# Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout

Save this PDF as:

Size: px
Start display at page:

Download "Application Note AN:005. FPA Printed Circuit Board Layout Guidelines. Introduction Contents. The Importance of Board Layout"

## Transcription

2 Figure 1 Single device high current load Figure 2 Multiple devices powered from single low voltage rail For typical low-voltage, high-current applications DC impedance and AC impedance (inductance) must be minimized. Minimizing DC impedance in a board layout requires an analysis using squares to determine the geometry and the impedance of the interconnect. Figure 3 A square will have the same edge to edge impedance regardless of size mω edge to edge mω edge to edge mω edge to edge A square of 1 oz. copper will have a resistance of mω between parallel edges, regardless of square dimension (Fig. 3). It is important to note that the current must originate and flow evenly from edge to edge of the square. If the geometry of the source or load is such that current would not flow evenly from edge to edge of the square, the square geometry must be reduced in size (Fig. 4). Figure 4 Current flow through a plane broken into squares Load Source 6 Current Flow Page 2 of 10

3 There are five steps to determining the DC board loss for a single high current microprocessor load: 1) Determine the current path between source and load. If the source and load are connected by a trace, the current path is the trace path (Fig. 5). Figure 5 A trace path is easily broken down into squares Source 20 mil trace Load If the source and load are connected by a plane, the current will take the shortest path (Fig. 6). As illustrated in Fig. 6, the current path may end up with a fan-shaped characteristic if the source and sink geometries have different sizes. Also keep in mind that the positive and negative current paths may be routed differently. Figure 6 Current flow through a plane Load Source Current Flow 2) Break the current path up into a number of squares of integral size. As illustrated in Fig. 5, if the trace width is 20 mils, the current path can be broken up into a series of 20 mil squares for the length of the trace. If the current path is through a plane as shown in Fig. 6, the shape should be re-constituted using an array of squares that are small enough to reasonably represent its original shape. 3) Calculate the total number of squares. Per the connection shown in Fig. 5, this would be the sum of the squares in the current path. For Fig. 6, parallel squares would be summed as the reciprocal of the number of squares in parallel. For example, 2 squares in parallel would count as 1/2 a square, 4 squares in parallel would count as 1/4 a square, etc. 4) Calculate the resistance of the current path. Using the rule that a square of 1 oz. copper is mω, multiply this by the calculated number of squares for the total resistance. If there is more than 1 oz. total copper, this number decreases proportionally. Likewise if there is less than 1 oz. total copper, this number should increase proportionally. Page 3 of 10

5 The VTM package design limits parasitic inductance (Fig. 9) by alternating pads of source (+Vout) and return (-Vout). However, even here there is imperfect cancellation of currents, resulting in a parasitic inductance term. This term can be minimized by terminating Vout+ and Vout- planes on the PCB as close as possible (Fig.10) and interleaving Vout+ and Vout- planes between the VTM and the load. Figure 9 VTM package (bottom view) +Out +In Figure 10 Low induction VTM interconnect -Out TM VC +Out PC -Out -In With this type of layout, it is possible to achieve interconnect inductance as low as 400 ph for the VTM full size package. Other recommendations for low AC impedance are: 1) Use vias between and behind J-leads to conduct current to the inner interleaved layers. Vias can also be placed in front of the J-leads to further decrease DC impedance but the pads should be tapered and as small as possible to limit AC impedance. 2) Interleave copper planes as much as possible. If it is not possible to dedicate planes to Vout+ and Vout-, the traces or sub-planes should be routed on top of each other as opposed to side by side. 3) Use high frequency bypass capacitors at the point of load to decouple the parasitic inductance from the load. These capacitors should be placed in line with the current flow, and should be of a low ESL / ESR type. 4) The VTM should be placed as close to the point of load as possible. PRM VTM Layout We now review the layout of signal and power interconnections for a PRM and VTM system. PRM Control Signals: OS, SC, CD The PRM pins are shown in Fig. 11. It has a number of control pins, which control the output voltage set point and compensation as a function of load when used in the Adaptive Loop mode. Page 5 of 10

