# Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

Save this PDF as:

Size: px
Start display at page:

Download "Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient"

## Transcription

1 Floodplain Hydraulics! Hydrology and Floodplain Analysis Dr. Philip Bedient

2 Open Channel Flow 1. Uniform flow - Manning s Eqn in a prismatic channel - Q, V, y, A, P, B, S and roughness are all constant 2. Critical flow - Specific Energy Eqn (Froude No.) 3. Non-uniform flow - gradually varied flow (steady flow) - determination of floodplains 4. Unsteady and Non-uniform flow - flood waves

3 Uniform Open Channel Flow Chezy and Manning s Eqn. 1. Must use results from Fluid Mechanics 2. Derivation of these eqns requires a force balance (x) F = ρq[ V V ]= 0 x Actual forces (F = hydrostatic) are summed across C.V. [ F 1 F 2 ] τ w Pl + W sinθ = 0

4 Chezy and Manning s Eqn. 1. Since hydrostatic forces are equal, and sinθ = S 0 τ w = W sinθ = WS 0 Pl Pl W = γ Al Slopes are very mild 2. Define R = A/P, the hydraulic radius Now τ w = Kρ V 2 2 forturbulent flows

5 Chezy and Manning s Eqn. Finally, we can equate the two eqns for shear stress γ RS 0 = V 2 Kρ 2,solving forv = C RS 0 C = Chezy Coefficient (1768) in Paris Manning was an Irish Eng and 1889 developed his EQN.

6 Uniform Open Channel Flow Manning s Eqn for velocity or peak flow rate v = 1 n R 2 /3 S S.I. units v = 1.49 R 2 /3 S English units n where!!!n = Manning s roughness coefficient!!r = hydraulic radius = A/P!!S = channel slope!! Q = V A = flow rate (cfs)

7 Uniform Open Channel Flow Brays B. Brays Bayou" Concrete Channel"

8 Normal depth is function of flow rate, and geometry and slope. One usually solves for normal depth or width given flow rate and slope information B b

9 Normal depth implies that flow rate, velocity, depth, bottom slope, area, top width, and roughness remain constant within a prismatic channel as shown below UNIFORM FLOW Q = C V = C y = C S 0 = C A = C B = C n = C

10 Optimal Channels - Max R and Min P

11 Uniform Flow Energy slope = Bed slope or dh/dx = dz/dx Water surface slope = Bed slope = dy/dz = dz/dx Velocity and depth remain constant with x H

12

13 Critical depth is used to characterize channel flows -- based on addressing specific energy E = y + v 2 /2g :!!E = y + Q 2 /2gA 2 where Q/A = q/y and q = Q/b!!!!!Take de/dy = (1 q 2 /gy 3 ) and set = 0. q = const! E = y + q 2 /2gy 2! y Min E Condition, q = C E

14 !!!Solving de/dy = (1 q 2 /gy 3 ) and set = 0.! For a rectangular channel bottom width b,! 1.!E min = 3/2Y c for critical depth y = y c! 2. y c /2 = V c2 /2g! 3. y c = (Q 2 /gb 2 ) 1/3 Froude No. = v/(gy) 1/2 We use the Froude No. to characterize critical flows

15 Y vs E E = y + q 2 /2gy 2! q = const!

16 ! Critical Flow in Open Channels In general for any channel shape, B = top width!! (Q 2 /g) = (A 3 /B)!at y = y c!!! Finally Fr = v/(gy) 1/2 = Froude No.!! Fr = 1 for critical flow! Fr < 1 for subcritical flow! Fr > 1 for supercritical flow

17

18 Non-Uniform Open Channel Flow With natural or man-made channels, the shape, size, and slope may vary along the stream length, x. In addition, velocity and flow rate may also vary with x. Non-uniform flow can be best approximated using a numerical method called the Standard Step Method.

