Free Trial - BIRT Analytics - IAAs

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Free Trial - BIRT Analytics - IAAs"

Transcription

1 Free Trial - BIRT Analytics - IAAs 11. Predict Customer Gender Once we log in to BIRT Analytics Free Trial we would see that we have some predefined advanced analysis ready to be used. Those saved analysis is what we call Instant Advanced Analysis (IAAs). If we double click over My folders > Demo Retail Customer Analytics we will see a list of seventeen (17) saved analysis, as an introduction of what we can do with BIRT Analytics in an environment of Customer Analytics in a retail commerce (our demo database is based in a home improvement retailer example).

2 Those eleven categories are built to cover distinct areas of Customer Analytics that are of high value to any retailer, and try to answer some questions like: 1. How is the performance of my sales by product category? 2. An RFM approach: Who are our best RFM customers? How do they look like? 3. Advanced segmentation of your customers in order to focus your marketing efforts. 4. Who are your churn customers? How do they look like? And what is more important, which one of your loyal customers is more likely to become a churner in the future? 5. How your products are associated in a basket? Which is the best next offer when a customer have product A and B in his basket? 6. Discover new cross sell opportunities. 7. The value of my customers will grow or it will decrease in the next months? 8. What is the voice of the customer telling about us in the Social Media? 9. Is there any relationship between data in the twitter interactions? 10. Can we predict the total audience a tweet could reach? 11. Can we complete empty gender values from our customer s data to target them with the correct marketing campaign? 2

3 Now, we are going to answer the tenth question: Can we complete empty gender values from our customer s data to target them with the correct marketing campaign? When we double-click this analysis, BIRT Analytics goes to Analytics > Advanced and shows the Parameters tab, with the starting data of the model. 3

4 This logistic regression (Analytics > Advanced > Logistic regression) is defined using certain parameters: A Domain that are all the Customers that had a Gender defined (values are not null) A dependent variable, the one we want to predict. If a certain customer is Female (a new column with a 1 (yes) or 0 (no) result, a binary response). A selection of continuous independent variables: customer age, if this customer is an internet customer, if this customer allowed us to send s to him and if this customer is a store customer 4

5 We can see how looks like the logistic regression calculated in the Results tab. BIRT Analytics provide the logistic function that recreates the predictive model. Providing this equation of the four independent variables, it returns a prediction of the probability that this customer is a female. Below the equation there is a 5-star qualification of the goodness of fit of the equation compared with the real data of the original Domain. In our case, we have 5 stars that means that this predictive model is really accurate. This rating is done using the p-value of the Chi Squared test that is showed in the Statistics tab. 5

6 This third tab shows all the test and data used in the qualification of the goodness of fit of the logistic model. The tap is divided in two main parts, the upper are the global fitting test (evaluate all the equation) and the lower table shows specific tests for each of the coefficients of the equation (including the intercept). This kind of regression is globally evaluated by two distinct tests: Chi squared test and its p-value Log Likelihood ratio statistic test The first one needs to be a high value, or its p-value need to be as small as possible (under 0.01 we can assume that the model fits the train sample). The Log likelihood is always negative and needs to be close to zero. In our example, we have a good first test, with a Chi Squared quite high and a p-value smaller than 0.01, but in the other hand, the log likelihood value is a big negative value. That means that this model doesn t fit as well as expected at a first sight. 6

