Institut für Mathematik
|
|
|
- Sheila Riley
- 10 years ago
- Views:
Transcription
1 RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Institut für Mathematik Backtest of trading systems on candle charts by S. Maier-Paape A. Platen Report No January 2015 Institute for Mathematics, RWTH Aachen University Templergraben 55, D Aachen Germany
2 Backtest of Trading Systems on Candle Charts Stanislaus Maier-Paape Institut für Mathematik, RWTH Aachen, Templergraben 55, D Aachen, Germany Andreas Platen Institut für Mathematik, RWTH Aachen, Templergraben 55, D Aachen, Germany December 18, 2014 arxiv: v1 [q-fin.tr] 17 Dec 2014 Abstract In this paper we try to design the necessary calculation needed for backtesting trading systems when only candle chart data are available. We lay particular emphasis on situations which are not or not uniquely decidable and give possible strategies to handle such situations. Keywords backtest evaluation, historical simulation, trading system, candle chart, imperfect data JEL classification 1 Introduction C15, C63, C99 Since at least a decade more and more software solutions for self-designable trading systems have emerged (e.g. Ninjatrader, Tradestation, Tradesignal online, Nanotrader, Investox, to name just a few). All of the listed also incorporate a backtesting (also called historical simulation) tool including helpful statistical data on the trading success, i.e. it is possible to run a trading system on historical data to simulate the trades. The idea is that trading systems which were successful in the past should be successful in the future as well. Analogously a trading system which performs bad on historical data cannot be trusted and is supposed to be unsuccessful in the future. This makes backtesting an important tool for designing trading systems. Although already several years on the market we found that many of the software solutions perform calculations sometimes incorrectly. This concerns even situations which are uniquely decidable. When backtests are evaluated just on the knowledge of candle data, however, there are always situations, which can not or not uniquely (SNU: situation which is not unique) be determined, see e.g. the book of Pardo [10, Chapter 6, Section Software Limitations ] or Harris [5, Chapter 6]. Pardo [10] and Harris [5] describe this problem but do not discuss the backtest algorithm itself and how to deal with such problems. The least what a backtest engine should do in these situations is to warn the user about these problems. Also the user
3 2 S. MAIER-PAAPE, AND A. PLATEN should be informed, how such situations are handled. We suggest that there should be four different strategies to choose from: I. worst case (wc): the SNU is evaluated as the worst possible case for the user. II. III. IV. best case (bc): the SNU is evaluated as the best possible case for the user. ignore (ig): the entry signal or the whole trade is ignored. exact (ex): to resolve the problem, more data (sometimes even tick data) have to be loaded. To the best of the author s knowledge there is no publication about backtest algorithms itself but only for the statical evaluation of backtests. Typical statistical measures like Sharpe ratio, average trade, profit factor and many more, see e.g. [7, Chapter 22], give hints on how the trading system performs. Therefore we discuss the procedure of backtest evaluation based on candle/bar chart data in detail. Further information about backtesting and some limitations can be found e.g. in the books of Chan [4, Chapter 3], Pardo [10, Chapter 6] and Harris [5, Chapter 6] and for trading options in the book of Izraylevich and Tsudikman [6, Chapter 5]. It is well known that a backtest is just a simulation over the past and does not predict future behavior of a trading system. The ability to accurately simulate a parameter dependent trading system on some chart data can rapidly lead to an overestimation of the parameters by optimizing these parameters to reach the best performance on the historical data. Ni and Zhang [8] present a method to improve the efficiency of backtesting a trading strategy for different parameter choices but they do not explain the backtest evaluation itself. The result could be an optimal trading system but only well adjusted to the past. In general this does not mean that this parameter setting is also appropriate in the future and gives a stable strategy. In contrast this can lead to tremendous losses. This phenomena is called backtest overfitting, see [1, 2, 3] and also [9, Chapter 6] for a detailed discussion. Therefore backtesting needs to be used carefully but, nevertheless, gives important information about a trading strategy. Clearly the above remarks and references show that a correct interpretation of backtest results is a difficult and more or less up to now unsolved problem. However, this is not the subject of our considerations in this paper. Here we want to focus the attention on how the backtest evaluation itself has to be calculated correctly. Due to symmetry, it suffices to consider entry orders for long positions only. Therefore we discuss only long positions unless we explicitly refer to short orders. Since market orders are to be executed at the open of the next candle, problems of backtest evaluation for the position entry only occur for limit (with limit level ), stop (with stop level ) and stop limit (with stop level and limit level ) long orders, see e.g. [9, Chapter 4] for definition of some order types. We discuss the principal part of this paper, i.e. the decisions for backtest evaluation, in Section 2, while in Subsection 2.1 we need to make some assumptions and discuss some limitations of a backtest. In Subsections 2.2 to 2.4 we discuss the question when and how a position has to be opened with the classical EnterLongLimit(), EnterLongStop() and EnterLongStop- Limit() orders, respectively. In all three cases the decision tree is only given for the first bar of the trade. Since typically a trading setup includes immediate stop losses (at ) or target levels (at ), even in the first bar besides the pure position entry, there are numerous other things to check. Once the first bar of the trade has finished or in case we enter the position immediately