19 Non-Uniform Computations Typically start at downstream end with known water level - y o. Proceed upstream with calculations using new water levels as they are computed. The limits of calculation range between normal and critical depths. In the case of mild slopes, calculations start downstream. In the case of steep slopes, calculations start upstream. Calc. Q Mild Slope

20 Non-Uniform Open Channel Flow Let s evaluate H, total energy, as a function of x. H = z + y + ( α v 2 / 2g) Take derivative, dh dx = dz dx + dy dx + α 2 g dv 2 dx Where!H = total energy head!!!z = elevation head,! αv 2 /2g = velocity head

21 Replace terms for various values of S and S o. Let v = q/y = flow/unit width - solve for dy/dx, the slope of the water surface S = S + dy o dx 1 q 2 gy 3 since v = q / y 1 2g d [ dx v 2 ]= 1 2g d dx q 2 y 2 = q2 g 1 y 3 dy dx

22 Given the Froude number, we can simplify and solve for dy/dx as a fcn of measurable parameters Fr 2 = v 2 / gy ( ) dy dx = S S o 1 v 2 / gy = S o S 1 Fr 2 *Note that the eqn blows up when Fr = 1 and goes to zero if S o = S, the case of uniform OCF. where S = total energy slope S o = bed slope, dy/dx = water surface slope

23

24 Y n > Y c Uniform Depth Mild Slopes where - Y n > Y c

25 Now apply Energy Eqn. for a reach of length L y + v g L = = y + v g 2 y + v g 2 y 2 + v 2 2g S S 0 + ( S S )L o This Eqn is the basis for the Standard Step Method Solve for L = Δx to compute water surface profiles as function of y 1 and y 2, v 1 and v 2, and S and S 0 2

26 Backwater Profiles - Mild Slope Cases x

27 Backwater Profiles - Compute Numerically Compute y 3 y 2 y 1

28 Routine Backwater Calculations 1. Select Y 1 (starting depth) 2. Calculate A 1 (cross sectional area) 3. Calculate P 1 (wetted perimeter) 4. Calculate R 1 = A 1 /P 1 5. Calculate V 1 = Q 1 /A 1 6. Select Y 2 (ending depth) 7. Calculate A 2 8. Calculate P 2 9. Calculate R 2 = A 2 /P Calculate V 2 = Q 2 /A 2

29 Backwater Calculations (cont d) 1. Prepare a table of values 2. Calculate V m = (V 1 + V 2 ) / 2 Energy Slope Approx. 3. Calculate R m = (R 1 + R 2 ) / 2 nv S = m R 3 m 4. Calculate Manning s 5. Calculate L = X from first equation 2 6. X = X i for each stream reach (SEE SPREADSHEETS) L = 2 y 1 + v 1 2g y + v g S S 0

30 100 Year Floodplain" Floodplain Tributary" D" Bridge Q D" C" Q C" Bridge Section" Main Stream" B" Q B" A" Cross Sections" Q A" Cross Sections"

31 The Floodplain" Top Width"

32 Floodplain Determination"

33 The Woodlands" v The Woodlands planners wanted to design the community to withstand a 100-year storm." v In doing this, they would attempt to minimize any changes to the existing, undeveloped floodplain as development proceeded through time.

34 HEC RAS (River Analysis System, 1995)" HEC RAS or (HEC-2)is a computer model designed for natural cross sections in natural rivers. It solves the governing equations for the standard step method, generally in a downstream to upstream direction. It can Also handle the presence of bridges, culverts, and variable roughness, flow rate, depth, and velocity.