7 Each coefficient in the logistic equation has its tests. Standard error is a measure of the mean error that we are assuming when we compare the logistic equation (the predictive model) against the real data. Odds ratio test is a test to measure the influence of the independent variable (related to that coefficient) over the dependent. As bigger is the ratio, better is the relationship between dependent variable and the independent. The Upper and Lower Confidence level are defined for each coefficient. It is related to the Odds ratio. The p value of the log likelihood ratio for a certain coefficient. Only evaluates this coefficient, but it has the same interpretation as the global test. The significance level is based in the distinct values of the p-value of the log likelihood ratio, and is a 0 to 5 scale to evaluate how relevant is a certain independent variable in the equation. One of the tricks of logistic regression is that is not only based in one test to evaluate the goodness of fit. It needs a multiple variable test to analyze if the model is good enough or not. In our example, analyzing each coefficient we can conclude that: Intercept: Has a low standard error, but it s Odds Ratio is quite low, so this coefficient could be zero, because of the low relevance in predicting the dependent variable. Age: This variable is slightly relevant due to its Odds ratio, although its significance level is the highest. Internet Customer EQ Y: This coefficient is more relevant that the Age (a bigger Odds ratio) and it also has a high significance level. Mailable EQ Y: This categorical variable is the least relevant of all the predictors, because of its Odds ratio value. Store Customer EQ Y: This is the best variable, the most relevant, that defines this model. It has the highest Odds ratio and a high significance level. This model could be applied in a new column to classify those that doesn t have a Gender assigned to predict their probability to be a female. If you want to know more about this data mining technique you can find more documentation of linear regressions in: Copyright 2014 Actuate Corporation. All rights reserved. Actuate, legodo, BIRT ihub, BIRT ihub F-Type, BIRT Analytics, Actuate Customer Communications Suite, The Actuate Document Accessibility Appliance, BIRT ondemand, BIRT Viewer Toolkit, and the Actuate logo are trademarks or registered trademarks of Actuate Corporation and/ or its affiliates in the U.S. and certain other countries. The use of the word partner or partnership does not imply a legal partnership relationship between Actuate and any other company. All other brands, names or trademarks mentioned may be trademarks of their respective owners. Actuate Corporation 951 Mariners Island Boulevard San Mateo, CA Tel: (+1)

CoolaData Predictive Analytics

CoolaData Predictive Analytics CoolaData Predictive Analytics 9 3 6 About CoolaData CoolaData empowers online companies to become proactive and predictive without having to develop, store, manage or monitor data themselves. It is an

More information

Customer Analytics. Turn Big Data into Big Value

Customer Analytics. Turn Big Data into Big Value Turn Big Data into Big Value All Your Data Integrated in Just One Place BIRT Analytics lets you capture the value of Big Data that speeds right by most enterprises. It analyzes massive volumes of data

More information

Simple Predictive Analytics Curtis Seare

Simple Predictive Analytics Curtis Seare Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release

More information

IBM SPSS Direct Marketing 22

IBM SPSS Direct Marketing 22 IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release

More information

Simple Linear Regression One Binary Categorical Independent Variable

Simple Linear Regression One Binary Categorical Independent Variable Simple Linear Regression Does sex influence mean GCSE score? In order to answer the question posed above, we want to run a linear regression of sgcseptsnew against sgender, which is a binary categorical

More information

birt Analytics data sheet Reduce the time from analysis to action

birt Analytics data sheet Reduce the time from analysis to action Reduce the time from analysis to action BIRT Analytics is the newest addition to ActuateOne. This new analytics product is fast and agile, and adds to the already rich Actuate BIRT product lineup the simpleto-use

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

More information

11. Analysis of Case-control Studies Logistic Regression

11. Analysis of Case-control Studies Logistic Regression Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

More information

SUGI 29 Statistics and Data Analysis

SUGI 29 Statistics and Data Analysis Paper 194-29 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,

More information

Credit Risk Analysis Using Logistic Regression Modeling

Credit Risk Analysis Using Logistic Regression Modeling Credit Risk Analysis Using Logistic Regression Modeling Introduction A loan officer at a bank wants to be able to identify characteristics that are indicative of people who are likely to default on loans,

More information

Customer Life Time Value

Customer Life Time Value Customer Life Time Value Tomer Kalimi, Jacob Zahavi and Ronen Meiri Contents Introduction... 2 So what is the LTV?... 2 LTV in the Gaming Industry... 3 The Modeling Process... 4 Data Modeling... 5 The

More information

Statistics in Retail Finance. Chapter 2: Statistical models of default

Statistics in Retail Finance. Chapter 2: Statistical models of default Statistics in Retail Finance 1 Overview > We consider how to build statistical models of default, or delinquency, and how such models are traditionally used for credit application scoring and decision

More information

1/2/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

1/2/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 When and why do we use logistic regression? Binary Multinomial Theory behind logistic regression Assessing the model Assessing predictors

More information

Chapter 25 Specifying Forecasting Models

Chapter 25 Specifying Forecasting Models Chapter 25 Specifying Forecasting Models Chapter Table of Contents SERIES DIAGNOSTICS...1281 MODELS TO FIT WINDOW...1283 AUTOMATIC MODEL SELECTION...1285 SMOOTHING MODEL SPECIFICATION WINDOW...1287 ARIMA

