W08 Sensors and Measurement (2/2) Yrd. Doç. Dr. Aytaç Gören

Size: px
Start display at page:

Download "W08 Sensors and Measurement (2/2) Yrd. Doç. Dr. Aytaç Gören"

Transcription

1 W08 Sensors and Measurement (2/2) Yrd. Doç. Dr. Aytaç Gören

2 ELK Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and Applications (H-Bridge) W05 Op Amps and Applications W06 Midterm W07 Sensors and Measurement (1/2) W08 Sensors and Measurement (2/2) W09 Basic Concepts in Digital Electronics (Boolean Algebra, Decimal to binary, gates) W10 Digital Logic Circuits (Gates and Flip Flops) W11 PLC s W12 Microprocessors W13 Data Acquisition, D/A and A/D Converters. 2 Yrd. Doç. Dr. Aytaç Gören

3 ELK 2018 W08 Contents 1. Photoelectric Sensors 2. Thermal, Heat, Temperature Sensors 3. GPS 4. Flow, Fluid Velocity Sensors 5. Weather, Moisture, Humidity Sensors 6. Electric Current, Electric Potential 7. Magnetic Sensors 3 Yrd. Doç. Dr. Aytaç Gören

4 Connecting Sensors to Microcontrollers *references 9 sensor sensor µc signal timing memory keypad display Analog many microcontrollers have a built-in A/D 8-bit to 12-bit common many have multi-channel A/D inputs Digital serial I/O use serial I/O port, store in memory to analyze synchronous (with clock) must match byte format, stop/start bits, parity check, etc. asynchronous (no clock): more common for comm. than data must match baud rate and bit width, transmission protocol, etc. frequency encoded use timing port, measure pulse width or pulse frequency

5 Digital Sensors As its name implies, Digital Sensors produce a discrete output signal or voltage that is a digital representation of the quantity being measured. Digital sensors produce a Binary output signal in the form of a logic "1" or a logic "0", ("ON" or "OFF"). This means then that a digital signal only produces discrete (noncontinuous) values which may be outputted as a single "bit", (serial transmission) or by combining the bits to produce a single "byte" output (parallel transmission). Compared to analogue signals, digital signals or quantities have very high accuracies and can be both measured and "sampled" at a very high clock speed. The accuracy of the digital signal is proportional to the number of bits used to represent the measured quantity. For example, using a processor of 8 bits, will produce an accuracy of 0.195% (1 part in 512). While using a processor of 16 bits gives an accuracy of %, (1 part in 65,536) or 130 times more accurate. This accuracy can be maintained as digital quantities are manipulated and processed very rapidly, millions of times faster than analogue signals.

6 *references 9 Connecting Smart Sensors to PC/Network Smart sensor = sensor with built-in signal processing & communication Data Acquisition Cards (DAQ) PC card with analog and digital I/O interface through LabVIEW or user-generated code Communication Links Common for Sensors asynchronous serial comm. universal asynchronous receive and transmit (UART) 1 receive line + 1 transmit line. nodes must match baud rate & protocol RS232 Serial Port on PCs uses UART format (but at +/- 12V) can buy a chip to convert from UART to RS232 synchronous serial comm. serial peripheral interface (SPI) 1 clock + 1 bidirectional data + 1 chip select/enable I 2 C = Inter Integrated Circuit bus designed by Philips for comm. inside TVs, used in several commercial sensor systems IEEE P1451: Sensor Comm. Standard several different sensor comm. protocols for different applications

7 Frequency (MHz) offset Yrd. Doç. Dr. Aytaç Gören Sensor Calibration *references 9 Sensors can exhibit non-ideal effects offset: nominal output nominal parameter value nonlinearity: output not linear with parameter changes cross parameter sensitivity: secondary output variation with, e.g., temperature Calibration = adjusting output to match parameter analog signal conditioning look-up table digital calibration T = a + bv +cv 2, T= temperature; V=sensor voltage; a,b,c = calibration coefficients Compensation remove secondary sensitivities must have sensitivities characterized can remove with polynomial evaluation Temperature (C) P = a + bv + ct + dvt + e V 2, where P=pressure, T=temperature T1 T2 T

8 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photoelectric devices can be grouped into two main categories, those which generate electricity when illuminated, such as Photo-voltaics or Photo-emissives etc, and those which change their electrical properties in some way such as Photoresistors or Photo-conductors. This leads to the following classification of devices. Photo-emissive Cells - These are photodevices which release free electrons from a light sensitive material such as caesium when struck by a photon of sufficient energy. The amount of energy the photons have depends on the frequency of the light and the higher the frequency, the more energy the photons have converting light energy into electrical energy. Photo-conductive Cells - These photodevices vary their electrical resistance when subjected to light. Photoconductivity results from light hitting a semiconductor material which controls the current flow through it. Thus, more light increase the current for a given applied voltage. The most common photoconductive material is Cadmium Sulphide used in LDR photocells.