35 HEC - 2 Orientation - looking downstream

36

37

38

39

40 Multiple Cross Sections River

41 HEC RAS (River Analysis System, 1995)"

42 HEC RAS Bridge CS"

43 HEC RAS Input Window"

44 HEC RAS Profile Plots"

45 3-D Floodplain"

46 HEC RAS Cross Section Output Table"

47 Brays Bayou-Typical Urban System" Bridges cause unique problems in hydraulics" Piers, low chords, and top of road is considered" Expansion/contraction can cause hydraulic losses" Several cross sections are needed for a bridge" 288 Bridge causes a 2 ft " Backup at TMC and is being replaced by TXDOT" 288 Crossing"

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

### CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### M6a: Open Channel Flow (Manning s Equation, Partially Flowing Pipes, and Specific Energy)

M6a: Open Channel Flow (, Partially Flowing Pipes, and Specific Energy) Steady Non-Uniform Flow in an Open Channel Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Continuity

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### Chapter 10. Open- Channel Flow

Updated: Sept 3 2013 Created by Dr. İsmail HALTAŞ Created: Sept 3 2013 Chapter 10 Open- Channel Flow based on Fundamentals of Fluid Mechanics 6th EdiAon By Munson 2009* *some of the Figures and Tables

### Topic 8: Open Channel Flow

3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,

### 21. Channel flow III (8.10 8.11)

21. Channel flow III (8.10 8.11) 1. Hydraulic jump 2. Non-uniform flow section types 3. Step calculation of water surface 4. Flow measuring in channels 5. Examples E22, E24, and E25 1. Hydraulic jump Occurs

### Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507. Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.

Hydraulic Jumps and Non-uniform Open Channel Flow, Course #507 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Many examples of open channel flow can be approximated

### LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Open channel flow must have a free surface. Normally free water surface is subjected to atmospheric

### CHAPTER 4 OPEN CHANNEL HYDRAULICS

CHAPTER 4 OPEN CHANNEL HYDRAULICS 4. Introduction Open channel flow refers to any flow that occupies a defined channel and has a free surface. Uniform flow has been defined as flow with straight parallel

### CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics

CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...

### FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels

FUNDAMENTALS OF FLUID MECHANICS Chapter 10 Flow in Open Channels Jyh-Cherng Shieh Department of Bio-Industrial Mechatronics Engineering National Taiwan University 1 MAIN TOPICS General Characteristics

### Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow

Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The

### Package rivr. October 16, 2015

Type Package Package rivr October 16, 2015 Title Steady and Unsteady Open-Channel Flow Computation Version 1.1 Date 2015-10-15 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Chapter 9. Steady Flow in Open channels

Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows

### ...Eq(11.6) The energy loss in the jump is dependent on the two depths y 1 and y 2 3 = E =...Eq(11.7)

. Open Channel Flow Contd.5 Hydraulic Jump A hydraulic jump occurs when water in an open channel is flowing supercritical and is slowed by a deepening of the channel or obstruction in the channel. The

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### Exercise (4): Open Channel Flow - Gradually Varied Flow

Exercise 4: Open Channel Flow - Gradually Varied Flow 1 A wide channel consists of three long reaches and has two gates located midway of the first and last reaches. The bed slopes for the three reaches

### Note: first and second stops will be reversed. Bring clothing and shoes suitable for walking on rough ground.

Open Channel Page 1 Intro check on laboratory results Field Trip Note: first and second stops will be reversed Irrigation and Drainage Field Trip Bring clothing and shoes suitable for walking on rough

### Lecture 25 Design Example for a Channel Transition. I. Introduction

Lecture 5 Design Example for a Channel Transition I. Introduction This example will be for a transition from a trapezoidal canal section to a rectangular flume section The objective of the transition design

### STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL. OFFICE OF DESIGN, DRAINAGE SECTION November 2009 TALLAHASSEE, FLORIDA

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DRAINAGE HANDBOOK OPEN CHANNEL OFFICE OF DESIGN, DRAINAGE SECTION TALLAHASSEE, FLORIDA Table of Contents Open Channel Handbook Chapter 1 Introduction... 1

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978)

Lecture 22 Example Culvert Design Much of the following is based on the USBR technical publication Design of Small Canal Structures (1978) I. An Example Culvert Design Design a concrete culvert using the

### CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.

### 2O-1 Channel Types and Structures

Iowa Stormwater Management Manual O-1 O-1 Channel Types and Structures A. Introduction The flow of water in an open channel is a common event in Iowa, whether in a natural channel or an artificial channel.

### Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: "1", Monday 2-5 pm Title: Flow in open channel Date: 13 November-2006 Objectives: Calculate the Chezy and Manning coefficients

### CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1. This experiment was designed to observe the characteristics of uniform flow in

CHAPTER II UNIFORM FLOW AND ITS FORMULAS MODULE 1 2.1 Introduction and Objective This experiment was designed to observe the characteristics of uniform flow in the teaching flume and to utilize the common

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?

Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming

### Chapter 7 Ditches and Channels

Chapter 7 Ditches and Channels TABLE OF CONTENTS CHAPTER 7 - DITCHES AND CHANNELS... 7-1 7.1 Introduction... 7-1 7.2 Design Policy... 7-2 7.2.1 Federal Policy... 7-2 7.2.2 Commonwealth of Virginia Policy...

### EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015

EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:

Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is

### M6b: Water Surface Profiles and Hydraulic Jumps

Example.0 (Chin 006): Constriction in Channel M6b: Water Surface Profiles and Hdraulic Jumps Robert Pitt Universit of Alabama and Shirle Clark Penn State - Harrisburg A rectangular channel.0 m wide carries.0

### CHAPTER 5 OPEN CHANNEL HYDROLOGY

5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal

### Environmental Data Management Programs

Hydrologic Engineering Centre (HEC) Software CD Collection of programs, developed by the U.S. Army Corps of Engineers Environmental Data Management Programs Name: HEC-DSS Package Purpose: Data Storage

### 1 Fundamentals of. open-channel flow 1.1 GEOMETRIC ELEMENTS OF OPEN CHANNELS

1 Fundamentals of open-channel flow Open channels are natural or manmade conveyance structures that normally have an open top, and they include rivers, streams and estuaries. n important characteristic

### Design Charts for Open-Channel Flow HDS 3 August 1961

Design Charts for Open-Channel Flow HDS 3 August 1961 Welcome to HDS 3-Design Charts for Open-Channel Flow Table of Contents Preface DISCLAIMER: During the editing of this manual for conversion to an electronic

### Open Channel Flow Measurement Weirs and Flumes

Open Channel Flow Measurement Weirs and Flumes by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here Measuring the flow rate of water in an open channel typically involves some type of

### Performing a Steady Flow Analysis

C H A P T E R 7 Performing a Steady Flow Analysis This chapter discusses how to calculate steady flow water surface profiles. The chapter is divided into two parts. The first part discusses how to enter

### CHAPTER 5 OPEN-CHANNEL FLOW

CHAPTER 5 OPEN-CHANNEL FLOW 1. INTRODUCTION 1 Open-channel flows are those that are not entirely included within rigid boundaries; a part of the flow is in contract with nothing at all, just empty space

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

### CHAPTER 860 OPEN CHANNELS

HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such

### Travel Time. Computation of travel time and time of concentration. Factors affecting time of concentration. Surface roughness

3 Chapter 3 of Concentration and Travel Time Time of Concentration and Travel Time Travel time ( T t ) is the time it takes water to travel from one location to another in a watershed. T t is a component

### 1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal

Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal

### ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ

ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers Derivation of Flow Equations Asst. Prof. Dr. Orhan GÜNDÜZ General 3-D equations of incompressible fluid flow Navier-Stokes Equations

### Part 654 Stream Restoration Design National Engineering Handbook

United States Department of Agriculture Natural Resources Conservation Service Stream Restoration Design Chapter 6 Issued August 007 Cover photo: Stream hydraulics focus on bankfull frequencies, velocities,

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### HEC-RAS. River Analysis System. Applications Guide. Version 4.1 January 2010. US Army Corps of Engineers Hydrologic Engineering Center CPD-70