4 BACKTEST OF TRADING SYSTEMS ON CANDLE CHARTS 3 at the beginning of the period the decisions for such an active position in succeeding bars is simpler. The decision tree for the latter is given in Subsection 2.5. We close the discussion with the conclusion in Section 3. 2 Backtest evaluation algorithm We look at situations for different entry and setups. All orders are generated at the end of a candle so that these orders can be filled in the next candle. Therefore we take a look at this next candle for different orders. The examined candle has the four values H = High, L = Low, O = Open and C = Close. 2.1 Assumptions and limitations In order to be able to perform exact calculations we first need to make a continuity assumption on the price evolution within a candle. Assumption 1. (No intra-period gaps) We assume that the price evolution inside the period skips no nearby tick-values, i.e. starting at the open until the end of the period at the close all price moves during that period (up or down) come only as ± 1 tick. Intra-period gaps, i.e. moves by more than one tick, thus are not allowed. This assumptions is essential for determining intra-period entry or prices, e.g. at limit or stop levels. In live trading, however, this assumption is not realistic. To overcome this problem usually slippage is introduced for each backtest trade, see e.g. the book of Pardo [10, Chapter 6, Section Realistic Assumptions ] for a detailed discussion. Additionally we need to assume that all orders are filled at the requested price. Assumption 2. (Market liquidity) We assume that we trade on a perfectly liquid market. I.e. our orders do not affect the price changes and are fully filled at the corresponding entry or stop level. Of course this assumption is also not realistic. Similar to Assumption 1 slippage can help to get more reasonable results. Since all prices (measured as tick-values) are integers we need to make sure that all values given by the user (like limit level, etc.) are of the same type to avoid rounding errors, see also [10, Chapter 6, Section Software Limitations ]. Assumption 3. (Rounded values) All values like limit price, target and stop loss level are given as numbers which are rounded to the corresponding next possible price value which depends on the tick size. For long positions the stop level for stop order and the target level are rounded up while the stop loss level and limit price are rounded down. For short positions the stop level for stop order and the target level are then rounded down while the stop loss level and limit price needs to be rounded up. This way to round the values does not change any decision during the backtest evaluation but it corrects the price values used for the computation of the outcomes of each trade. In case the long position is coupled with a stop loss order (stop level ) or a target order (target level ) we always assume < < and < <.
5 4 S. MAIER-PAAPE, AND A. PLATEN Next we need to make some simplification for the best and worst case for SNUs. Suppose we are invested in a stock and there is a SNU with the two options of the position at target level or to stay invested. Of course at should immediately lead to a win trade. However, if we change the target in the next period it is possible to earn even more money if we do not the position at this moment but later in one of the subsequent candles. This can also affect upcoming trades which in general depend on the current status (invested or not invested) and thus can increase the comply of the decisions needed to be done for the real (globally) best case. Therefore we always choose the simplest setting which is best for the user at the current period. In this easy example this would be to immediately the position at target level. Assumption 4. (Worst and best case) Best and worst case decisions in situations which cannot be uniquely determined (SNU) should be made on premise that it is best/worst for the current period only. 2.2 Entry of a long position with limit order Here the long position is only opened, once the price reaches the limit level (or below). This is the situation of an entry with the classical EnterLongLimit() order optionally supplemented by stop loss and target levels. We assume < <. The decision trees are shown in Figures 1 to 3. limit at L > do not L at min{o, } L > limit at do not stop loss at < L at min{o, } L > do not L at min{o, } (a) Only limit long order. (b) Limit long order supplemented with stop loss. Figure 1: Entry setups with limit long order. L > limit at do not < L l at min{o, } H H < do not O at O > A C < is not determinable wc: do not bc: at C at Figure 2: Entry setup with limit long order supplemented with target.