6 These control pins are high impedance and are susceptible to noise pick up. The primary pins of concern are: PR, OS, SC, CD, VC and to a lesser extent PC. All with the exception of PC have a direct connection to the regulation control loop. Figure 11 PRM package (bottom view) VH SC SG OS NC CD VC PC TM IL NC PR +OUT +IN OUT IN Resistors used to set the device output (OS, CD) should be located as close to their respective PRM ports as possible to minimize noise pick up. Increase noise immunity by shielding these signals from the power signals. This shield plane should be made part of the PCB as shown in Fig. 12. If these components cannot be placed adjacent to the PRM, a local bypass capacitor of ~200 pf should be used to attenuate any high frequency components. This device forms the regulation stage, so it is the most sensitive to layout issues when compared to the VTM. Figure 12 Shielding signals from power traces improves noise immunity PRM Control Signal: PR The PR signal is used to parallel multiple arrays of PRMs or PRM / VTM pairs. There are special considerations that need to be implemented in the layout of a V I Chip array that are discussed at length in the Application Note Paralleling PRMs and VTMs. PRM, VTM, and BCM Control Signal: PC PRMs, VTMs, and BCMs all have a PC (primary control) port which is used to enable and disable the device. This port is important in that it is designed to interface with external application specific devices (such as the load, or a microcontroller, or some other device which sequences power supplies). A typical application may route the PC signal a considerable distance across the printed circuit board, so care must be taken. The PC signal, especially compared with the control signals OS, CD, SC, and PR is quite noise immune. However, capacitive coupling from neighboring high voltage switching traces could result in noise on the PC pin. Page 6 of 10

8 Here K is the transformation ratio of the VTM defined as the output voltage divided by the input voltage. Equation 2 is valid for impedance values from DC to ~1 MHz. Beyond this, the internal impedance of the VTM plays a role. Equation 2 indicates a geometric relationship between K factor and reflected impedance. For a K = 1, the load impedance is equal to the interconnect impedance. For a K = 1/32, however, the load impedance is seen as 1/1000th of the interconnect impedance. Thus if a K = 1/32 VTM were used, 1 Ω of PRM-VTM interconnect impedance would look like 1 mω of source impedance at the point of load. Since the source impedance is reduced at the point of load by the VTM, the power interconnections between PRM and VTM can be made smaller (with higher impedance) with little effect on load characteristics. However, traces should always be sized to dissipate as little power as possible. Parasitic inductance should also be minimized where possible. One final note concerns output and input ripple voltage. Since the PRM and VTM are both power conversion devices operating at a specific switching frequency, they both provide a characteristic ripple voltage on the input and output bus. Since PRM and VTM switch at similar but different frequencies, there is the possibility of low frequency beats to show up on the factorized bus. To attenuate beat frequencies and the potential of issues both in the control loop and application, it is recommended that a small amount of inductance be placed between the PRM and VTM. A 0.4 uh inductor placed in series with the + OUT of the PRM and the + IN of the VTM sufficiently attenuates high frequency currents in most applications. Layout for EMI Minimization Here are some brief layout guidelines to minimize the effects of conducted and radiated noise. Actual filter and shield design is covered in a separate application note. Here the layout of components to minimize conducted and radiated EMI will be discussed. Both PRM and VTM components are 1-2 MHz switching converters. Since Zero-Voltage- Switching (ZVS) and Zero-Current-Switching (ZCS) techniques are used, the level of conducted and radiated noise is significantly lower than conventional hard switching supplies. Differential mode noise is AC voltage that appears between Vin+ and Vin- (or Vout+ and Vout-) of the converter. For the PRM and VTM both common and differential-mode noise has a strong component at 1-2 MHz and smaller high frequency components beyond 10 MHz. Typically downstream POL converters (such as nipols) will show with strong fundamentals between 100 and 500 khz. Common and differential-mode filtering components should be sized and located to attenuate the 1-2 MHz fundamental. Shunt and serial attenuation components (capacitors and inductors) should be located close to the V I Chip. Page 8 of 10

