARMA Models
Forecasting the US Dollar / Euro Exchange rate Using ARMA Models LIUWEI (9906360)  1  ABSTRACT...3 1. INTRODUCTION...4 2. DATA ANALYSIS...5 2.1 Stationary estimation...5 2.2 DickeyFuller Test...6 3.
More informationForecasting methods applied to engineering management
Forecasting methods applied to engineering management Áron SzászGábor Abstract. This paper presents arguments for the usefulness of a simple forecasting application package for sustaining operational
More informationAPPLICATION OF THE VARMA MODEL FOR SALES FORECAST: CASE OF URMIA GRAY CEMENT FACTORY
APPLICATION OF THE VARMA MODEL FOR SALES FORECAST: CASE OF URMIA GRAY CEMENT FACTORY DOI: 10.2478/tjeb20140005 Ramin Bashir KHODAPARASTI 1 Samad MOSLEHI 2 To forecast sales as reliably as possible is
More informationNew SAS Procedures for Analysis of Sample Survey Data
New SAS Procedures for Analysis of Sample Survey Data Anthony An and Donna Watts, SAS Institute Inc, Cary, NC Abstract Researchers use sample surveys to obtain information on a wide variety of issues Many
More informationA Trading Strategy Based on the LeadLag Relationship of Spot and Futures Prices of the S&P 500
A Trading Strategy Based on the LeadLag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 MiniTerm 5 Nanyang Technological University Submitted By:
More informationIntegrated Resource Plan
Integrated Resource Plan March 19, 2004 PREPARED FOR KAUA I ISLAND UTILITY COOPERATIVE LCG Consulting 4962 El Camino Real, Suite 112 Los Altos, CA 94022 6509629670 1 IRP 1 ELECTRIC LOAD FORECASTING 1.1
More informationFinancial Trading System using Combination of Textual and Numerical Data
Financial Trading System using Combination of Textual and Numerical Data Shital N. Dange Computer Science Department, Walchand Institute of Rajesh V. Argiddi Assistant Prof. Computer Science Department,
More informationSales forecasting # 1
Sales forecasting # 1 Arthur Charpentier arthur.charpentier@univrennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
More informationAssessing the Relationship Between Online Job Postings and Total Hires and Education Levels in Arizona Aruna Murthy Dan Bache Benjamin Fa anunu
Assessing the Relationship Between Online Job Postings and Total Hires and Education Levels in Arizona Aruna Murthy Dan Bache Benjamin Fa anunu Help Wanted Online (HWOL) HWOL data series from the Conference
More informationNote 2 to Computer class: Standard misspecification tests
Note 2 to Computer class: Standard misspecification tests Ragnar Nymoen September 2, 2013 1 Why misspecification testing of econometric models? As econometricians we must relate to the fact that the
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationJoseph Twagilimana, University of Louisville, Louisville, KY
ST14 Comparing Time series, Generalized Linear Models and Artificial Neural Network Models for Transactional Data analysis Joseph Twagilimana, University of Louisville, Louisville, KY ABSTRACT The aim
More informationPrice volatility in the silver spot market: An empirical study using Garch applications
Price volatility in the silver spot market: An empirical study using Garch applications ABSTRACT Alan Harper, South University Zhenhu Jin Valparaiso University Raufu Sokunle UBS Investment Bank Manish
More informationVector Time Series Model Representations and Analysis with XploRe
01 Vector Time Series Model Representations and Analysis with plore Julius Mungo CASE  Center for Applied Statistics and Economics HumboldtUniversität zu Berlin mungo@wiwi.huberlin.de plore MulTi Motivation
More informationI. Introduction. II. Background. KEY WORDS: Time series forecasting, Structural Models, CPS
Predicting the National Unemployment Rate that the "Old" CPS Would Have Produced Richard Tiller and Michael Welch, Bureau of Labor Statistics Richard Tiller, Bureau of Labor Statistics, Room 4985, 2 Mass.
More informationIBM SPSS Forecasting 22
IBM SPSS Forecasting 22 Note Before using this information and the product it supports, read the information in Notices on page 33. Product Information This edition applies to version 22, release 0, modification
More informationFinancial Risk Management Exam Sample Questions/Answers
Financial Risk Management Exam Sample Questions/Answers Prepared by Daniel HERLEMONT 1 2 3 4 5 6 Chapter 3 Fundamentals of Statistics FRM99, Question 4 Random walk assumes that returns from one time period
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationA comparison between different volatility models. Daniel Amsköld
A comparison between different volatility models Daniel Amsköld 211 6 14 I II Abstract The main purpose of this master thesis is to evaluate and compare different volatility models. The evaluation is based
More informationVOLATILITY FORECASTING FOR MUTUAL FUND PORTFOLIOS. Samuel Kyle Jones 1 Stephen F. Austin State University, USA Email: sjones@sfasu.