9 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photo-voltaic Cells - These photodevices generate an emf in proportion to the radiant light energy received and is similar in effect to photoconductivity. Light energy falls on to two semiconductor materials sandwiched together creating a voltage of approximately 0.5V. The most common photovoltaic material is Selenium used in solar cells. Photo-junction Devices - These photodevices are mainly true semiconductor devices such as the photodiode or phototransistor which use light to control the flow of electrons and holes across their PN-junction. Photojunction devices are specifically designed for detector application and light penetration with their spectral response tuned to the wavelength of incident light.

10 Photoelectric Sensors Yrd. Doç. Dr. Aytaç Gören

11 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Infrared - Active Sensor type = Reflective IR IR detector = Panasonic PNA4602M IR LED type = Narrow focus 10º I/O required = 3 digital lines: 2 outputs, 1 input Range = Approximately 4 to 26" Input voltage = 5vdc 8mA PC board size = 2.3" x.75"

12 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photovoltaic Photovoltaic light falling on a pn-junction can be used to generate electricity from light energy (as in a solar cell) small devices used as sensors are called photodiodes fast acting, but the voltage produced is not linearly related to light intensity

13 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photoconductive such devices do not produce electricity, but simply change their resistance photodiode (as described earlier) can be used in this way to produce a linear device phototransistors act like photodiodes but with greater sensitivity light-dependent resistors (LDRs) are slow, but respond like the human eye The Light Dependent Resistor (LDR) is made from a piece of exposed semiconductor material such as cadmium sulphide that changes its electrical resistance from several thousand Ohms in the dark to only a few hundred Ohms when light falls upon it by creating hole-electron pairs in the material. The net effect is an improvement in its conductivity with a decrease in resistance for an increase in illumination. Also, photoresistive cells have a long response time requiring many seconds to respond to a change in the light intensity. LDR

14 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors LDR The most commonly used photoresistive light sensor is the ORP12 Cadmium Sulphide photoconductive cell. This light dependent resistor has a spectral response of about 610nm in the yellow to orange region of light.

15 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors LDR The resistance of the cell when unilluminated (dark resistance) is very high at about 10MΩ's which falls to about 100Ω's when fully illuminated (lit resistance). To increase the dark resistance and therefore reduce the dark current, the resistive path forms a zigzag pattern across the ceramic substrate. The CdS photocell is a very low cost device often used in auto dimming, darkness or twilight detection for turning the street lights "ON" and "OFF", and for photographic exposure meter type applications.

16 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors One simple use of a Light Dependent Resistor, is as a light sensitive switch. LDR This basic light sensor circuit is of a relay output light activated switch. A potential divider circuit is formed between the photoresistor, LDR and the resistor R1. When no light is present ie in darkness, the resistance of the LDR is very high in the Megaohms range so zero base bias is applied to the transistor TR1 and the relay is de-energised or "OFF". As the light level increases the resistance of the LDR starts to decrease causing the base bias voltage at V1 to rise. At some point determined by the potential divider network formed with resistor R1, the base bias voltage is high enough to turn the transistor TR1 "ON" and thus activate the relay which inturn is used to control some external circuitry. As the light level falls back to darkness again the resistance of the LDR increases causing the base voltage of the transistor to decrease, turning the transistor and relay "OFF" at a fixed light level determined again by the potential divider network.

17 Photoelectric Sensors LDR Yrd. Doç. Dr. Aytaç Gören By replacing the fixed resistor R1 with a potentiometer VR1, the point at which the relay turns "ON" or "OFF" can be pre-set to a particular light level. This type of simple circuit shown above has a fairly low sensitivity and its switching point may not be consistent due to variations in either temperature or the supply voltage. A more sensitive precision light activated circuit can be easily made by incorporating the LDR into a "Wheatstone Bridge" arrangement and replacing the transistor with an Operational Amplifier.