9 Very important to controlling conducted noise is radiated noise. Radiated noise is AC voltages that are induced by Electromagnetic fields. Electromagnetic fields are generated by AC currents traveling through a conductor (such as a copper trace, plane, or wire). The ability of a conductor to radiate is based on its its length, the current which it is carrying, and the frequency of the AC current. Radiated noise is also caused by magnetic fields from transformer or inductor components coupling with a nearby conductor. Radiated and conducted noise are linked since one may easily cause the other. Filtering components components should be placed close enough to the V I Chips such that they attenuate conducted noise, however not so close as to allow radiated noise to bypass or couple into them. Surrounding metal may act as a shield to protect noise sensitive components, but also as a conduit that would re-direct noise to another part of the circuit. The following are some simple layout guidelines for reducing EMI effects. 1) Limit high frequency differential current travel within the PCB. Filtering and high frequency bypass capacitors should be located as close to the module as possible. The 1-2 MHz ripple component should be well filtered, particularly if it is traveling more than 1-2 inches (i.e. the PRM and VTM are separated by more than 2 inches). 2) Common-mode bypass should be local to the VTM and should be bypassed to a grounded shield plane located directly under the VTM. This will return capacitively coupled common-mode switch currents local to the VTM and limit the extent to which they couple into other planes. 3) A combination of series and shunt attenuation practices should be used. Shunt attenuation should provide a low impedance return path for noise currents. Series attenuation should increase the impedance of the path from the module (noise source) back to the power source. 4) Noise sensitive components should not be located directly above the PRM or VTM. Both V I Chip components have a closed magnetic field present directly above and below the package. 1-2 MHz noise may be coupled into components that intercept this field. 5) Self-resonance frequencies of bypass components should be well known. It is possible that a bypass capacitor may self-resonate at a frequency close to the switching frequency of the PRM or VTM. Generally ceramic or film capacitors have a very high Q. Series resistive damping may need to be considered in some applications. Page 9 of 10

10 Conclusion Good layout practices are crucial for designing a small, dense system that performs optimally for a given application. However, with the deployment of power components among sensitive load components, care must be taken in designing a system, both to optimize the layout of the load components and the power system. A few basic guidelines in laying out a PRM and VTM will provide the basis for a quiet, efficient, and dense system. Vicor Applications Engineers are experts in applying V I Chip components to a large range of applications. Vicor Applications Engineering is available as needed to conduct reviews of layouts using V I Chip components and provide recommendations and feedback at any stage in the design cycle. Page 10 of 10

### EMI and t Layout Fundamentals for Switched-Mode Circuits

v sg (t) (t) DT s V pp = n - 1 2 V pp V g n V T s t EE core insulation primary return secondary return Supplementary notes on EMI and t Layout Fundamentals for Switched-Mode Circuits secondary primary

### VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications Maurizio Salato, Applications Engineering, Vicor Corporation Contents

### Grounding Demystified

Grounding Demystified 3-1 Importance Of Grounding Techniques 45 40 35 30 25 20 15 10 5 0 Grounding 42% Case 22% Cable 18% Percent Used Filter 12% PCB 6% Grounding 42% Case Shield 22% Cable Shielding 18%

### Printed Circuit Boards. Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools

Printed Circuit Boards (PCB) Printed Circuit Boards Bypassing, Decoupling, Power, Grounding Building Printed Circuit Boards CAD Tools 1 Bypassing, Decoupling, Power, Grounding 2 Here is the circuit we

### This application note is written for a reader that is familiar with Ethernet hardware design.

AN18.6 SMSC Ethernet Physical Layer Layout Guidelines 1 Introduction 1.1 Audience 1.2 Overview SMSC Ethernet products are highly-integrated devices designed for 10 or 100 Mbps Ethernet systems. They are

### Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

### " PCB Layout for Switching Regulators "

1 " PCB Layout for Switching Regulators " 2 Introduction Linear series pass regulator I L V IN V OUT GAIN REF R L Series pass device drops the necessary voltage to maintain V OUT at it s programmed value