VOLATILITY FORECASTING FOR MUTUAL FUND PORTFOLIOS 1 Stephen F. Austin State University, USA Email: sjones@sfasu.edu ABSTRACT The return volatility of portfolios of mutual funds having similar investment
More informationSAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria
Paper SA01_05 SAS Code to Select the Best Multiple Linear Regression Model for Multivariate Data Using Information Criteria Dennis J. Beal, Science Applications International Corporation, Oak Ridge, TN
More informationVolatility modeling in financial markets
Volatility modeling in financial markets Master Thesis Sergiy Ladokhin Supervisors: Dr. Sandjai Bhulai, VU University Amsterdam Brian Doelkahar, Fortis Bank Nederland VU University Amsterdam Faculty of
More informationThe VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
More informationJetBlue Airways Stock Price Analysis and Prediction
JetBlue Airways Stock Price Analysis and Prediction Team Member: Lulu Liu, Jiaojiao Liu DSO530 Final Project JETBLUE AIRWAYS STOCK PRICE ANALYSIS AND PREDICTION 1 Motivation Started in February 2000, JetBlue
More information6 Variables: PD MF MA K IAH SBS
options pageno=min nodate formdlim=''; title 'Canonical Correlation, Journal of Interpersonal Violence, 10: 354366.'; data SunitaPatel; infile 'C:\Users\Vati\Documents\StatData\Sunita.dat'; input Group
More informationUnivariate Time Series Analysis; ARIMA Models
Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing
More informationExamples. David Ruppert. April 25, 2009. Cornell University. Statistics for Financial Engineering: Some R. Examples. David Ruppert.
Cornell University April 25, 2009 Outline 1 2 3 4 A little about myself BA and MA in mathematics PhD in statistics in 1977 taught in the statistics department at North Carolina for 10 years have been in
More informationForecasting Using Eviews 2.0: An Overview
Forecasting Using Eviews 2.0: An Overview Some Preliminaries In what follows it will be useful to distinguish between ex post and ex ante forecasting. In terms of time series modeling, both predict values
More informationForecasting in supply chains
1 Forecasting in supply chains Role of demand forecasting Effective transportation system or supply chain design is predicated on the availability of accurate inputs to the modeling process. One of the
More informationARMA, GARCH and Related Option Pricing Method
ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September
More informationThe average hotel manager recognizes the criticality of forecasting. However, most
Introduction The average hotel manager recognizes the criticality of forecasting. However, most managers are either frustrated by complex models researchers constructed or appalled by the amount of time
More informationTimeSeries Analysis CHAPTER. 18.1 General Purpose and Description 181
CHAPTER 8 TimeSeries Analysis 8. General Purpose and Description Timeseries analysis is used when observations are made repeatedly over 5 or more time periods. Sometimes the observations are from a single
More informationStudying Achievement
Journal of Business and Economics, ISSN 21557950, USA November 2014, Volume 5, No. 11, pp. 20522056 DOI: 10.15341/jbe(21557950)/11.05.2014/009 Academic Star Publishing Company, 2014 http://www.academicstar.us
More informationForecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA
Forecasting Geographic Data Michael Leonard and Renee Samy, SAS Institute Inc. Cary, NC, USA Abstract Virtually all businesses collect and use data that are associated with geographic locations, whether
More informationDAILY VOLATILITY IN THE TURKISH FOREIGN EXCHANGE MARKET. Cem Aysoy. Ercan Balaban. Çigdem Izgi Kogar. Cevriye Ozcan
DAILY VOLATILITY IN THE TURKISH FOREIGN EXCHANGE MARKET Cem Aysoy Ercan Balaban Çigdem Izgi Kogar Cevriye Ozcan THE CENTRAL BANK OF THE REPUBLIC OF TURKEY Research Department Discussion Paper No: 9625
More informationSearch Marketing Cannibalization. Analytical Techniques to measure PPC and Organic interaction
Search Marketing Cannibalization Analytical Techniques to measure PPC and Organic interaction 2 Search Overview How People Use Search Engines Navigational Research Health/Medical Directions News Shopping
More informationSTOCK MARKET VOLATILITY AND REGIME SHIFTS IN RETURNS
STOCK MARKET VOLATILITY AND REGIME SHIFTS IN RETURNS ChiaShang James Chu Department of Economics, MC 0253 University of Southern California Los Angles, CA 90089 Gary J. Santoni and Tung Liu Department
More informationTime Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents
Time Series Analysis and Forecasting Methods for Temporal Mining of Interlinked Documents Prasanna Desikan and Jaideep Srivastava Department of Computer Science University of Minnesota. @cs.umn.edu
More information4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4
4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Nonlinear functional forms Regression
More informationAnalysis of the Volatility of the Electricity Price in Kenya Using Autoregressive Integrated Moving Average Model
Science Journal of Applied Mathematics and Statistics 2015; 3(2): 4757 Published online March 28, 2015 (http://www.sciencepublishinggroup.com/j/sjams) doi: 10.11648/j.sjams.20150302.14 ISSN: 23769491
More informationChapter 6. Modeling the Volatility of Futures Return in Rubber and Oil