18 Photoelectric Sensors LDR Yrd. Doç. Dr. Aytaç Gören In this basic dark sensing circuit, the light dependent resistor LDR1 and the potentiometer VR1 form one adjustable arm of a simple resistance bridge network, also known commomly as a Wheatstone bridge, while the two fixed resistors R1 and R2 form the other arm. Both sides of the bridge form potential divider networks across the supply voltage whose outputs V1 and V2 are connected to the non-inverting and inverting voltage inputs respectively of the operational amplifier. The operational amplifier is configured as a Differential Amplifier also known as a voltage comparator with feedback whose output voltage condition is determined by the difference between the two input signals or voltages, V1 and V2. The resistor combination R1 and R2 form a fixed voltage reference at input V2, set by the ratio of the two resistors. The LDR - VR1 combination provides a variable voltage input V1 proportional to the light level being detected by the photoresistor.

19 Photoelectric Sensors LDR As with the previous circuit the output from the operational amplifier is used to control a relay, which is protected by a free wheel diode, D1. When the light level sensed by the LDR and its output voltage falls below the reference voltage set at V2 the output from the opamp changes state activating the relay and switching the connected load. Likewise as the light level increases the output will switch back turning "OFF" the relay. The hysteresis of the two switching points is set by the feedback resistor Rf can be chosen to give any suitable voltage gain of the amplifier. The operation of this type of light sensor circuit can also be reversed to switch the relay "ON" when the light level exceeds the reference voltage level and vice versa by reversing the positions of the light sensor LDR and the potentiometer VR1. The potentiometer can be used to "pre-set" the switching point of the differential amplifier to any particular light level making it ideal as a simple light sensor project circuit. Yrd. Doç. Dr. Aytaç Gören

20 Yrd. Doç. Dr. Aytaç Gören Opto-switches Photoelectric Sensors opto-switch consist of a light source and a light sensor within a single unit. Two common forms are the reflective and slotted types A reflective opto-switch A slotted opto-switch Opto-switch sensor

21 Photoelectric Sensors Yrd. Doç. Dr. Aytaç Gören In example above, the speed of the rotating shaft is measured by using a digital LED/Optodetector sensor. The disc which is fixed to a rotating shaft (for example, from a motor or wheels), has a number of transparent slots within its design. As the disc rotates with the speed of the shaft, each slot passes by the sensor inturn producing an output pulse representing a logic level "1". These pulses are sent to a register of counter and finally to an output display to show the speed or revolutions of the shaft. By increasing the number of slots or "windows" within the disc more output pulses can be produced giving a greater resolution and accuracy as fractions of a revolution can be detected. Then this type of sensor arrangement could be used for positional control.

22 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photodiode Circuits *references 10

23 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photodiode Circuits Photodiodes are very versatile light sensors that can turn its current flow both "ON" and "OFF" in nanoseconds and are commonly used in cameras, light meters, CD and DVD-ROM drives, TV remote controls, scanners, fax machines and copiers etc, and when integrated into operational amplifier circuits as infrared spectrum detectors for fibre optic communications, burglar alarm motion detection circuits and numerous imaging, laser scanning and positioning systems etc. *references 6

24 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photodiodes

25 Yrd. Doç. Dr. Aytaç Gören Light Sensor photoconductor light R Photoelectric Sensors Photodiode light I

26 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Semiconductor light sensors include: photodiodes, phototransistors, photodarlingtons. Like diodes, all transistors are light-sensitive. Phototransistors are designed specifically to take advantage of this fact. The most-common variant is an NPN bipolar transistor with an exposed base region. Here, light striking the base replaces what would ordinarily be voltage applied to the base so, a phototransistor amplifies variations in the light striking it. Note that phototransistors may or may not have a base lead (if they do, the base lead allows you to bias the phototransistor's light response. All of these have similar noise performance, but phototransistors and darlingtons have better sensitivity (more current for given light input). Phototransistor: lux Photodarlingtons up to 100x this sensitivity. Phototransistors

27 Photoelectric Sensors Phototransistors Yrd. Doç. Dr. Aytaç Gören20 Basically, a phototransistor can be any bipolar transistor with a transparent case. There are some variations provide advantages. For example, a focusing lens can be built into the case for directional sensitivity. Coatings can be applied to block some higher or lower wavelengths. The transistor itself may provide higher gain, or higher frequency, or lower capacitance, etc. The diagram above illustrates the frequency response of silicon phototransistor junctions, along with the spectral output of an infrared LED.