### Board Design Guidelines for LVDS Systems

Board Design Guidelines for LVDS Systems WP-DESLVDS-2.1 White Paper This white paper explains the basic PCB layout guidelines for designing low-voltage differential signaling (LVDS) boards using Altera

### PCB Design Conference - East Keynote Address EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS

OOOO1 PCB Design Conference - East Keynote Address September 12, 2000 EMC ASPECTS OF FUTURE HIGH SPEED DIGITAL DESIGNS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com

### UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC

### 11. High-Speed Differential Interfaces in Cyclone II Devices

11. High-Speed Differential Interfaces in Cyclone II Devices CII51011-2.2 Introduction From high-speed backplane applications to high-end switch boxes, low-voltage differential signaling (LVDS) is the

### Here, we derive formulas for computing crosstalk and show how to reduce it using well designed PCB layer stacks.

Crosstalk Ground and power planes serve to: Provide stable reference voltages Distribute power to logic devices Control crosstalk Here, we derive formulas for computing crosstalk and show how to reduce

### PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide

Application Note PL-277x Series SuperSpeed USB 3.0 SATA Bridge Controllers PCB Layout Guide Introduction This document explains how to design a PCB with Prolific PL-277x SuperSpeed USB 3.0 SATA Bridge

### Evaluating AC Current Sensor Options for Power Delivery Systems

Evaluating AC Current Sensor Options for Power Delivery Systems State-of-the-art isolated ac current sensors based on CMOS technology can increase efficiency, performance and reliability compared to legacy

### ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram

Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed

### APPLICATION NOTE - 016

APPLICATION NOTE - 016 Testing RFI Line Filters Frequency Response Analysis Testing RFI line filters Radio frequency interference (RFI) is unwanted electromagnetic noise within a radio communications frequency

### AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

### APPLICATION NOTE Innovative shunt design techniques optimise power measurement accuracy

APPLICATION NOTE - 012 Innovative shunt design techniques optimise power measurement accuracy Introduction Rapid developments in power conversion technologies combined with a need for better product efficiency

### Application Note 58 Crystal Considerations with Dallas Real Time Clocks

www.dalsemi.com Application Note 58 Crystal Considerations with Dallas Real Time Clocks Dallas Semiconductor offers a variety of real time clocks (RTCs). The majority of these are available either as integrated

### Input and Output Capacitor Selection

Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how

### Figure 1. Core Voltage Reduction Due to Process Scaling

AN 574: Printed Circuit Board (PCB) Power Delivery Network (PDN) Design Methodology May 2009 AN-574-1.0 Introduction This application note provides an overview of the various components that make up a

### IDT80HSPS1616 PCB Design Application Note - 557

IDT80HSPS1616 PCB Design Application Note - 557 Introduction This document is intended to assist users to design in IDT80HSPS1616 serial RapidIO switch. IDT80HSPS1616 based on S-RIO 2.0 spec offers 5Gbps

### Designing a Low Power Flyback Power Supply

APPLICATION NOTE INTRODUCTION Bourns is a well-known supplier of standard off-the-shelf high power inductors for power supplies in consumer, medical and automotive applications. Bourns also has a strong

### Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications. Application Note. June 2011

Common Mode Choke Filtering Improves CMRR in Ethernet Transformer Applications June 2011 Application Note Common mode chokes provide an effective EMI filtering solution for Ethernet transformer applications.

### PCB Layout Considerations for Non-Isolated Switching Power Supplies

June 2012 PCB Layout Considerations for Non-Isolated Switching Power Supplies Henry J. Zhang Introduction The best news when you power up a prototype supply board for the very first time is when it not

### Power supply output voltages are dropping with each

DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated

### Understanding SMD Power Inductors. Application Note. July 2011

Understanding SMD Power Inductors July 2011 Application Note Power inductors play an important role in voltage conversion applications by yielding lower core losses. They are also used to store energy,

### Switching Regulator Series PCB Layout Techniques of Buck Converter

Switching Regulator Series PCB ayout Techniques of Buck Converter No.07EBY05 PCB layout design for switching power supply is as important as the circuit design. Appropriate layout can avoid various problems