US Army Corps of Engineers Hydrologic Engineering Center HEC-RAS HEC-RAS River Analysis System Applications Guide Version 4.1 January 2010 Approved for Public Release. Distribution Unlimited CPD-70 REPORT

### Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data

Scattergraph Principles and Practice Practical Application of the Froude Number to Flow Monitor Data Kevin L. Enfinger, P.E. and Patrick L. Stevens, P.E. ADS Environmental Services 4940 Research Drive

### HEC-RAS River Analysis System

Table of Contents US Army Corps of Engineers Hydrologic Engineering Center HEC-RAS River Analysis System Hydraulic Reference Manual Version 4.1 January 010 Approved for Public Release. Distribution Unlimited

### CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES

CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT HYDROLOGIC CRITERIA AND DRAINAGE DESIGN MANUAL SECTION 1100 ADDITIONAL HYDRAULIC STRUCTURES TABLE OF CONTENTS Page 1101 INTRODUCTION 1102 1102 CHANNEL DROPS

### Guo, James C.Y. (2004). Design of Urban Channel Drop Structure, J. of Flood Hazards News, December,

Guo, James C.. (004). esign of Urban Channel rop Structure, J. of Flood azards News, ecember, Guo, James C.., (009) Grade Control for Urban Channel esign, submitted to Elsevier Science, J. of ydro-environmental

### Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.

Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this

### Rational Method Hydrologic Calculations with Excel. Rational Method Hydrologic Calculations with Excel, Course #508. Presented by:

Rational Method Hydrologic Calculations with Excel, Course #508 Presented by: PDH Enterprises, LLC PO Box 942 Morrisville, NC 27560 www.pdhsite.com Calculation of peak storm water runoff rate from a drainage

### CHAPTER 3 STORM DRAINAGE SYSTEMS

CHAPTER 3 STORM DRAINAGE SYSTEMS 3.7 Storm Drains 3.7.1 Introduction After the tentative locations of inlets, drain pipes, and outfalls with tail-waters have been determined and the inlets sized, the next

### SECTION VI: FLOOD ROUTING. Consider the watershed with 6 sub-basins. Q 1 = Q A + Q B (Runoff from A & B)

SECTION VI: FLOOD ROUTING Consider the watershed with 6 sub-basins Q 1 = Q A + Q B (Runoff from A & B) 1 Q 2 = (Q A + Q B ) 2 + Q C + Q D (Routed runoff from Q 1 ) + (Direct runoff from C & D) What causes

### Spreadsheet Use for Partially Full Pipe Flow Calculations

Spreadsheet Use for Partially Full Pipe Flow Calculations Course No: C02-037 Credit: 2 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY

### HYDROGRAPH ROUTING. E. Input data needed for channel routing include the inflow hydrograph and the channel characteristics

HYDROGRAPH ROUTING. Introduction A. Two Types of Hydrograph Routing. Storage or Reservoir Routing. Channel Routing B. Reservoir Routing is used to determine the peak-flow attenuation that a hydrograph

### Rivers and Streams. Chapter 15. 15.1 Open Channel Flow

Chapter 15 Rivers and Streams SUMMARY: Rivers are, in first approximation, nearly one-dimensional flows driven by gravity down a slope and resisted by friction. While this may seem simple from a physical

### EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR

EVALUATION OF UNSTEADY OPEN CHANNEL FLOW CHARACTERISTICS OVER A CRUMP WEIR Mohd Adib Mohd Razi, Dwi Tjahjanto, Wan Afnizan Wan Mohamed, Siti Norashikin Binti Husin Department of Water Resource and Environmental

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Basic Hydraulic Principles

CHAPTER 1 Basic Hydraulic Principles 1.1 General Flow Characteristics In hydraulics, as with any technical topic, a full understanding cannot come without first becoming familiar with basic terminology