28 Yrd. Doç. Dr. Aytaç Gören20 Photoelectric Sensors a photo-darlington Phototransistors Phototransistor is basically a photodiode with amplification. The Phototransistor light sensor has its collector-base PN-junction reverse biased exposing it to the radiant light source. Phototransistors operate the same as the photodiode except that they can provide current gain and are much more sensitive than the photodiode with currents are 50 to 100 times greater than that of the standard photodiode and any normal transistor can be easily converted into a phototransistor light sensor by connecting a photodiode between the collector and base.

29 Photoelectric Sensors Phototransistors Yrd. Doç. Dr. Aytaç Gören20 Phototransistors consist mainly of a bipolar NPN Transistor with its large base region electrically unconnected, although some phototransistors allow a base connection to control the sensitivity, and which uses photons of light to generate a base current which inturn causes a collector to emitter current to flow. Most phototransistors are NPN types whose outer casing is either transparent or has a clear lens to focus the light onto the base junction for increased sensitivity.

30 Yrd. Doç. Dr. Aytaç Gören Photoelectric Sensors Photovoltaic Cells Photovoltaic cells are made from single crystal silicon PN junctions, the same as photodiodes with a very large light sensitive region but are used without the reverse bias. They have the same characteristics as a very large photodiode when in the dark. When illuminated the light energy causes electrons to flow through the PN junction and an individual solar cell can generate an open circuit voltage of about 0.58v (580mV). Solar cells have a "Positive" and a "Negative" side just like a battery.

31 Photoelectric Sensors Cameras Yrd. Doç. Dr. Aytaç Gören20 Two solid-state camera types: CCD and CMOS. A charge-coupled device (CCD) is a device for the movement of electrical charge, usually from within the device to an area where the charge can be manipulated, for example conversion into a digital value. A CCD image sensor is an analog device. When light strikes the chip it is held as a small electrical charge in each photo sensor. The charges are converted to voltage one pixel at a time as they are read from the chip. Additional circuitry in the camera converts the voltage into digital information. CCD is the more mature technology, and has the widest performance range. 8 Mpixel size for cameras Low noise/ high efficiency for astronomy etc. Good sensitivity (low as lux, starlight) CCDs require several chips,but are still cheap ($50 +) Most CCDs work in near infrared and can be used for night vision if an IR light source is used. (*ref.12, 13)

32 Yrd. Doç. Dr. Aytaç Gören20 Photoelectric Sensors CMOS (Complementary Metal-Oxide Semiconductor) is a technology used in fabricating integrated circuit chips. A CMOS imaging chip is a type of active pixel sensor made using the CMOS semiconductor process. Extra circuitry next to each photo sensor converts the light energy to a voltage. Additional circuitry on the chip may be included to convert the voltage to digital data. CMOS cameras are very compact and inexpensive, but haven t matched CCDs in most performance dimensions. Start from $20(!) Custom CMOS cameras integrate image processing right on the camera. Allow special functions like motion detection, recognition. Cameras

33 Temperature Sensors Yrd. Doç. Dr. Aytaç Gören The most commonly used type of all the sensors are those which detect Temperature or heat. These types of temperature sensor vary from simple ON/OFF thermostatic devices which control a domestic hot water system to highly sensitive semiconductor types that can control complex process control plants. We remember from our school science classes that the movement of molecules and atoms produces heat (kinetic energy) and the more movement, the more heat is generated. Temperature Sensors measure the amount of heat energy or even coldness that is generated by an object or system, and can "sense" or detect any physical change to that temperature producing either an analogue or digital output.

34 Temperature Sensors Yrd. Doç. Dr. Aytaç Gören Temperature sensors consist of two basic physical types: Contact Temperature Sensor Types - These types of temperature sensor are required to be in physical contact with the object being sensed and use conduction to monitor changes in temperature. They can be used to detect solids, liquids or gases over a wide range of temperatures. Non-contact Temperature Sensor Types - These types of temperature sensor use convection and radiation to monitor changes in temperature. They can be used to detect liquids and gases that emit radiant energy as heat rises and cold settles to the bottom in convection currents or detect the radiant energy being transmitted from an object in the form of infra-red radiation (the sun). The two basic types of contact or even non-contact temperature sensors can also be sub-divided into the following three groups of sensors, Electromechanical, Resistive and Electronic.