More information

IBM SPSS Direct Marketing 19

IBM SPSS Direct Marketing 19 IBM SPSS Direct Marketing 19 Note: Before using this information and the product it supports, read the general information under Notices on p. 105. This document contains proprietary information of SPSS

More information

Predictive Analytics: Extracts from Red Olive foundational course

Predictive Analytics: Extracts from Red Olive foundational course Predictive Analytics: Extracts from Red Olive foundational course For more details or to speak about a tailored course for your organisation please contact: Jefferson Lynch: jefferson.lynch@red-olive.co.uk

More information

How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

More information

Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data

Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data Tutorial #7A: LC Segmentation with Ratings-based Conjoint Data This tutorial shows how to use the Latent GOLD Choice program when the scale type of the dependent variable corresponds to a Rating as opposed

More information

Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank

Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through

More information

Finding Supporters. Political Predictive Analytics Using Logistic Regression. Multivariate Solutions

Finding Supporters. Political Predictive Analytics Using Logistic Regression. Multivariate Solutions Finding Supporters Political Predictive Analytics Using Logistic Regression Multivariate Solutions What is Logistic Regression? In a political application, logistic regression can describe the outcome

More information

Binary Logistic Regression

Binary Logistic Regression Binary Logistic Regression Main Effects Model Logistic regression will accept quantitative, binary or categorical predictors and will code the latter two in various ways. Here s a simple model including

More information

Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller

Agenda. Mathias Lanner Sas Institute. Predictive Modeling Applications. Predictive Modeling Training Data. Beslutsträd och andra prediktiva modeller Agenda Introduktion till Prediktiva modeller Beslutsträd Beslutsträd och andra prediktiva modeller Mathias Lanner Sas Institute Pruning Regressioner Neurala Nätverk Utvärdering av modeller 2 Predictive

More information

Factors affecting online sales

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

More information

Logistic and Poisson Regression: Modeling Binary and Count Data. Statistics Workshop Mark Seiss, Dept. of Statistics

Logistic and Poisson Regression: Modeling Binary and Count Data. Statistics Workshop Mark Seiss, Dept. of Statistics Logistic and Poisson Regression: Modeling Binary and Count Data Statistics Workshop Mark Seiss, Dept. of Statistics March 3, 2009 Presentation Outline 1. Introduction to Generalized Linear Models 2. Binary

More information

Modeling Lifetime Value in the Insurance Industry

Modeling Lifetime Value in the Insurance Industry Modeling Lifetime Value in the Insurance Industry C. Olivia Parr Rud, Executive Vice President, Data Square, LLC ABSTRACT Acquisition modeling for direct mail insurance has the unique challenge of targeting

More information

Linear Regression in SPSS

Linear Regression in SPSS Linear Regression in SPSS Data: mangunkill.sav Goals: Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) checking Predict number of man killed using number

More information

A quick guide to. Social Media

A quick guide to. Social Media A quick guide to Social Media In this guide... Learn how to integrate your email marketing with social media to get the most out of online buzz! Use Twitter and Facebook integrations to enable readers

More information

ln(p/(1-p)) = α +β*age35plus, where p is the probability or odds of drinking

ln(p/(1-p)) = α +β*age35plus, where p is the probability or odds of drinking Dummy Coding for Dummies Kathryn Martin, Maternal, Child and Adolescent Health Program, California Department of Public Health ABSTRACT There are a number of ways to incorporate categorical variables into

More information

Correlational Research

Correlational Research Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model Creating a Scoring Application Based on a Decision Tree Model This Quick Start guides you through creating a credit-scoring application in eight easy steps. Quick Start Century Corp., an electronics retailer,

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

How to set the main menu of STATA to default factory settings standards

How to set the main menu of STATA to default factory settings standards University of Pretoria Data analysis for evaluation studies Examples in STATA version 11 List of data sets b1.dta (To be created by students in class) fp1.xls (To be provided to students) fp1.txt (To be

More information

Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

More information

Easily Identify Your Best Customers

Easily Identify Your Best Customers IBM SPSS Statistics Easily Identify Your Best Customers Use IBM SPSS predictive analytics software to gain insight from your customer database Contents: 1 Introduction 2 Exploring customer data Where do