6 BACKTEST OF TRADING SYSTEMS ON CANDLE CHARTS 5 limit at stop loss at < < H < without target H L at min{o, } L > without stop B O O > at or wc: at bc: at at O Figure 3: Entry setup with limit long order supplemented with stop loss and target. A B (a) Cases for Figure 2. (b) Cases for Figure 3. Figure 4: Variations of possible price development within a candle for SNU with limit long order. In Figures 2 and 3 the cases marked with A and B, respectively, are two SNUs, i.e. if we cannot load extra data like tick data to make these situations unique, there are multiple possibilities for the correct position entry and/or. Figure 4 shows one example for each possibility for both SNUs A and B. We always assume < because of the following reason: In case the position would be closed right after it is opened, which makes no sense and should therefore be forbidden by the software, i.e. these order should be canceled/ignored. If the same would happen if O and of course L. However, if O < the position would be opened at the beginning of the period which is equivalent to a market order executed at the open of the subsequent period. In this case the trade would not immediately be stopped and thus can be handled as in Subsection 2.5 if it is not ignored in advance. From the decision trees in Figures 1 to 3 we see that for limit orders only a combination involving a target where the target is reached in the entry period leads to SNUs. If there is no target or if the target is far away all situations are uniquely decidable. 2.3 Entry of a long position with stop order Here the long position is only opened, once the price reaches the stop level (or above), created by the classical EnterLongStop() order. Again the order can optionally be supplemented by stop loss ( ) and target levels ( ) with < <. The decision trees are shown in Figures 5 to 7 and the examples for the SNUs in Figure 8.
7 6 S. MAIER-PAAPE, AND A. PLATEN stop at H < do not H at max{o, } H < stop at do not < H at max{o, } H < do not H at max{o, } (a) Only stop long order. (b) Stop long order supplemented with target. Figure 5: Entry setups with stop long order. H < stop at do not stop loss at < H b at max{o, } L L > do not O at O < C C C > is not determinable wc: at bc: do not at Figure 6: Entry setup with stop long order supplemented with stop loss. stop at stop loss at < < H < without target H L at max{o, } L > without stop D O O at O < at or wc: at bc: at Figure 7: Entry setup with stop long order supplemented with stop loss and target. C D (a) Cases for Figure 6. (b) Cases for Figure 7. Figure 8: Variations of possible price development within a candle for SNU with stop long order.
8 BACKTEST OF TRADING SYSTEMS ON CANDLE CHARTS 7 Since an entry stop order is some kind of mirrored version of the entry limit order, we now have SNUs for the entry stop order supplemented with an initial stop loss level. Again, the case makes no sense, because the position would be closed immediately after the opening, compare the case for long limit order. In the case the position is either to be closed after opening if O or, if O >, we have an equivalent case to a market order. 2.4 Entry of a long position with stop limit order Here a limit order at level is only generated, once the price reaches the stop level (or above), as is generated by the classical EnterLongStopLimit() order. I.e. the trader in principle wishes to have an EnterLongLimit() order at level, but to activate that order he firstly wants that the prices reach the stop level (or higher). Again this order may optionally be supplemented by stop loss ( ) or target levels ( ). We assume < min{, } <. The decision trees are shown in Figures 9 to 12, and examples for the SNUs in Figures 13 to 16, respectively. stop limit at and H < do not H limit order at is active O < activation of at limit order intra period > O limit at E C > entry is not determinable wc: no entry bc: at L > do not, but limit order at for next period L C at Figure 9: Entry setup with stop limit long order. This entry order type is much more complex and therefore leads to larger decision trees and much more SNUs. Even the worst cases and/or best cases for some SNUs are not uniquely determinable because there are situations where a position can be opened or there is just an active limit order at the end of the candle, see e.g. SNU E. In general it is not clear whether it is worst or best to have an active limit order or an open position at the end of the candle in such cases. Because of Assumption 4 we decide to measure the quality of an open trade by the current value of the trade which in this case is the difference between the close of the candle and the entry price of the position. If the close is larger than the entry price we currently are in a positive trade (and thus the best case) which is better than having just an active limit order (worst case), and vice versa if the close is below the entry price.
9 8 S. MAIER-PAAPE, AND A. PLATEN C at min{, } at F < C stop limit at and stop loss at < min{, } L > without stop L H limit order at is active H < do nothing O < activation of limit order intra period O limit at and stop loss at at min{, } is not determinable wc: at bc: no C > G < entry is not determinable wc: at at bc: at no H at is not determinable wc: at bc: no Figure 10: Entry setup with stop limit long order supplemented with stop loss. stop limit at and H < without target H limit order at is active > H H < do nothing O limit at and O < activation of limit order intra period L > limit order at and for next period L > entry is not determinable at at I C J < C < K open position at the end of the period is possible wc: at bc: at at open position at the end of the period is possible wc: limit order at and target at for next period bc: at at C no open position at the end of the period wc: limit order at and target at for next period bc: at at Figure 11: Entry setup with stop limit long order supplemented with target.