35 Yrd. Doç. Dr. Aytaç Gören Sensors Sensor operation small prism-shaped sample of single-crystal undoped GaAs attached to ends of two optical fibers light energy absorbed by the GaAs crystal depends on temperature percentage of received vs. transmitted energy is a function of temperature Can be made small enough for biological implantation

36 Yrd. Doç. Dr. Aytaç Gören Thermal Sensors The Thermostat The Thermostat is a contact type electro-mechanical temperature sensor or switch, that basically consists of two different metals such as nickel, copper, tungsten or aluminium etc, that are bonded together to form a Bi-metallic strip. The different linear expansion rates of the two dissimilar metals produces a mechanical bending movement when the strip is subjected to heat. The bi-metallic strip is used as a switch in the thermostat and are used extensively to control hot water heating elements in boilers, furnaces, hot water storage tanks as well as in vehicle radiator cooling systems. The Bi-metallic Thermostat The thermostat consists of two thermally different metals stuck together back to back. When it is cold the contacts are closed and current passes through the thermostat. When it gets hot, one metal expands more than the other and the bonded bimetallic strip bends up (or down) opening the contacts preventing the current from flowing.

37 Yrd. Doç. Dr. Aytaç Gören Thermal Sensors There are two main types of bi-metallic strips based mainly upon their movement when subjected to temperature changes, "snap-action" types that produce an instantaneous "ON/OFF" or "OFF/ON" type action on the electrical contacts and the slower "creep-action" types that gradually change their position as the temperature changes. Snap-action thermostats are commonly used in homes for controlling the temperature of ovens, irons, immersion hot water tanks and on walls to control the domestic heating system. Creeper types generally consist of a bi-metallic coil or spiral that slowly unwinds or coils-up as the temperature changes. Generally, creeper type bi-metallic strips are more sensitive to temperature changes than the standard snap ON/OFF types as the strip is longer and thinner making them ideal for use in temperature gauges and dials etc. One main disadvantage of the standard snap-action type thermostats when used as a temperature sensor, is that they have a large hysteresis range from when the electrical contacts open until when they close for example, set to 20 o C but may not open until 22 o C or close again until 18 o C. So the range of temperature swing can be quite high. Commercially available bi-metallic thermostats for home use do have temperature adjustment screws that allow for a desired set-point and even its hysteresis level to be pre-set and are available over a wide operating range. The Thermostat

38 Thermal Sensors The Thermistor The Thermistor is another type of temperature sensor, whose name is a combination of the words THERM-ally sensitive res-istor. A thermistor is a type of resistor which changes its physical resistance with changes in temperature. Thermistors are generally made from ceramic type semiconductor materials such as oxides of nickel, manganese or cobalt coated in glass which makes them easily damaged. Most types of thermistor's have a Negative Temperature Coefficient of resistance or (NTC), that is their resistance value goes DOWN with an increase in the temperature but some with a Positive Temperature Coefficient, (PTC), their resistance value goes UP with an increase in temperature are also available. Their main advantage is their speed of response to any changes in temperature, accuracy and repeatability. Thermistors are passive resistive devices which means we need to pass a current through it to produce a measurable voltage output. Then thermistors are generally connected in series with a suitable biasing resistor to form a potential divider network and the choice of resistor gives a voltage output at some pre-determined temperature point or value. Yrd. Doç. Dr. Aytaç Gören

39 Thermal Sensors The Thermistor Yrd. Doç. Dr. Aytaç Gören The following thermistor has a resistance value of 10KΩ at 25 o C and a resistance value of 100Ω at 100 o C. Calculate the voltage drop across the thermistor and hence its output voltage (Vout) for both temperatures when connected in series with a 1kΩ resistor across a 12v power supply. At 25 o C At 100 o C by changing the fixed resistor value of R2 (in our example 1kΩ) to a potentiometer or preset, a voltage output can be obtained at a predetermined temperature set point for example, 5v output at 60 o C and by varying the potentiometer a particular output voltage level can be obtained over a wider temperature range.