More information

Students' Opinion about Universities: The Faculty of Economics and Political Science (Case Study)

Students' Opinion about Universities: The Faculty of Economics and Political Science (Case Study) Cairo University Faculty of Economics and Political Science Statistics Department English Section Students' Opinion about Universities: The Faculty of Economics and Political Science (Case Study) Prepared

More information

Implementing a Customer Lifetime Value Predictive Model: Use Case

Implementing a Customer Lifetime Value Predictive Model: Use Case Implementing a Customer Lifetime Value Predictive Model: Use Case Since predictive algorithms are really just mathematical formulas that can be applied to many different problems, many organizations have

More information

Ordinal Regression. Chapter

Ordinal Regression. Chapter Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

More information

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p. Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

More information

Logistic Regression. Introduction CHAPTER The Logistic Regression Model 14.2 Inference for Logistic Regression

Logistic Regression. Introduction CHAPTER The Logistic Regression Model 14.2 Inference for Logistic Regression Logistic Regression Introduction The simple and multiple linear regression methods we studied in Chapters 10 and 11 are used to model the relationship between a quantitative response variable and one or

More information

Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence

Survival Analysis Using SPSS. By Hui Bian Office for Faculty Excellence Survival Analysis Using SPSS By Hui Bian Office for Faculty Excellence Survival analysis What is survival analysis Event history analysis Time series analysis When use survival analysis Research interest

More information

Get to Know the IBM SPSS Product Portfolio

Get to Know the IBM SPSS Product Portfolio IBM Software Business Analytics Product portfolio Get to Know the IBM SPSS Product Portfolio Offering integrated analytical capabilities that help organizations use data to drive improved outcomes 123

More information

Logistic Regression With SAS

Logistic Regression With SAS Logistic Regression With SAS Please read my introductory handout on logistic regression before reading this one. The introductory handout can be found at. Run the program LOGISTIC.SAS from my SAS programs

More information

Categorical Data Analysis

Categorical Data Analysis Richard L. Scheaffer University of Florida The reference material and many examples for this section are based on Chapter 8, Analyzing Association Between Categorical Variables, from Statistical Methods

More information

Final Exam Practice Problem Answers

Final Exam Practice Problem Answers Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

More information

E205 Final: Version B

E205 Final: Version B Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

OpenText Actuate Big Data Analytics 5.2

OpenText Actuate Big Data Analytics 5.2 OpenText Actuate Big Data Analytics 5.2 OpenText Actuate Big Data Analytics 5.2 introduces several improvements that make the product more useful, powerful and flexible for end users. A new data loading

More information

Business Intelligence. Tutorial for Rapid Miner (Advanced Decision Tree and CRISP-DM Model with an example of Market Segmentation*)

Business Intelligence. Tutorial for Rapid Miner (Advanced Decision Tree and CRISP-DM Model with an example of Market Segmentation*) Business Intelligence Professor Chen NAME: Due Date: Tutorial for Rapid Miner (Advanced Decision Tree and CRISP-DM Model with an example of Market Segmentation*) Tutorial Summary Objective: Richard would

More information

Review of Key Concepts: 1.2 Characteristics of Polynomial Functions

Review of Key Concepts: 1.2 Characteristics of Polynomial Functions Review of Key Concepts: 1.2 Characteristics of Polynomial Functions Polynomial functions of the same degree have similar characteristics The degree and leading coefficient of the equation of the polynomial

More information

Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents

Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén

More information

Lecture 16: Logistic regression diagnostics, splines and interactions. Sandy Eckel 19 May 2007

Lecture 16: Logistic regression diagnostics, splines and interactions. Sandy Eckel 19 May 2007 Lecture 16: Logistic regression diagnostics, splines and interactions Sandy Eckel seckel@jhsph.edu 19 May 2007 1 Logistic Regression Diagnostics Graphs to check assumptions Recall: Graphing was used to

More information

Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables

Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables Introduction In the summer of 2002, a research study commissioned by the Center for Student

More information

Database Marketing and CRM: A Case on Predictive Modeling for Ayurveda Product Offerings

Database Marketing and CRM: A Case on Predictive Modeling for Ayurveda Product Offerings Database Marketing and CRM: A Case on Predictive Modeling for Ayurveda Product Offerings Purba Rao Washington Sycip Graduate School of Business Asian Institute of Management, Philippines. Abstract This

