Hedging InterestRate Risk with Duration


 Heather Sullivan
 2 years ago
 Views:
Transcription
1 FIXEDINCOME SECURITIES Chapter 5 Hedgng InterestRate Rsk wth Duraton
2 Outlne Prcng and Hedgng Prcng certan cashflows Interest rate rsk Hedgng prncples DuratonBased Hedgng Technques Defnton of duraton Propertes of duraton Hedgng wth duraton
3 Prcng and Hedgng Motvaton Fxedncome products can pay ether Fxed cashflows (e.g., fxedrate Treasury coupon bond) Random cashflows: depend on the future evoluton of nterest rates (e.g., floatng rate note) or other varables (prepayment rate on a mortgage pool) Objectve for ths chapter Hedge the value of a portfolo of fxed cashflows Valuaton and hedgng of random cashflow s a somewhat more complex task Leave t for later
4 Prcng and Hedgng Notaton B(t,T) : prce at date t of a unt dscount bond payng off $1 at date T («dscount factor») R a (t,) : zero coupon rate or pure dscount rate, or yeldtomaturty on a zerocoupon bond wth maturty date t + B( t, t θ) 1 (1 R ( t, θ)) R(t,) : contnuously compounded pure dscount rate wth maturty t + : B( t, t θ) exp θ R( t, θ) Equvalently, 1 R( t, θ) lnb( t, t θ) θ a θ
5 The value at date t (V t ) of a bond payng cashflows F() s gven by: m m F V ( t) F B( t, t ) Ra ( t, ) Example: $100 bond wth a 5% coupon F F m cn cn 5% N 5% Therefore, the value s a functon of tme and nterest rates Value changes as nterest rates fluctuate Prcng and Hedgng Prcng Certan CashFlows
6 Example Assume today a flat structure of nterest rates R a (0,) = 10% for all Bond wth 10 years maturty, coupon rate = 10% Prce: $100 If the term structure shfts up to 12% (parallel shft) Bond prce : $88.7 Captal loss: $11.3, or 11.3% Implcatons Prcng and Hedgng Interest Rate Rsk Hedgng nterest rate rsk s economcally mportant Hedgng nterest rate rsk s a complex task: 10 rsk factors n ths example!
7 Basc prncple: attempt to reduce as much as possble the dmensonalty of the problem Frst step: duraton hedgng Consder only one rsk factor Assume a flat yeld curve Assume only small changes n the rsk factor Beyond duraton Relax the assumpton of small nterest rate changes Relax the assumpton of a flat yeld curve Relax the assumpton of parallel shfts Prcng and Hedgng Hedgng Prncples
8 Use a proxy for the term structure: the yeld to maturty of the bond It s an average of the whole terms structure If the term structure s flat, t s the term structure We wll study the senstvty of the prce of the bond to changes n yeld: Change n TS means change n yeld Prce of the bond: (actually y/2) m F V y 1 1 Duraton Hedgng Duraton
9 Interest rate rsk Rates change from y to y+dy dv V dv V '( y) dy V ( y) Duraton Hedgng Senstvty dy s a small varaton, say 1 bass pont (e.g., from 5% to 5.01%) Change n bond value dv followng change n rate value dy V( y dy) V( y) For small changes, can be approxmated by Relatve varaton dv V'( y) dy Sens dy
10 Duraton Hedgng Duraton The relatve senstvty, denoted as Sens, s the partal dervatve of the bond prce wth respect to yeld, dvded by the bond prce m Formally 1 F V '( y) 1 y 1 1 y Sens / V ( y) V ( y) In plan Englsh: tells you how much relatve change n prce follows a gven small change n yeld mpact It s always a negatve number Bond prce goes down when yeld goes up
11 Duraton Hedgng Termnology The opposte of the senstvty Sens s referred to as «Modfed Duraton» The absolute senstvty V (y) = Sens x V(y) s referred to as «$ Duraton» Example: Bond wth 10 year maturty Coupon rate: 6% Quoted at 5% yeld or equvalently $ prce The $ Duraton of ths bond s and the modfed duraton s Interpretaton Rate goes up by 0.1% (10 bass ponts) Absolute P&L: x.0.1% = $ Relatve P&L: 7.52x0.1% = %
12 Defnton of Duraton D: 1 Also known as Macaulay duraton It s a measure of average maturty Duraton Hedgng Duraton Relatonshp wth senstvty and modfed duraton: D m F (1 V y) D Sens ( 1 y) MD (1 y)