Chapter 6 Modeling the Volatility of Futures Return in Rubber and Oil For this case study, we are forecasting the volatility of Futures return in rubber and oil from different futures market using Bivariate
More informationA model to predict client s phone calls to Iberdrola Call Centre
A model to predict client s phone calls to Iberdrola Call Centre Participants: Cazallas Piqueras, Rosa Gil Franco, Dolores M Gouveia de Miranda, Vinicius Herrera de la Cruz, Jorge Inoñan Valdera, Danny
More informationSimulation Models for Business Planning and Economic Forecasting. Donald Erdman, SAS Institute Inc., Cary, NC
Simulation Models for Business Planning and Economic Forecasting Donald Erdman, SAS Institute Inc., Cary, NC ABSTRACT Simulation models are useful in many diverse fields. This paper illustrates the use
More informationMSc Financial Economics  SH506 (Under Review)
MSc Financial Economics  SH506 (Under Review) 1. Objectives The objectives of the MSc Financial Economics programme are: To provide advanced postgraduate training in financial economics with emphasis
More informationCOURSES: 1. Short Course in Econometrics for the Practitioner (P000500) 2. Short Course in Econometric Analysis of Cointegration (P000537)
Get the latest knowledge from leading global experts. Financial Science Economics Economics Short Courses Presented by the Department of Economics, University of Pretoria WITH 2015 DATES www.ce.up.ac.za
More informationIs the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?
Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing
More informationLuciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London)
Luciano Rispoli Department of Economics, Mathematics and Statistics Birkbeck College (University of London) 1 Forecasting: definition Forecasting is the process of making statements about events whose
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationDynamics of Real Investment and Stock Prices in Listed Companies of Tehran Stock Exchange
Dynamics of Real Investment and Stock Prices in Listed Companies of Tehran Stock Exchange Farzad Karimi Assistant Professor Department of Management Mobarakeh Branch, Islamic Azad University, Mobarakeh,
More informationSAS Syntax and Output for Data Manipulation:
Psyc 944 Example 5 page 1 Practice with Fixed and Random Effects of Time in Modeling WithinPerson Change The models for this example come from Hoffman (in preparation) chapter 5. We will be examining
More informationABSTRACT INTRODUCTION READING THE DATA SESUG 2012. Paper PO14
SESUG 2012 ABSTRACT Paper PO14 Spatial Analysis of Gastric Cancer in Costa Rica using SAS So Young Park, North Carolina State University, Raleigh, NC Marcela AlfaroCordoba, North Carolina State University,
More informationChapter 9: Univariate Time Series Analysis
Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of
More informationWooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions
Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions What will happen if we violate the assumption that the errors are not serially
More informationUnivariate Time Series Analysis; ARIMA Models
Econometrics 2 Fall 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple
More informationForecasting Stock Market Volatility Using (NonLinear) Garch Models
Journal of Forecasting. Vol. 15. 229235 (1996) Forecasting Stock Market Volatility Using (NonLinear) Garch Models PHILIP HANS FRANSES AND DICK VAN DIJK Erasmus University, Rotterdam, The Netherlands
More informationSales forecasting # 2
Sales forecasting # 2 Arthur Charpentier arthur.charpentier@univrennes1.fr 1 Agenda Qualitative and quantitative methods, a very general introduction Series decomposition Short versus long term forecasting
More information2. Linear regression with multiple regressors
2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measuresoffit in multiple regression Assumptions
More informationUsing JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC
Using JMP Version 4 for Time Series Analysis Bill Gjertsen, SAS, Cary, NC Abstract Three examples of time series will be illustrated. One is the classical airline passenger demand data with definite seasonal
More informationBasic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
More informationThreshold Autoregressive Models in Finance: A Comparative Approach
University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC)  Conference Papers Faculty of Informatics 2011 Threshold Autoregressive Models in Finance: A Comparative
More informationDo the asset pricing factors predict future economy growth? An Australian study. Bin Liu Amalia Di Iorio
Do the asset pricing factors predict future economy growth? An Australian study. Bin Liu Amalia Di Iorio Abstract In this paper we examine whether past returns of the market portfolio (MKT), the size portfolio
More informationEconometrics I: Econometric Methods
Econometrics I: Econometric Methods Jürgen Meinecke Research School of Economics, Australian National University 24 May, 2016 Housekeeping Assignment 2 is now history The ps tute this week will go through
More informationTime Series Analysis
Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina GarcíaMartos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and GarcíaMartos
More information