More information

The Demand for Financial Planning Services 1

The Demand for Financial Planning Services 1 The Demand for Financial Planning Services 1 Sherman D. Hanna, Ohio State University Professor, Consumer Sciences Department Ohio State University 1787 Neil Avenue Columbus, OH 43210-1290 Phone: 614-292-4584

More information

Simple Linear Regression

Simple Linear Regression STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze

More information

SAS Visual Analytics 7.2 for SAS Cloud: Quick-Start Guide

SAS Visual Analytics 7.2 for SAS Cloud: Quick-Start Guide SAS Visual Analytics 7.2 for SAS Cloud: Quick-Start Guide Introduction This quick-start guide covers tasks that account administrators need to perform to set up SAS Visual Statistics and SAS Visual Analytics

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.)

Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Unit 12 Logistic Regression Supplementary Chapter 14 in IPS On CD (Chap 16, 5th ed.) Logistic regression generalizes methods for 2-way tables Adds capability studying several predictors, but Limited to

More information

Logs Transformation in a Regression Equation

Logs Transformation in a Regression Equation Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this

More information

ANNOTATED OUTPUT--SPSS Logistic Regression

ANNOTATED OUTPUT--SPSS Logistic Regression Logistic Regression Logistic regression is a variation of the regression model. It is used when the dependent response variable is binary in nature. Logistic regression predicts the probability of the

More information

Paper D10 2009. Ranking Predictors in Logistic Regression. Doug Thompson, Assurant Health, Milwaukee, WI

Paper D10 2009. Ranking Predictors in Logistic Regression. Doug Thompson, Assurant Health, Milwaukee, WI Paper D10 2009 Ranking Predictors in Logistic Regression Doug Thompson, Assurant Health, Milwaukee, WI ABSTRACT There is little consensus on how best to rank predictors in logistic regression. This paper

More information

How to Get More Value from Your Survey Data

How to Get More Value from Your Survey Data Technical report How to Get More Value from Your Survey Data Discover four advanced analysis techniques that make survey research more effective Table of contents Introduction..............................................................2

More information

QualysGuard WAS. Getting Started Guide Version 3.3. March 21, 2014

QualysGuard WAS. Getting Started Guide Version 3.3. March 21, 2014 QualysGuard WAS Getting Started Guide Version 3.3 March 21, 2014 Copyright 2011-2014 by Qualys, Inc. All Rights Reserved. Qualys, the Qualys logo and QualysGuard are registered trademarks of Qualys, Inc.

More information

Data Mining Techniques in CRM

Data Mining Techniques in CRM Data Mining Techniques in CRM Inside Customer Segmentation Konstantinos Tsiptsis CRM 6- Customer Intelligence Expert, Athens, Greece Antonios Chorianopoulos Data Mining Expert, Athens, Greece WILEY A John

More information

PROC LOGISTIC: Traps for the unwary Peter L. Flom, Independent statistical consultant, New York, NY

PROC LOGISTIC: Traps for the unwary Peter L. Flom, Independent statistical consultant, New York, NY PROC LOGISTIC: Traps for the unwary Peter L. Flom, Independent statistical consultant, New York, NY ABSTRACT Keywords: Logistic. INTRODUCTION This paper covers some gotchas in SAS R PROC LOGISTIC. A gotcha

More information

Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480 1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

More information

Online Appendix to Are Risk Preferences Stable Across Contexts? Evidence from Insurance Data

Online Appendix to Are Risk Preferences Stable Across Contexts? Evidence from Insurance Data Online Appendix to Are Risk Preferences Stable Across Contexts? Evidence from Insurance Data By LEVON BARSEGHYAN, JEFFREY PRINCE, AND JOSHUA C. TEITELBAUM I. Empty Test Intervals Here we discuss the conditions

More information

The. biddible. Guide to AdWords at Christmas

The. biddible. Guide to AdWords at Christmas The biddible. Guide to AdWords at Christmas CONTENTS. Page 2 Important Dates Page 3 & 4 Search Campaigns Page 5 Shopping Campaigns Page 6 Display Campaigns Page 7 & 8 Remarketing Campaigns Page 9 About