13 Duraton Hedgng Example Tme of Cash Flow () Cash Flow F w 1 V F 1 y w Example: m = 10, c = 5.34%, y = 5.34% D m 1 w Total
14 Duraton of a zero coupon bond s Equal to maturty For a gven maturty and yeld, duraton ncreases as coupon rate Decreases For a gven coupon rate and yeld, duraton ncreases as maturty Increases For a gven maturty and coupon rate, duraton ncreases as yeld rate Decreases Duraton Hedgng Propertes of Duraton
15 Duraton Hedgng Propertes of Duraton  Example Bond Maturty Coupon YTM Prce Sens D Bond 1 1 7% 6% Bond 2 1 6% 6% Bond 3 5 7% 6% Bond 4 5 6% 6% Bond % 6% Bond % 6% Bond % 6% Bond % 7% Bond % 6% Bond % 6%
16 Duraton Hedgng Propertes of Duraton  Lnearty Duraton of a portfolo of n bonds D P n 1 D where w s the weght of bond n the portfolo, and: n w 1 1 Ths s true f and only f all bonds have same yeld,.e., f yeld curve s flat If that s the case, n order to attan a gven duraton we only need two bonds w
17 Prncple: mmunze the value of a bond portfolo wth respect to changes n yeld Denote by P the value of the portfolo Denote by H the value of the hedgng nstrument Hedgng nstrument may be Bond Swap Future Opton Assume a flat yeld curve Duraton Hedgng Hedgng
18 Changes n value Portfolo Hedgng nstrument dp P'( y) dy dp qdh Duraton Hedgng Hedgng dh H'( y) dy Strategy: hold q unts of the hedgng nstrument so that qh' ( y) P'( y) dy 0 Soluton q P'( y) H'( y) P Sens H Sens H P P Dur H Dur H P
19 Example: Duraton Hedgng Hedgng At date t, a portfolo P has a prce $328635, a 5.143% yeld and a duraton Hedgng nstrument, a bond, has a prce $ , a 4.779% yeld and a duraton Hedgng strategy nvolves a buyng/sellng a number of bonds q = (328635x7.108)/( x5.748) = If you hold the portfolo P, you want to sell 3421 unts of bonds
20 Duraton Hedgng Lmts Duraton hedgng s Very smple Bult on very restrctve assumptons Assumpton 1: small changes n yeld The value of the portfolo could be approxmated by ts frst order Taylor expanson OK when changes n yeld are small, not OK otherwse Ths s why the hedge portfolo should be readjusted reasonably often Assumpton 2: the yeld curve s flat at the orgn In partcular we suppose that all bonds have the same yeld rate In other words, the nterest rate rsk s smply consdered as a rsk on the general level of nterest rates Assumpton 3: the yeld curve s flat at each pont n tme In other words, we have assumed that the yeld curve s only affected only by a parallel shft
Interest Rate Futures
Interest Rate Futures Chapter 6 6.1 Day Count Conventons n the U.S. (Page 129) Treasury Bonds: Corporate Bonds: Money Market Instruments: Actual/Actual (n perod) 30/360 Actual/360 The day count conventon
More informationMultiple discount and forward curves
Multple dscount and forward curves TopQuants presentaton 21 ovember 2012 Ton Broekhuzen, Head Market Rsk and Basel coordnator, IBC Ths presentaton reflects personal vews and not necessarly the vews of
More informationbenefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
More informationSolution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
More informationLecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annutymmedate, and ts present value Study annutydue, and
More informationTHE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
More informationADVA FINAN QUAN ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS VAULT GUIDE TO. Customized for: Jason (jason.barquero@cgu.edu) 2002 Vault Inc.
ADVA FINAN QUAN 00 Vault Inc. VAULT GUIDE TO ADVANCED FINANCE AND QUANTITATIVE INTERVIEWS Copyrght 00 by Vault Inc. All rghts reserved. All nformaton n ths book s subject to change wthout notce. Vault
More informationAnswer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 MultpleChoce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multplechoce questons. For each queston, only one of the answers s correct.
More informationLecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
More informationHedge accounting within IAS39
Economc and Fnancal Report 2002/02 Hedge accountng wthn IAS39 Alessandro Ross, Gudo Bchsao and Francesca Campolongo Economc and Fnancal Studes European Investment Bank 00, boulevard Konrad Adenauer L2950
More informationCapital asset pricing model, arbitrage pricing theory and portfolio management
Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securtyspecfc rsk
More informationStock Profit Patterns
Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce
More informationInterest Rate Fundamentals
Lecture Part II Interest Rate Fundamentals Topcs n Quanttatve Fnance: Inflaton Dervatves Instructor: Iraj Kan Fundamentals of Interest Rates In part II of ths lecture we wll consder fundamental concepts
More informationInterest Rate Forwards and Swaps
Interest Rate Forwards and Swaps Forward rate agreement (FRA) mxn FRA = agreement that fxes desgnated nterest rate coverng a perod of (nm) months, startng n m months: Example: Depostor wants to fx rate
More informationBond futures. Bond futures contracts are futures contracts that allow investor to buy in the
Bond futures INRODUCION Bond futures contracts are futures contracts that allow nvestor to buy n the future a theoretcal government notonal bond at a gven prce at a specfc date n a gven quantty. Compared
More informationState function: eigenfunctions of hermitian operators> normalization, orthogonality completeness
Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators> normalzaton, orthogonalty completeness egenvalues and
More informationECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
More informationChapter 4 Financial Markets
Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that
More informationTime Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6  The Time Value of Money. The Time Value of Money
Ch. 6  The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21 Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
More informationSection 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
More informationProperties of American Derivative Securities
Capter 6 Propertes of Amercan Dervatve Securtes 6.1 Te propertes Defnton 6.1 An Amercan dervatve securty s a sequence of nonnegatve random varables fg k g n k= suc tat eac G k s F k measurable. Te owner
More information9.1 The Cumulative Sum Control Chart
Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s
More informationProblem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationSimon Acomb NAG Financial Mathematics Day
1 Why People Who Prce Dervatves Are Interested In Correlaton mon Acomb NAG Fnancal Mathematcs Day Correlaton Rsk What Is Correlaton No lnear relatonshp between ponts Comovement between the ponts Postve
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationNasdaq Iceland Bond Indices 01 April 2015
Nasdaq Iceland Bond Indces 01 Aprl 2015 Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes
More informationRecurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
More informationThe Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 738 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qngxn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn zhouqngxn98@6.com
More informationVasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
More informationFixed income risk attribution
5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group chthra.krshnamurth@rskmetrcs.com We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two
More informationSolutions to First Midterm
rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.
More informationAS 2553a Mathematics of finance
AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all
More informationISLM Model 1 C' dy = di
 odel Solow Assumptons  demand rrelevant n long run; assumes economy s operatng at potental GDP; concerned wth growth  Assumptons  supply s rrelevant n short run; assumes economy s operatng below potental
More informationFINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
More informationStress test for measuring insurance risks in nonlife insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n nonlfe nsurance Summary Ths memo descrbes stress testng of nsurance
More informationThe CoxRossRubinstein Option Pricing Model
Fnance 400 A. Penat  G. Pennacc Te CoxRossRubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te noarbtrage
More informationPowerofTwo Policies for Single Warehouse MultiRetailer Inventory Systems with Order Frequency Discounts
Powerofwo Polces for Sngle Warehouse MultRetaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)
More informationMathematics of Finance
Mathematcs of Fnance 5 C H A P T E R CHAPTER OUTLINE 5.1 Smple Interest and Dscount 5.2 Compound Interest 5.3 Annutes, Future Value, and Snkng Funds 5.4 Annutes, Present Value, and Amortzaton CASE STUDY
More informationJoe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
More informationFormula of Total Probability, Bayes Rule, and Applications
1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.