10 BACKTEST OF TRADING SYSTEMS ON CANDLE CHARTS 9 stop limit at and stop loss at < < H < without target L and H < L > s without stop H limit order at is active H < do nothing O limit at, stop loss at and O < activation of limit order intra period L at is not determinable (no open position at the end of the period) wc: at bc: at > M C > entry is not determinable wc: at at bc: at at N C at is not determinable (open position at the end of the period is possible, if < C) wc: at bc: at Figure 12: Entry setup with stop limit long order supplemented with stop loss and target. E Figure 13: Variations of possible price development within a candle for SNU with stop limit long order for Figure 9. F G H Figure 14: Variations of possible price development within a candle for SNU with stop limit long order for Figure 10.
11 10 S. MAIER-PAAPE, AND A. PLATEN I J K Figure 15: Variations of possible price development within a candle for SNU with stop limit long order for Figure 11. L M N Figure 16: Variations of possible price development within a candle for SNU with stop limit long order for Figure Exit from an active long position The final discussion deals with the case of an active long position, i.e. at the end of the prior period a long position remained open. This also includes situations where a market order was generated in the prior candle such that a long position is opened right at the open of the current period. The decision trees for the current period are shown in Figures 17 and 18 and the examples for the SNUs in Figure 19. stop loss at L > do not L at min{o, } H at max{o, } H < do not (a) Only stop loss. (b) Only target. Figure 17: Exit setups during an active long position.
12 BACKTEST OF TRADING SYSTEMS ON CANDLE CHARTS 11 L > at H O L O at O stop loss at < < O < O at O at or wc: at bc: at ig: ignore whole trade L > do not H < L at Figure 18: Exit setup during an active long position with both, stop loss and target. O Figure 19: Variations of possible price development within a candle for SNU during an active long position for Figure Conclusions The precise listing of the backtest evaluation algorithm in the preceding section shows very clearly that not uniquely decidable situations (SNUs) are omnipresent when only candle data are available. This is not consistent with the fact that wide spread software solutions ignore that problem completely. An honest evaluation should give users the choice of worst/best case calculations. Future software solutions should be able to reload finer candle or tick data for the bars in question in order to evaluate backtests exactly. References [1] Bailey, D. H., J. M. Borwein, M. L. de Prado and Q. J. Zhu: The Probability of Backtest Overfitting. Available at SSRN, DOI: /ssrn , [2] Bailey, D. H., J. M. Borwein, M. L. de Prado and Q. J. Zhu: Pseudo-Mathematics and Financial Charlatanism: The Effects of Backtest Overfitting on Out-of-Sample Performance. Notices of the AMS, 61(5): , /rnoti-p458.pdf. [3] Carr, P. P. and M. L. de Prado: Determining Optimal Trading Rules without Backtesting. arxiv: [q-fin.pm], 2014.
13 12 S. MAIER-PAAPE, AND A. PLATEN [4] Chan, E. P.: Quantitative Trading: How to Build Your Own Algorithmic Trading Business. Wiley trading series. John Wiley & Sons, Hoboken, [5] Harris, M.: Profitability and Systematic Trading. Wiley trading series. John Wiley & Sons, Hoboken, [6] Izraylevich, S. and V. Tsudikman: Automated Option Trading: Create, Optimize, and Test Automated Trading Systems. FT Press, Upper Saddle River, NJ, [7] Kirkpatrick, C. D. and J. Dahlquist: Technical Analysis: The Complete Resource for Financial Market Technicians. FT Press, Upper Saddle River, NJ, 2nd edition, [8] Ni, J. and C. Zhang: An Efficient Implementation of the Backtesting of Trading Strategies. In Pan, Y., D. Chen, M. Guo, J. Cao and J. Dongarra (editors): Parallel and Distributed Processing and Applications, volume 3758 of Lecture Notes in Computer Science, pages Springer, Heidelberg, DOI: / [9] Pardo, R.: Design, Testing, and Optimization of Trading Systems. John Wiley & Sons, Hoboken, [10] Pardo, R.: The Evaluation and Optimization of Trading Strategies. John Wiley & Sons, Hoboken, 2nd edition, 2008.