### Precision Analog Designs Demand Good PCB Layouts. John Wu

Precision Analog Designs Demand Good PCB Layouts John Wu Outline Enemies of Precision: Hidden components Noise Crosstalk Analog-to-Analog Digital-to-Analog EMI/RFI Poor Grounds Thermal Instability Leakage

### Common Mode and Differential Mode Noise Filtering

Summary Introduction This application note gives a practical explanation of differential mode and common mode noise along with the traditional filtering approaches. In addition, an alternative method of

### SELECTION GUIDE. Nominal Input

www.murata-ps.com NKE Series FEATURES RoHS Compliant Sub-Miniature SIP & DIP Styles 3kVDC Isolation UL Recognised Wide Temperature performance at full 1 Watt load, 40 C to 85 C Increased Power Density

### Application Note: PCB Design By: Wei-Lung Ho

Application Note: PCB Design By: Wei-Lung Ho Introduction: A printed circuit board (PCB) electrically connects circuit components by routing conductive traces to conductive pads designed for specific components

### EMI Filter Design for an Isolated DC-DC Boost Converter Ishtiyaq Ahmed Makda (PhD Research Fellow) Morten Nymand (Supervisor)

EMI Filter Design for an Isolated DC-DC Boost Converter Ishtiyaq Ahmed Makda (PhD Research Fellow) Morten Nymand (Supervisor) Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense,

### Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

ILB, ILBB Ferrite Beads Electro-Magnetic Interference and Electro-Magnetic Compatibility (EMI/EMC) avid B. Fancher Inductive Products ivision INTROUCTION Manufacturers of electrical and electronic equipment

### Operational Amplifiers: Part 2. Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation

Operational Amplifiers: Part 2 Non-ideal Behavior of Feedback Amplifiers DC Errors and Large-Signal Operation by Tim J. Sobering Analog Design Engineer & Op Amp Addict Summary of Ideal Op Amp Assumptions

### 2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout

2.996/6.971 Biomedical Devices Design Laboratory Lecture 2: Fundamentals and PCB Layout Instructor: Hong Ma Sept. 12, 2007 Fundamental Elements Resistor (R) Capacitor (C) Inductor (L) Voltage Source Current

### Signal Integrity: Tips and Tricks

White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary

### NMA 5V, 12V & 15V Series Isolated 1W Dual Output DC/DC Converters

www.murata-ps.com NMA 5V, 12V & 15V Series FEATURES RoHS compliant Efficiency up to 80% Power density up to 0.85W/cm 3 Wide temperature performance at full 1 Watt load, 40 C to 85 C Dual output from a

### TI HDMI Design Guide. HDMI Design Guide. June 2007 High-Speed Interface Products 1

HDMI Design Guide June 2007 High-Speed Interface Products 1 Introduction This application note presents design guide lines helping users of the HDMI 3:1 mux-repeater, TMDS341A, to utilize the full performance

### Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails

### WHY and HOW to GROUND ELECTRICAL SYSTEMS

WHY and HOW to GROUND ELECTRICAL SYSTEMS Dr. Tom Van Doren Van Doren Company Rolla, MO, USA 1-573-578-4193 vandoren@mst.edu emc-education.com emclab.mst.edu Grounding is a very controversial and misunderstood

### Differential Signaling Doesn t Require Differential Impedance. Or, How to Design a Differential Signaling Circuit

Article for Printed Circuit Design By Lee W. Ritchey, 3Com Corporation Differential Signaling Doesn t Require Differential Impedance Or, How to Design a Differential Signaling Circuit That title may seem

### White Paper: Electrical Ground Rules

Acromag, Incorporated 30765 S Wixom Rd, Wixom, MI 48393 USA Tel: 248-295-0880 Fax: 248-624-9234 www.acromag.com White Paper: Electrical Ground Rules Best Practices for Grounding Your Electrical Equipment

### Material: FR-4 Copper thickness: 1.0 to 2.0 ounces Dielectric thickness: 37 mils (1 mm finished board thickness)

AN 15.17 PCB Layout Guide for USB Hubs Introduction Two Layer PCB PCB Constraints This application note provides information on designing a printed circuit board (PCB) for the SMSC USB251x/xB Family of

### High Voltage Power Supplies for Analytical Instrumentation

ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply

### Application Note TMA Series

1W, SIP, Single & Dual Output DC/DC Converters Features SIP Package with Industry Standard Pinout Package Dimension: 19.5 x 10.2 x 6.1 mm (0.77 x 0.4 x 0.24 ) 5V&12V Models 19.5 x 10.2 x 7.1 mm (0.77 x

### AP24026. Microcontroller. EMC Design Guidelines for Microcontroller Board Layout. Microcontrollers. Application Note, V 3.