More informationCHAPTER 18 INFLATION, UNEMPLOYMENT AND AGGREGATE SUPPLY. Themes of the chapter. Nominal rigidities, expectational errors and employment fluctuations
CHAPTER 18 INFLATION, UNEMPLOYMENT AND AGGREGATE SUPPLY Themes of the chapter Nomnal rgdtes, expectatonal errors and employment fluctuatons The shortrun tradeoff between nflaton and unemployment The
More informationA Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
More informationProblems and Solutions
1 CHAPTER 1 Problems 1.1 Problems on Bonds Exercise 1.1 On 12/04/01, consider a fixedcoupon bond whose features are the following: face value: $1,000 coupon rate: 8% coupon frequency: semiannual maturity:
More informationFinite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
More informationApplication of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance
Applcaton of Quas Monte Carlo methods and Global Senstvty Analyss n fnance Serge Kucherenko, Nlay Shah Imperal College London, UK skucherenko@mperalacuk Daro Czraky Barclays Captal DaroCzraky@barclayscaptalcom
More informationRisk Model of LongTerm Production Scheduling in Open Pit Gold Mining
Rsk Model of LongTerm Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
More informationOn the pricing of illiquid options with BlackScholes formula
7 th InternatonalScentfcConferenceManagngandModellngofFnancalRsks Ostrava VŠBTU Ostrava, Faculty of Economcs, Department of Fnance 8 th 9 th September2014 On the prcng of llqud optons wth BlackScholes
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More information10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
More informationTrafficlight a stress test for life insurance provisions
MEMORANDUM Date 006097 Authors Bengt von Bahr, Göran Ronge Traffclght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax
More informationIn our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount owed is. P (1 + i) A
Amortzed loans: Suppose you borrow P dollars, e.g., P = 100, 000 for a house wth a 30 year mortgage wth an nterest rate of 8.25% (compounded monthly). In ths type of loan you make equal payments of A dollars
More informationLoss analysis of a life insurance company applying discretetime riskminimizing hedging strategies
Insurance: Mathematcs and Economcs 42 2008 1035 1049 www.elsever.com/locate/me Loss analyss of a lfe nsurance company applyng dscretetme rskmnmzng hedgng strateges An Chen Netspar, he Netherlands Department
More informationA Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy Scurve Regression
Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy Scurve Regresson ChengWu Chen, Morrs H. L. Wang and TngYa Hseh Department of Cvl Engneerng, Natonal Central Unversty,
More informationThe Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets
. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely
More informationInstitute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
More informationPortfolio Risk Decomposition (and Risk Budgeting)
ortfolo Rsk Decomposton (and Rsk Budgetng) Jason MacQueen RSquared Rsk Management Introducton to Rsk Decomposton Actve managers take rsk n the expectaton of achevng outperformance of ther benchmark Mandates
More informationGraph Theory and Cayley s Formula
Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll
More information8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
More informationCompound Interest: Further Topics and Applications. Chapter 9
92 Compound Interest: Further Topcs and Applcatons Chapter 9 93 Learnng Objectves After letng ths chapter, you wll be able to:? Calculate the nterest rate and term n ound nterest applcatons? Gven a nomnal
More informationYIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic BSpline and Natural Cubic Spline Methodology.
YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc BSplne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry
More informationInterest Rates and The Credit Crunch: New Formulas and Market Models
Interest Rates and The Credt Crunch: New Formulas and Market Models Fabo Mercuro QFR, Bloomberg Frst verson: 12 November 2008 Ths verson: 5 February 2009 Abstract We start by descrbng the major changes
More informationLuby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationGibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)
Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980) Introducton We want
More informationDescriptive Statistics (60 points)
Economcs 30330: Statstcs for Economcs Problem Set 2 Unversty of otre Dame Instructor: Julo Garín Sprng 2012 Descrptve Statstcs (60 ponts) 1. Followng a recent government shutdown, Mnnesota Governor Mark
More informationSimple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
More information1 Approximation Algorithms
CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons
More information3. Present value of Annuity Problems
Mathematcs of Fnance The formulae 1. A = P(1 +.n) smple nterest 2. A = P(1 + ) n compound nterest formula 3. A = P(1.n) deprecaton straght lne 4. A = P(1 ) n compound decrease dmshng balance 5. P = 
More informationThe Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading
The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992
More informationPassive Filters. References: Barbow (pp 265275), Hayes & Horowitz (pp 3260), Rizzoni (Chap. 6)
Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called
More informationOn some special nonlevel annuities and yield rates for annuities
On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes
More informationPragmatic Insurance Option Pricing