14 Reports des Instituts für Mathematik der RWTH Aachen [1] Bemelmans J.: Die Vorlesung Figur und Rotation der Himmelskörper von F. Hausdorff, WS 1895/96, Universität Leipzig, S 20, März 2005 [2] Wagner A.: Optimal Shape Problems for Eigenvalues, S 30, März 2005 [3] Hildebrandt S. and von der Mosel H.: Conformal representation of surfaces, and Plateau s problem for Cartan functionals, S 43, Juli 2005 [4] Reiter P.: All curves in a C 1 -neighbourhood of a given embedded curve are isotopic, S 8, Oktober 2005 [5] Maier-Paape S., Mischaikow K. and Wanner T.: Structure of the Attractor of the Cahn-Hilliard Equation, S 68, Oktober 2005 [6] Strzelecki P. and von der Mosel H.: On rectifiable curves with L p bounds on global curvature: Self avoidance, regularity, and minimizing knots, S 35, Dezember 2005 [7] Bandle C. and Wagner A.: Optimization problems for weighted Sobolev constants, S 23, Dezember 2005 [8] Bandle C. and Wagner A.: Sobolev Constants in Disconnected Domains, S 9, Januar 2006 [9] McKenna P.J. and Reichel W.: A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains, S 25, Mai 2006 [10] Bandle C., Below J. v. and Reichel W.: Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions, S 32, Mai 2006 [11] Kyed M.: Travelling Wave Solutions of the Heat Equation in Three Dimensional Cylinders with Non-Linear Dissipation on the Boundary, S 24, Juli 2006 [12] Blatt S. and Reiter P.: Does Finite Knot Energy Lead To Differentiability?, S 30, September 2006 [13] Grunau H.-C., Ould Ahmedou M. and Reichel W.: The Paneitz equation in hyperbolic space, S 22, September 2006 [14] Maier-Paape S., Miller U.,Mischaikow K. and Wanner T.: Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square, S 67, Oktober 2006 [15] von der Mosel H. and Winklmann S.: On weakly harmonic maps from Finsler to Riemannian manifolds, S 43, November 2006 [16] Hildebrandt S., Maddocks J. H. and von der Mosel H.: Obstacle problems for elastic rods, S 21, Januar 2007 [17] Galdi P. Giovanni: Some Mathematical Properties of the Steady-State Navier-Stokes Problem Past a Three- Dimensional Obstacle, S 86, Mai 2007 [18] Winter N.: W 2,p and W 1,p -estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations, S 34, Juli 2007 [19] Strzelecki P., Szumańska M. and von der Mosel H.: A geometric curvature double integral of Menger type for space curves, S 20, September 2007 [20] Bandle C. and Wagner A.: Optimization problems for an energy functional with mass constraint revisited, S 20, März 2008 [21] Reiter P., Felix D., von der Mosel H. and Alt W.: Energetics and dynamics of global integrals modeling interaction between stiff filaments, S 38, April 2008 [22] Belloni M. and Wagner A.: The Eigenvalue Problem from a Variational Point of View, S 18, Mai 2008 [23] Galdi P. Giovanni and Kyed M.: Steady Flow of a Navier-Stokes Liquid Past an Elastic Body, S 28, Mai 2008 [24] Hildebrandt S. and von der Mosel H.: Conformal mapping of multiply connected Riemann domains by a variational approach, S 50, Juli 2008 [25] Blatt S.: On the Blow-Up Limit for the Radially Symmetric Willmore Flow, S 23, Juli 2008 [26] Müller F. and Schikorra A.: Boundary regularity via Uhlenbeck-Rivière decomposition, S 20, Juli 2008 [27] Blatt S.: A Lower Bound for the Gromov Distortion of Knotted Submanifolds, S 26, August 2008 [28] Blatt S.: Chord-Arc Constants for Submanifolds of Arbitrary Codimension, S 35, November 2008 [29] Strzelecki P., Szumańska M. and von der Mosel H.: Regularizing and self-avoidance effects of integral Menger curvature, S 33, November 2008 [30] Gerlach H. and von der Mosel H.: Yin-Yang-Kurven lösen ein Packungsproblem, S 4, Dezember 2008 [31] Buttazzo G. and Wagner A.: On some Rescaled Shape Optimization Problems, S 17, März 2009 [32] Gerlach H. and von der Mosel H.: What are the longest ropes on the unit sphere?, S 50, März 2009 [33] Schikorra A.: A Remark on Gauge Transformations and the Moving Frame Method, S 17, Juni 2009 [34] Blatt S.: Note on Continuously Differentiable Isotopies, S 18, August 2009 [35] Knappmann K.: Die zweite Gebietsvariation für die gebeulte Platte, S 29, Oktober 2009 [36] Strzelecki P. and von der Mosel H.: Integral Menger curvature for surfaces, S 64, November 2009 [37] Maier-Paape S., Imkeller P.: Investor Psychology Models, S 30, November 2009 [38] Scholtes S.: Elastic Catenoids, S 23, Dezember 2009 [39] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of an Elastic Body Moving Freely in a Navier-Stokes Liquid under the Action of a Constant Body Force, S 67, Dezember 2009 [40] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable, S 25, Dezember 2009