Microcontroller Application Note, V 3.0, April 2005 AP24026 for Microcontroller Board Layout Microcontrollers Never stop thinking. TriCore Revision History: 2005-04 V 3.0 Previous Version: 2001-04 Page

### W a d i a D i g i t a l

Wadia Decoding Computer Overview A Definition What is a Decoding Computer? The Wadia Decoding Computer is a small form factor digital-to-analog converter with digital pre-amplifier capabilities. It is

### Test Methods for DC/DC Power Modules

Test Methods for DC/DC Power Modules Design Note 027 Ericsson Power Modules Precautions Abstract A user may have the desire to verify or characterize the performance of DC/DC power modules outside the

### Electromagnetic Compatibility Considerations for Switching Power Supplies

Electromagnetic Compatibility Considerations Characterization of the EMI problem requires understanding the interference source Switching power supplies generate Electromagnetic Interference (EMI) by virtue

### An equivalent circuit of a loop antenna.

3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

### Application Note AN-1135

Application Note AN-1135 PCB Layout with IR Class D Audio Gate Drivers By Jun Honda, Connie Huang Table of Contents Page Application Note AN-1135... 1 0. Introduction... 2 0-1. PCB and Class D Audio Performance...

### G019.A (4/99) UNDERSTANDING COMMON MODE NOISE

UNDERSTANDING COMMON MODE NOISE PAGE 2 OF 7 TABLE OF CONTENTS 1 INTRODUCTION 2 DIFFERENTIAL MODE AND COMMON MODE SIGNALS 2.1 Differential Mode signals 2.2 Common Mode signals 3 DIFFERENTIAL AND COMMON

### Supertex inc. High Speed Quad MOSFET Driver MD1810. Features. General Description. Applications. Typical Application Circuit

inc. High Speed Quad MOSFET Driver Features 6.0ns rise and fall time with 1000pF load 2.0A peak output source/sink current 1.8 to 5.0V input CMOS compatible 5.0 to 12V total supply voltage Smart logic

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators

PCB Design Guidelines for Dual Power Supply Voltage Translators Jim Lepkowski ON Semiconductor Introduction The design of the PCB is an important factor in maximizing the performance of a dual power supply

### AND8229/D. An Introduction to Transient Voltage Suppression Devices APPLICATION NOTE

An Introduction to Transient Voltage Suppression Devices Prepared by: Jim Lepkowski ON Semiconductor APPLICATION NOTE INTRODUCTION Transient Voltage Suppression (TVS) protection devices such as shielded

### High-Speed Printed Circuit

The World Leader in High Performance Signal Processing Solutions A Practical Guide to High-Speed Printed Circuit Board Layout John Ardizzoni Analog Devices Dennis Falls Avnet Electronics Marketing Agenda

### Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

### Nexus Technology Review -- Exhibit A

Nexus Technology Review -- Exhibit A Background A. Types of DSL Lines DSL comes in many flavors: ADSL, ADSL2, ADSL2+, VDSL and VDSL2. Each DSL variant respectively operates up a higher frequency level.