Paper to be presented at the XXXVth ASTIN Colloquum, Bergen, 6 9th June 004 Pragmatc Insurance Opton Prcng by Jon Holtan If P&C Insurance Company Ltd Oslo, Norway Emal: jon.holtan@f.no Telephone: +47960065
More informationPricing index options in a multivariate Black & Scholes model
Prcng ndex optons n a multvarate Black & Scholes model Danël Lnders AFI_1383 Prcng ndex optons n a multvarate Black & Scholes model Danël Lnders Verson: October 2, 2013 1 Introducton In ths paper, we consder
More informationRiskbased Fatigue Estimate of Deep Water Risers  Course Project for EM388F: Fracture Mechanics, Spring 2008
Rskbased Fatgue Estmate of Deep Water Rsers  Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
More information0.02t if 0 t 3 δ t = 0.045 if 3 < t
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve
More informationToday in Physics 217: the divergence and curl theorems
Today n Physcs 217: the dvergence and curl theorems Flux and dvergence: proof of the dvergence theorem, à lá Purcell. rculaton and curl: proof of tokes theorem, also followng Purcell. ee Purcell, chapter
More informationCapital Asset Pricing Model (CAPM)
Captal Asset Prcng odel (CAP) Expected Return A undaental queston n nance: How do we deterne the expected return o an asset? Based on rsk? How do we easure the rsk? What s the approprate expected return
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More information(SOCIAL) COSTBENEFIT ANALYSIS IN A NUTSHELL
(SOCIAL) COSTBENEFIT ANALYSIS IN A NUTSHELL RUFUS POLLOCK EMMANUEL COLLEGE, UNIVERSITY OF CAMBRIDGE 1. Introducton Costbeneft analyss s a process for evaluatng the merts of a partcular project or course
More informationPricing Overage and Underage Penalties for Inventory with Continuous Replenishment and Compound Renewal Demand via Martingale Methods
Prcng Overage and Underage Penaltes for Inventory wth Contnuous Replenshment and Compound Renewal emand va Martngale Methods RAF Jun3  comments welcome, do not cte or dstrbute wthout permsson Junmn
More informationMultivariate EWMA Control Chart
Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant
More informationOn the correct model specification for estimating the structure of a currency basket
On the correct model specfcaton for estmatng the structure of a currency basket JyhDean Hwang Department of Internatonal Busness Natonal Tawan Unversty 85 Roosevelt Road Sect. 4, Tape 106, Tawan jdhwang@ntu.edu.tw
More informationProblems and Solutions
Problems and Solutions CHAPTER Problems. Problems on onds Exercise. On /04/0, consider a fixedcoupon bond whose features are the following: face value: $,000 coupon rate: 8% coupon frequency: semiannual
More informationLevel Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annutymmedate 2 Annutydue Symoblc approach
More informationModule 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
More informationA Master Time Value of Money Formula. Floyd Vest
A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.
More informationChapter 7. RandomVariate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 RandomVariate Generation
Chapter 7 RandomVarate Generaton 7. Contents Inversetransform Technque AcceptanceRejecton Technque Specal Propertes 7. Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton
More informationEfficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
More informationNotes for Lecture 3 (February 14)
INTEREST RATES: The analysis of interest rates over time is complicated because rates are different for different maturities. Interest rate for borrowing money for the next 5 years is ambiguous, because
More informationgreatest common divisor
4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no
More informationPerformance attribution for multilayered investment decisions
Performance attrbuton for multlayered nvestment decsons 880 Thrd Avenue 7th Floor Ne Yor, NY 10022 212.866.9200 t 212.866.9201 f qsnvestors.com Inna Oounova Head of Strategc Asset Allocaton Portfolo Management
More informationAn Overview of Financial Mathematics
An Overvew of Fnancal Mathematcs Wllam Benedct McCartney July 2012 Abstract Ths document s meant to be a quck ntroducton to nterest theory. It s wrtten specfcally for actuaral students preparng to take
More informationAn Analysis of Pricing Methods for Baskets Options
An Analyss of Prcng Methods for Baskets Optons Martn Krekel, Johan de Kock, Ralf Korn, TnKwa Man Fraunhofer ITWM, Department of Fnancal Mathematcs, 67653 Kaserslautern, Germany, emal: krekel@twm.fhg.de
More informationLecture 2: Absorbing states in Markov chains. Mean time to absorption. WrightFisher Model. Moran Model.
Lecture 2: Absorbng states n Markov chans. Mean tme to absorpton. WrghtFsher Model. Moran Model. Antonna Mtrofanova, NYU, department of Computer Scence December 8, 2007 Hgher Order Transton Probabltes
More informationCS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
More information10.2 Future Value and Present Value of an Ordinary Simple Annuity
348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are
More informationManaging Cycle Inventories. Matching Supply and Demand
Managng Cycle Inventores Matchng Supply and Demand 1 Outlne Why to hold cycle nventores? Economes of scale to reduce fxed costs per unt. Jont fxed costs for multple products Long term quantty dscounts
More informationUsing Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
More informationProduction. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.
Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s nonempty If Y s empty, we have nothng to talk about 2. Y s closed A set
More information