### Catchment Scale Processes and River Restoration. Dr Jenny Mant Jenny@therrc.co.uk. The River Restoration Centre therrc.co.uk

Catchment Scale Processes and River Restoration Dr Jenny Mant Jenny@therrc.co.uk The River Restoration Centre therrc.co.uk 3 Main Catchment Elements Hydrology Energy associated with the flow of water affects

### Evaluation of Open Channel Flow Equations. Introduction :

Evaluation of Open Channel Flow Equations Introduction : Most common hydraulic equations for open channels relate the section averaged mean velocity (V) to hydraulic radius (R) and hydraulic gradient (S).

### Comparing Approaches and Results of Independent 2D Hydraulic Modeling Efforts US 65 2D Hydraulic Analysis Iowa Department of Transportation

2014 HDR Architecture, 2014 2014 HDR, HDR, Inc., all all rights reserved. Comparing Approaches and Results of Independent 2D Hydraulic Modeling Efforts US 65 2D Hydraulic Analysis Iowa Department of Transportation

### THE UNIVERSITY OF TRINIDAD & TOBAGO

THE UNIVERSITY OF TRINIDAD & TOBAGO FINAL ASSESSMENT/EXAMINATIONS APRIL 2014 Course Code and Title: Programme: Date and Time: Duration: HYDRAULICS FLUD2006 BASc. Civil Engineering Wednesday 16 th April,

### USSD Workshop on Dam Break Analysis Applied to Tailings Dams

USSD Workshop on Dam Break Analysis Applied to Tailings Dams Antecedents Newtonian / non-newtonian flows Available models that allow the simulation of non- Newtonian flows (tailings) Other models used

### MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING

1 MIKE 21 FLOW MODEL HINTS AND RECOMMENDATIONS IN APPLICATIONS WITH SIGNIFICANT FLOODING AND DRYING This note is intended as a general guideline to setting up a standard MIKE 21 model for applications

### Basic Hydrology. Time of Concentration Methodology

Basic Hydrology Time of Concentration Methodology By: Paul Schiariti, P.E., CPESC Mercer County Soil Conservation District What is the Time of Concentration? The time it takes for runoff to travel from

### DESIGN MANUAL CHAPTER 7: Energy Dissipation

DESIGN MANUAL CHAPTER 7: Energy Dissipation 7.0 ENERGY DISSIPATION... 7-1 7.1 SYMBOLS AND DEFINITIONS... 7-1 7.2 DESIGN CRITERIA... 7-2 7.2.1 GENERAL CRITERIA... 7-2 7.2.2 EROSION HAZARDS... 7-2 7.2.3

### A n. P w Figure 1: Schematic of the hydraulic radius

BEE 473 Watershed Engineering Fall 2004 OPEN CHANNELS The following provide the basic equations and relationships used in open channel design. Although a variety of flow conditions can exist in a channel

### Quality Assurance Reviews of Hydraulic Models Developed for the Central Valley Floodplain Evaluation and Delineation Program

Quality Assurance Reviews of Hydraulic Models Developed for the Central Valley Floodplain Evaluation and Delineation Program Techniques Applied and Lessons Learned Seth Ahrens, P.E., CFM Selena Forman,

### FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW

FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic

### Using GIS Data With HEC-RAS

C H A P T E R 14 Using GIS Data With HEC-RAS HEC-RAS has the ability to import three-dimensional (3D) river schematic and cross section data created in a GIS or CADD system. While the HEC- RAS software

### FLOODPLAIN DELINEATION IN MUGLA-DALAMAN PLAIN USING GIS BASED RIVER ANALYSIS SYSTEM

FLOODPLAIN DELINEATION IN MUGLA-DALAMAN PLAIN USING GIS BASED RIVER ANALYSIS SYSTEM Dr. Murat Ali HATİPOĞLU Fatih KESKİN Kemal SEYREK State Hydraulics Works (DSI), Investigation and Planning Department