### Application Note, Rev.1.0, September 2008 TLE8366. Application Information. Automotive Power

Application Note, Rev.1.0, September 2008 TLE8366 Automotive Power Table of Contents 1 Abstract...3 2 Introduction...3 3 Dimensioning the Output and Input Filter...4 3.1 Theory...4 3.2 Output Filter Capacitor(s)

RX-AM4SF Receiver The super-heterodyne receiver RX-AM4SF can provide a RSSI output indicating the amplitude of the received signal: this output can be used to create a field-strength meter capable to indicate

### POWER FORUM, BOLOGNA 20-09-2012

POWER FORUM, BOLOGNA 20-09-2012 Convertitori DC/DC ad alta densità di potenza e bassa impedenza termica. Massimo GAVIOLI. Senior Field Application Engineer. Intersil SIMPLY SMARTER Challenges when Designing

### Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014. Striplines and Microstrips (PCB Transmission Lines)

Eatman Associates 2014 Rockwall TX 800-388-4036 rev. October 1, 2014 Striplines and Microstrips (PCB Transmission Lines) Disclaimer: This presentation is merely a compilation of information from public

### Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

### Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,

### POWER LINE FILTERS FOR SWITCHING POWER SUPPLIES

POWER INE FITERS FOR SWITCHING POWER SUPPIES ing. Eugen COCA *, prof. dr. ing. Dimitrie AEXA ** * EECTRICA SA - SD SUCEAVA - ROMANIA ** U.T. Gh. Asachi IASI - ROMANIA * SEM0kV - PRAM str. Stefan cel Mare,

### Planar versus conventional transformer

Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply

### Balanced circuits and differential amplifiers

Engineering Note 18.1 Balanced circuits and differential amplifiers J M Woodgate FInstSCE DISCLAIMER Care is taken to determine that 'Engineering Notes' do not refer to any copyrighted or patented circuit

### Technical Article. Multi-phase DC-DC PMIC: the efficient, space-saving choice for today s application processors. Peter Kammerlander

Technical Multi-phase DC-DC PMIC: the efficient, space-saving choice for today s application processors Peter Kammerlander Multi-phase DC-DC PMIC: the efficient, space-saving choice for today s application

### ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET

DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock

### MP2259 1A, 16V, 1.4MHz Step-Down Converter

MP59 1A, 1V, 1.MHz Step-Down Converter TM The Future of Analog IC Technology DESCRIPTION The MP59 is a monolithic integrated stepdown switch mode converter with an internal power MOSFET. It achieves 1A

Advanced Monolithic Systems FEATURES Three Terminal Adjustable or Fixed oltages* 1.5, 1.8, 2.5, 2.85, 3.3 and 5. Output Current of 1A Operates Down to 1 Dropout Line Regulation:.2% Max. Load Regulation:.4%

### AN203: 8-bit MCU Printed Circuit Board Design Notes

AN203: 8-bit MCU Printed Circuit Board Design Notes The tips and techniques included in this application note will help to ensure successful printed circuit board (PCB) design. Problems in design can result

### Balanced vs. Unbalanced Audio Interconnections

Revised 7/2/08 Balanced vs. Unbalanced Audio Interconnections In discussing the characteristics and performance of various interconnect systems; two points should be kept in mind. Balance is defined in

### EMI Conducted Interference

Although the concepts stated are universal, this application note was written specifically for Interpoint products. Switching power converters are natural generators of input narrowband spectral noise

### 13.56 MHz, CLASS-E, 1KW RF Generator using a Microsemi DRF1200 Driver/MOSFET Hybrid

13.56 MHz, CLASS-E, 1KW RF Generator using a Microsemi DRF1200 Driver/MOSFET Hybrid Gui Choi Sr. Application Engineer Phone: 541-382-8028, ext. 1205 gchoi@microsemi.com Application Note 1811 The DRF1200/Class-E

### RX-FM4SF 433,92 MHz User Manual. Connections

RX-FM4SF 433,92 MHz The super-heterodyne FM receiver RX-FM4SF with High sensitivity and selectivity. It is equipped by front-end SAW filter that allows an High noise immunity. Enable pin allows to reach

### Iron Powder Cores for Switchmode Power Supply Inductors. by: Jim Cox

HOME APPLICATION NOTES Iron Powder Cores for Switchmode Power Supply Inductors by: Jim Cox Purpose: The purpose of this application note is to cover the properties of iron powder as a magnetic core material