15 [41] Galdi G.P. and Kyed M.: Steady-State Navier-Stokes Flows Around a Rotating Body: Leray Solutions are Physically Reasonable, S 15, Dezember 2009 [42] Bemelmans J., Galdi G.P. and Kyed M.: Fluid Flows Around Floating Bodies, I: The Hydrostatic Case, S 19, Dezember 2009 [43] Schikorra A.: Regularity of n/2-harmonic maps into spheres, S 91, März 2010 [44] Gerlach H. and von der Mosel H.: On sphere-filling ropes, S 15, März 2010 [45] Strzelecki P. and von der Mosel H.: Tangent-point self-avoidance energies for curves, S 23, Juni 2010 [46] Schikorra A.: Regularity of n/2-harmonic maps into spheres (short), S 36, Juni 2010 [47] Schikorra A.: A Note on Regularity for the n-dimensional H-System assuming logarithmic higher Integrability, S 30, Dezember 2010 [48] Bemelmans J.: Über die Integration der Parabel, die Entdeckung der Kegelschnitte und die Parabel als literarische Figur, S 14, Januar 2011 [49] Strzelecki P. and von der Mosel H.: Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in R n. Part I: Smoothing and self-avoidance effects, S 47, Februar 2011 [50] Scholtes S.: For which positive p is the integral Menger curvature M p finite for all simple polygons, S 9, November 2011 [51] Bemelmans J., Galdi G. P. and Kyed M.: Fluid Flows Around Rigid Bodies, I: The Hydrostatic Case, S 32, Dezember 2011 [52] Scholtes S.: Tangency properties of sets with finite geometric curvature energies, S 39, Februar 2012 [53] Scholtes S.: A characterisation of inner product spaces by the maximal circumradius of spheres, S 8, Februar 2012 [54] Kolasiński S., Strzelecki P. and von der Mosel H.: Characterizing W 2,p submanifolds by p-integrability of global curvatures, S 44, März 2012 [55] Bemelmans J., Galdi G.P. and Kyed M.: On the Steady Motion of a Coupled System Solid-Liquid, S 95, April 2012 [56] Deipenbrock M.: On the existence of a drag minimizing shape in an incompressible fluid, S 23, Mai 2012 [57] Strzelecki P., Szumańska M. and von der Mosel H.: On some knot energies involving Menger curvature, S 30, September 2012 [58] Overath P. and von der Mosel H.: Plateau s problem in Finsler 3-space, S 42, September 2012 [59] Strzelecki P. and von der Mosel H.: Menger curvature as a knot energy, S 41, Januar 2013 [60] Strzelecki P. and von der Mosel H.: How averaged Menger curvatures control regularity and topology of curves and surfaces, S 13, Februar 2013 [61] Hafizogullari Y., Maier-Paape S. and Platen A.: Empirical Study of the Trend Indicator, S 25, April 2013 [62] Scholtes S.: On hypersurfaces of positive reach, alternating Steiner formulæ and Hadwiger s Problem, S 22, April 2013 [63] Bemelmans J., Galdi G.P. and Kyed M.: Capillary surfaces and floating bodies, S 16, Mai 2013 [64] Bandle, C. and Wagner A.: Domain derivatives for energy functionals with boundary integrals; optimality and monotonicity., S 13, Mai 2013 [65] Bandle, C. and Wagner A.: Second variation of domain functionals and applications to problems with Robin boundary conditions, S 33, Mai 2013 [66] Maier-Paape, S.: Optimal f and diversification, S 7, Oktober 2013 [67] Maier-Paape, S.: Existence theorems for optimal fractional trading, S 9, Oktober 2013 [68] Scholtes, S.: Discrete Möbius Energy, S 11, November 2013 [69] Bemelmans, J.: Optimale Kurven über die Anfänge der Variationsrechnung, S 22, Dezember 2013 [70] Scholtes, S.: Discrete Thickness, S 12, Februar 2014 [71] Bandle, C. and Wagner A.: Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions., S 12, März 2014 [72] Overath P. and von der Mosel H.: On minimal immersions in Finsler space., S 26, April 2014 [73] Bandle, C. and Wagner A.: Two Robin boundary value problems with opposite sign., S 17, Juni 2014 [74] Knappmann, K. and Wagner A.: Optimality conditions for the buckling of a clamped plate., S 23, September 2014 [75] Bemelmans, J.: Über den Einfluß der mathematischen Beschreibung physikalischer Phänomene auf die Reine Mathematik und die These von Wigner, S 23, September 2014 [76] Havenith, T. and Scholtes, S.: Comparing maximal mean values on different scales, S 4, Januar 2015 [77] Maier-Paape, S. and Platen, A.: Backtest of trading systems on candle charts, S 12, Januar 2015
Institut für Mathematik
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Institut für Mathematik Empirical Study of the 1-- Trend Indicator by Y. Hafizogullari S. Maier-Paape A. Platen Report No. 61 01 April 01 Institute for
Paweł Strzelecki. Current position. Research Interests. Employment. Education. Awards
Paweł Strzelecki Institute of Mathematics University of Warsaw ul. Banacha 2, 02 097 Warsaw, Poland Phone: (+48) 22 5544212 Fax: (+48) 22 5544200 email: [email protected] url: http://www.mimuw.edu.pl/
Wissenschaftliche Artikel (erschienen bzw. angenommen)
Schriftenverzeichnis I. Monographie [1] Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-Heidelberg- New York, 2003.