### DANIELS RUN STREAM RESTORATION, FAIRFAX, VIRGINIA: FLOODPLAIN ANALYSIS REPORT

DANIELS RUN STREAM RESTORATION, FAIRFAX, VIRGINIA: FLOODPLAIN ANALYSIS REPORT By: Conor C. Shea Stream Habitat Assessment and Restoration Program U.S. Fish and Wildlife Service CBFO-S07-01 Prepared in

### CHAPTER ONE Fluid Fundamentals

CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

### Broad Crested Weirs. I. Introduction

Lecture 9 Broad Crested Weirs I. Introduction The broad-crested weir is an open-channel flow measurement device which combines hydraulic characteristics of both weirs and flumes Sometimes the name ramp

### MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE. (Applied Mathematics)

MODELING FLUID FLOW IN OPEN CHANNEL WITH CIRCULAR CROSS SECTION DADDY PETER TSOMBE MASTER OF SCIENCE (Applied Mathematics) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2011 Modeling fluid flow

### TUFLOW Testing and Validation

TUFLOW Testing and Validation Christopher. D. Huxley A thesis submitted in partial fulfilment Of the degree of Bachelor of Engineering in Environmental Engineering School of Environmental Engineering Griffith

### Sanitary Sewer Design and Modeling Workshop

Sanitary Sewer Design and Modeling Workshop Featuring Bentley Systems SewerGEMS Slavco Velickov, PhD Bentley Systems Scope Steady hydraulics Model building Unsteady hydraulics Hydrology Dry weather loading

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Index-Velocity Rating Development (Calibration) for H-ADCP Real-Time Discharge Monitoring in Open Channels

Index-Velocity Rating Development (Calibration) for H-ADCP Real-Time Discharge Monitoring in Open Channels Hening Huang Teledyne RD Instruments, Inc., 14020 Stowe Drive, Poway, CA. 92064, USA (Tel: 858-842-2600,

### CHAPTER 9. Outlet Protection

CHAPTER 9 Outlet Protection General Considerations Not an ABACT, but should be used in all watersheds to prevent erosion due to concentrated discharges For channel or swale, use guidance for pipe with

### NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS

TASK QUARTERLY 15 No 3 4, 317 328 NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS WOJCIECH ARTICHOWICZ Department of Hydraulic Engineering, Faculty

### Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization Energy Dissipation

World Applied Sciences Journal 8 (): 6-67, 0 ISSN 88-495 IDOSI Publications, 0 DOI: 0.589/idosi.wasj.0.8.0.49 Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization

### SECTION 5 - STORM DRAINS

Drainage Criteria Manual SECTION 5 - STORM DRAINS 5.1.0 GENERAL This The purpose of this section discusses briefly is to consider the hydraulic aspects of storm drains and their appurtenances in a storm

### Chapter 12 - HYDROLOGICAL MEASUREMENTS

Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes Edited by Jamie Bartram and Richard Ballance Published on behalf of

### URBAN DRAINAGE CRITERIA

URBAN DRAINAGE CRITERIA I. Introduction This division contains guidelines for drainage system design and establishes a policy for recognized and established engineering design of storm drain facilities

### Module 9: Basics of Pumps and Hydraulics Instructor Guide

Module 9: Basics of Pumps and Hydraulics Instructor Guide Activities for Unit 1 Basic Hydraulics Activity 1.1: Convert 45 psi to feet of head. 45 psis x 1 ft. = 103.8 ft 0.433 psi Activity 1.2: Determine

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

### Flow Through an Abrupt Constriction. 2D Hydrodynamic Model Performance and Influence of Spatial Resolution

Flow Through an Abrupt Constriction 2D Hydrodynamic Model Performance and Influence of Spatial Resolution Cathie Louise Barton BE (Civil) School of Environmental Engineering Faculty of Environmental Sciences