### 7-41 POWER FACTOR CORRECTION

POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

### C39E.pdf Jul.20,2010

EU RoHS Compliant All the products in this catalog comply with EU RoHS. EU RoHS is "the European Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic

### LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays

AN-5059 Fairchild Semiconductor Application Note May 2005 Revised May 2005 LVDS Technology Solves Typical EMI Problems Associated with Cell Phone Cameras and Displays Differential technologies such as

### Output Filter Design for EMI Rejection of the AAT5101 Class D Audio Amplifier

The AAT50 is a high efficiency, 2.5W mono class D audio power amplifier. It can be used in portable devices, such as MP4s, cell phones, laptops, GPS and PDAs. The device can work as a filterless class

### EMI Design Guidelines for USB Components

EMI Design Guidelines for USB Components 1. Disclaimer This document is provided "as is" with no warranties whatsoever, including any warranty of merchantability, fitness for any particular purpose, or

### STF201-22 & STF201-30

Description The STF201 is a combination EMI filter and line termination device with integrated TVS diodes for use on downstream USB ports. It is constructed using a proprietary technology that allows passive

### AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

### 1. Challenges of EMI 2. Typical EMI Sources 3. Low, broadband and high frequency EMI problems

A. EMI 1. Challenges of EMI 2. Typical EMI Sources 3. Low, broadband and high frequency EMI problems B. EMI Related to Magnetics / Ferrites 1. Interesting & unique properties 2. EMI coupling model- How

### AS2815. 1.5A Low Dropout Voltage Regulator Adjustable & Fixed Output, Fast Response

1.5A Low Dropout oltage Regulator Adjustable & Fixed Output, Fast Response FEATURES Adjustable Output Down To 1.2 Fixed Output oltages 1.5, 2.5, 3.3, 5.0 Output Current of 1.5A Low Dropout oltage 1.1 Typ.

### Title: Low EMI Spread Spectrum Clock Oscillators

Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)

### Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

### RS485 & RS422 Basics

RUA ALVARO CHAVES, 155 PORTO ALEGRE RS BRASIL 90220-040 TEL: +55 (51) 3323 3600 FAX: +55 (51) 3323 3644 info@novus.com.br RS485 & RS422 Basics INTRODUCTION The 422 and 485 standards, as they are known

### Introduction to Printed Circuit Board Design For EMC Compliance

Introduction to Printed Circuit Board Design For EMC Compliance Mark Montrose Principle Consultant Montrose Compliance Services, Inc. + 1 (408) 247-5715 mark@montrosecompliance.com www.montrosecompliance.com

### Application Note, V 2.2, Nov. 2008 AP32091 TC1766. Design Guideline for TC1766 Microcontroller Board Layout. Microcontrollers. Never stop thinking.

Application Note, V 2.2, Nov. 2008 AP32091 TC1766 Design Guideline for TC1766 Microcontroller Board Layout Microcontrollers Never stop thinking. Edition Published by Infineon Technologies AG 81726 München,

### Understanding the load-transient response of LDOs

Understanding the load-transient response of LDOs By Brian M. King Advanced Analog Products Introduction Low-dropout linear regulators (LDOs) are commonly used to provide power to low-voltage digital circuits,

### Whale 3. User Manual and Installation Guide. DC Servo drive. Contents. 1. Safety, policy and warranty. 1.1. Safety notes. 1.2. Policy. 1.3. Warranty.

Whale 3 DC Servo drive User Manual and Installation Guide Contents 1. Safety, policy and warranty. 1.1. Safety notes. 1.2. Policy. 1.3. Warranty. 2. Electric specifications. 2.1.Operation ranges. 3. Connections

### Buffer Op Amp to ADC Circuit Collection

Application Report SLOA098 March 2002 Buffer Op Amp to ADC Circuit Collection Bruce Carter High Performance Linear Products ABSTRACT This document describes various techniques that interface buffer op

### Low Power RF Designs Layout Review Techniques. Suyash Jain FAE Training Oslo January 2011

Low Power RF Designs Layout Review Techniques Suyash Jain FAE Training Oslo January 2011 1 Abstract The presentation provides guidelines and a checklist to copy TI reference designs for optimum performance.