Dimension Theory for Ordinary Differential Equations
Vladimir A. Boichenko, Gennadij A. Leonov, Volker Reitmann Dimension Theory for Ordinary Differential Equations Teubner Contents Singular values, exterior calculus and Lozinskii-norms 15 1 Singular values
THEORETICAL MECHANICS
PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents
OpenFOAM Optimization Tools
OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation
Computation of crystal growth. using sharp interface methods
Efficient computation of crystal growth using sharp interface methods University of Regensburg joint with John Barrett (London) Robert Nürnberg (London) July 2010 Outline 1 Curvature driven interface motion
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM
3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: [email protected]
Domain Decomposition Methods. Partial Differential Equations
Domain Decomposition Methods for Partial Differential Equations ALFIO QUARTERONI Professor ofnumericalanalysis, Politecnico di Milano, Italy, and Ecole Polytechnique Federale de Lausanne, Switzerland ALBERTO
Modeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31)
Plates and Shells: Theory and Computation - 4D9 - Dr Fehmi Cirak (fc286@) Office: Inglis building mezzanine level (INO 31) Outline -1-! This part of the module consists of seven lectures and will focus
Distinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
Course in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Academic Standards for Mathematics
Academic Standards for Grades Pre K High School Pennsylvania Department of Education INTRODUCTION The Pennsylvania Core Standards in in grades PreK 5 lay a solid foundation in whole numbers, addition,
Introduction to time series analysis
Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples
Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary
Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:
Finite Element Formulation for Plates - Handout 3 -
Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction
Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
Introduction to the Finite Element Method
Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross
Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles
Acta Polytechnica Hungarica Vol. 4, No., 007 Identification of Energy Distribution for Crash Deformational Processes of Road Vehicles István Harmati, Péter Várlaki Department of Chassis and Lightweight
24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no
Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and
Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study
Proceedings of the 9th WSEAS International Conference on APPLIED COMPUTER SCIENCE
Automated Futures Trading Environment Effect on the Decision Making PETR TUCNIK Department of Information Technologies University of Hradec Kralove Rokitanskeho 62, 500 02 Hradec Kralove CZECH REPUBLIC
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
LOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
How to Win the Stock Market Game
How to Win the Stock Market Game 1 Developing Short-Term Stock Trading Strategies by Vladimir Daragan PART 1 Table of Contents 1. Introduction 2. Comparison of trading strategies 3. Return per trade 4.
Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment
Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA
THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Force measurement. Forces VECTORIAL ISSUES ACTION ET RÉACTION ISOSTATISM
Force measurement Forces VECTORIAL ISSUES In classical mechanics, a force is defined as "an action capable of modifying the quantity of movement of a material point". Therefore, a force has the attributes
ON FIBER DIAMETERS OF CONTINUOUS MAPS
ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there
CFD modelling of floating body response to regular waves
CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table
Smooth functions statistics
Smooth functions statistics V. I. rnold To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected
Integration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: [email protected]
GRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal
Turk s ES ZigZag Day Trading Strategy
Turk s ES ZigZag Day Trading Strategy User Guide 11/15/2013 1 Turk's ES ZigZag Strategy User Manual Table of Contents Disclaimer 3 Strategy Overview.. 4 Strategy Detail.. 6 Data Symbol Setup 7 Strategy
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Theory of Sobolev Multipliers
Vladimir G. Maz'ya Tatyana O. Shaposhnikova Theory of Sobolev Multipliers With Applications to Differential and Integral Operators ^ Springer Introduction Part I Description and Properties of Multipliers
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
Heat Transfer and Thermal-Stress Analysis with Abaqus
Heat Transfer and Thermal-Stress Analysis with Abaqus 2016 About this Course Course objectives Upon completion of this course you will be able to: Perform steady-state and transient heat transfer simulations
Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania
Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
OSTROWSKI FOR NUMBER FIELDS
OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School
Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves
Rock Bolt Condition Monitoring Using Ultrasonic Guided Waves Bennie Buys Department of Mechanical and Aeronautical Engineering University of Pretoria Introduction Rock Bolts and their associated problems