More information

Designing a Lead Lifecycle in Salesforce

Designing a Lead Lifecycle in Salesforce Designing a Lead Lifecycle in Salesforce A Best Practices White Paper for Response Management Better data. Better marketing. Table of Contents Introduction 4 The Words We Use 4 What is a Lead? 4 Evolving

More information

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Using Excel for Statistical Analysis

Using Excel for Statistical Analysis Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure

More information

PASW Direct Marketing 18

PASW Direct Marketing 18 i PASW Direct Marketing 18 For more information about SPSS Inc. software products, please visit our Web site at http://www.spss.com or contact SPSS Inc. 233 South Wacker Drive, 11th Floor Chicago, IL 60606-6412

More information

International Statistical Institute, 56th Session, 2007: Phil Everson

International Statistical Institute, 56th Session, 2007: Phil Everson Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

More information

A quick guide to... Social Media

A quick guide to... Social Media A quick guide to... Social Media In this guide... Learn how to integrate your email marketing with social media to get the most out of online buzz! Use Twitter and Facebook integrations to enable readers

More information

Bivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS

Bivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS Bivariate Analysis Variable 1 2 LEVELS >2 LEVELS CONTINUOUS Variable 2 2 LEVELS X 2 chi square test >2 LEVELS X 2 chi square test CONTINUOUS t-test X 2 chi square test X 2 chi square test ANOVA (F-test)

More information

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

More information

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

SPSS Multivariable Linear Models and Logistic Regression

SPSS Multivariable Linear Models and Logistic Regression 1 SPSS Multivariable Linear Models and Logistic Regression Multivariable Models Single continuous outcome (dependent variable), one main exposure (independent) variable, and one or more potential confounders

More information

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

More information

AP * Statistics Review. Linear Regression

AP * Statistics Review. Linear Regression AP * Statistics Review Linear Regression Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

More information

Advanced Statistical Analysis of Mortality. Rhodes, Thomas E. and Freitas, Stephen A. MIB, Inc. 160 University Avenue. Westwood, MA 02090

Advanced Statistical Analysis of Mortality. Rhodes, Thomas E. and Freitas, Stephen A. MIB, Inc. 160 University Avenue. Westwood, MA 02090 Advanced Statistical Analysis of Mortality Rhodes, Thomas E. and Freitas, Stephen A. MIB, Inc 160 University Avenue Westwood, MA 02090 001-(781)-751-6356 fax 001-(781)-329-3379 trhodes@mib.com Abstract

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Veeam MarketReach User Guide. Automate Your Marketing. Grow Your Business.

Veeam MarketReach User Guide. Automate Your Marketing. Grow Your Business. Veeam MarketReach User Guide Automate Your Marketing. Grow Your Business. March, 2013 Contents PART 1. INTRODUCTION 3 What is Veeam MarketReach? 3 PART 2. ENTERING VEEAM MARKETREACH 3 Who can access Veeam

More information

Statistics 305: Introduction to Biostatistical Methods for Health Sciences

Statistics 305: Introduction to Biostatistical Methods for Health Sciences Statistics 305: Introduction to Biostatistical Methods for Health Sciences Modelling the Log Odds Logistic Regression (Chap 20) Instructor: Liangliang Wang Statistics and Actuarial Science, Simon Fraser

More information

Statistics in Medicine Research Lecture Series CSMC Fall 2014

Statistics in Medicine Research Lecture Series CSMC Fall 2014 Catherine Bresee, MS Senior Biostatistician Biostatistics & Bioinformatics Research Institute Statistics in Medicine Research Lecture Series CSMC Fall 2014 Overview Review concept of statistical power

More information

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. 277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

More information

Regression step-by-step using Microsoft Excel

Regression step-by-step using Microsoft Excel Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

More information

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Using Group Policy to Remotely Install Steelhead Mobile Software

Using Group Policy to Remotely Install Steelhead Mobile Software Using Group Policy to Remotely Install Steelhead Mobile Software This tech note describes how to use a Group Policy to automatically distribute Steelhead Mobile software to client computers. These instructions

More information

Social Business Intelligence For Retail Industry

Social Business Intelligence For Retail Industry Actionable Social Intelligence SOCIAL BUSINESS INTELLIGENCE FOR RETAIL INDUSTRY Leverage Voice of Customers, Competitors, and Competitor s Customers to Drive ROI Abstract Conversations on social media

More information

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview

More information