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Simulation in design of high performance machine tools
P. Wagner, Gebr. HELLER Maschinenfabrik GmbH 1. Introduktion Machine tools have been constructed and used for industrial applications for more than 100 years. Today, almost 100 large-sized companies and
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen
Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut
Hydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
An Introduction to the Navier-Stokes Initial-Boundary Value Problem
An Introduction to the Navier-Stokes Initial-Boundary Value Problem Giovanni P. Galdi Department of Mechanical Engineering University of Pittsburgh, USA Rechts auf zwei hohen Felsen befinden sich Schlösser,
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific
POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078
21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
A decade of "Rough" storage trading results in the UK NBP gas market:
A decade of "Rough" storage trading results in the UK NBP gas market: Benchmarking storage trading strategies Cyriel de Jong, Alexander Boogert, Christopher Clancy KYOS Energy Consulting How much money
An Overview of the Finite Element Analysis
CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials
3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines
How To Run A Cdef Simulation
Simple CFD Simulations and Visualisation using OpenFOAM and ParaView Sachiko Arvelius, PhD Purpose of this presentation To show my competence in CFD (Computational Fluid Dynamics) simulation and visualisation
Modelling of Contact Problems of Rough Surfaces
Modelling of Contact Problems of Rough Surfaces N. Schwarzer, Saxonian Institute of Surface Mechanics, Am Lauchberg 2, 04838 Eilenburg, Germany, Tel. ++49 (0) 3423 656639 or 58, Fax. ++49 (0) 3423 656666,
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
LIST OF PUBLICATIONS
LIST OF PUBLICATIONS Articles and books grouped by area: Quantitative Finance Book Co-authored with Marco Avellaneda: Quantitative Modeling of Derivative Securities: from theory to practice, Chapman Hall-CRC
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
The information content of lagged equity and bond yields
Economics Letters 68 (2000) 179 184 www.elsevier.com/ locate/ econbase The information content of lagged equity and bond yields Richard D.F. Harris *, Rene Sanchez-Valle School of Business and Economics,
Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates
Two-Dimensional Conduction: Shape Factors and Dimensionless Conduction Heat Rates Chapter 4 Sections 4.1 and 4.3 make use of commercial FEA program to look at this. D Conduction- General Considerations
WORK SCHEDULE: MATHEMATICS 2007
, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method
Determining the Optimal Combination of Trial Division and Fermat s Factorization Method Joseph C. Woodson Home School P. O. Box 55005 Tulsa, OK 74155 Abstract The process of finding the prime factorization
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1
Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response
Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours
MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
Regression III: Advanced Methods
Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming
Trading the GARTLEY 222
Trading the GARTLEY 222 Sometimes old trading ideas are the best ideas if you can quantify them with modern analysis and testing procedures. Here, a "classic" chart pattern is defined mathematically and
Customer Training Material. Lecture 4. Meshing in Mechanical. Mechanical. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.
Lecture 4 Meshing in Mechanical Introduction to ANSYS Mechanical L4-1 Chapter Overview In this chapter controlling meshing operations is described. Topics: A. Global Meshing Controls B. Local Meshing Controls
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi
MEL 807 Computational Heat Transfer (2-0-4) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Time and Venue Course Coordinator: Dr. Prabal Talukdar Room No: III, 357
SINUS. international. Towards New Teaching in Mathematics. Dynamic Geometry with Polygon Pantographs 8. Wolfgang Neidhardt 8 / 2011.
SINUS international Towards New Teaching in Mathematics Wolfgang Neidhardt Dynamic Geometry with Polygon Pantographs 8 Peter Baptist Carsten Miller 8 / 2011 ISSN 2192-7596 Dagmar Raab University of Bayreuth
Prentice Hall Connected Mathematics 2, 7th Grade Units 2009
Prentice Hall Connected Mathematics 2, 7th Grade Units 2009 Grade 7 C O R R E L A T E D T O from March 2009 Grade 7 Problem Solving Build new mathematical knowledge through problem solving. Solve problems
Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements
K. Stein Department of Physics, Bethel College, St. Paul, MN 55112 T. Tezduyar Mechanical Engineering, Rice University, MS 321, Houston, TX 77005 R. Benney Natick Soldier Center, Natick, MA 01760 Mesh
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
Design of an FX trading system using Adaptive Reinforcement Learning
University Finance Seminar 17 March 2006 Design of an FX trading system using Adaptive Reinforcement Learning M A H Dempster Centre for Financial Research Judge Institute of Management University of &
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group [email protected]
Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