40 Thermal Sensors Resistive Temperature Detectors (RTD) Yrd. Doç. Dr. Aytaç Gören Another type of electrical resistance temperature sensor is the Resistance Temperature Detector or RTD. RTD's are precision temperature sensors made from high-purity conducting metals such as platinum, copper or nickel wound into a coil and whose electrical resistance changes as a function of temperature, similar to that of the thermistor. Also available are thin-film RTD's. These devices have a thin film of platinum paste is deposited onto a white ceramic substrate. RTD Resistive temperature detectors have positive temperature coefficients (PTC) but unlike the thermistor their output is extremely linear producing very accurate measurements of temperature. However, they have poor sensitivity, that is a change in temperature only produces a very small output change for example, 1Ω/ o C. The more common types of RTD's are made from platinum and are called Platinum Resistance Thermometer or PRT's with the most commonly available of them all the Pt100 sensor, which has a standard resistance value of 100Ω at 0 o C. However, Platinum is expensive and one of the main disadvantages of this type of device is its cost.

41 Thermal Sensors Resistive Temperature Detectors (RTD) Like the thermistor, RTD's are passive resistive devices and by passing a constant current through the temperature sensor it is possible to obtain an output voltage that increases linearly with temperature. A typical RTD has a base resistance of about 100Ω at 0 o C, increasing to about 140Ω at 100 o C with an operating temperature range of between -200 to +600 o C. Wire-wound Elements Thin Film Elements Coiled elements These elements work with temperatures to 660 C. These Elements works with temperatures to 300 C. These Elements works with temperatures to 850 C. Yrd. Doç. Dr. Aytaç Gören

42 Yrd. Doç. Dr. Aytaç Gören Thermal Sensors Thermocouples are thermoelectric sensors that basically consists of two junctions of dissimilar metals, such as copper and constantan that are welded or crimped together. One junction is kept at a constant temperature called the reference (Cold) junction, while the other the measuring (Hot) junction. When the two junctions are at different temperatures, a voltage is developed across the junction which is used to measure the temperature sensor. Thermocouples The Thermocouple is by far the most commonly used type of all the temperature sensing devices due to its simplicity, ease of use and their speed of response to changes in temperature, due mainly to their small size. Thermocouples also have the widest temperature range of all the temperature sensors from below -200 o C to well over 2000 o C. /thmcple_theory.cfm

43 Thermal Sensors Thermocouples Yrd. Doç. Dr. Aytaç Gören The principle of operation is that the junction of the two dissimilar metals such as copper and constantan, produces a "thermo-electric" effect that produces a constant potential difference of only a few millivolts (mv) between them. The voltage difference between the two junctions is called the "Seebeck effect" as a temperature gradient is generated along the conducting wires producing an emf. Then the output voltage from a thermocouple is a function of the temperature changes. If both the junctions are at the same temperature the potential difference across the two junctions is zero in other words, no voltage output as V 1 = V 2. However, when the junctions are connected within a circuit and are both at different temperatures a voltage output will be detected relative to the difference in temperature between the two junctions, V 1 - V 2. This difference in voltage will increase with temperature until the junctions peak voltage level is reached and this is determined by the characteristics of the two dissimilar metals used.

44 Yrd. Doç. Dr. Aytaç Gören Thermal Sensors Thermocouples Thermocouples can be made from a variety of different materials enabling extreme temperatures of between -200 o C to over o C to be measured. With such a large choice of materials and temperature range, internationally recognized standards have been developed complete with thermocouple color codes to allow the user to choose the correct thermocouple sensor for a particular application.

45 Thermal Sensors Thermocouples Yrd. Doç. Dr. Aytaç Gören The three most common thermocouple materials used above for general temperature measurement are Iron-Constantan (Type J), Copper-Constantan (Type T), and Nickel-Chromium (Type K). The output voltage from a thermocouple is very small, only a few millivolts (mv) for a 10 o C change in temperature difference and because of this small voltage output some form of amplification is generally required. The type of amplifier, either discrete or in the form of an Operational Amplifier needs to be carefully selected, because good drift stability is required to prevent recalibration of the thermocouple at frequent intervals. This makes the chopper and instrumentation type of amplifier preferable for most temperature sensing applications.

46 Thermal Cameras Yrd. Doç. Dr. Aytaç Gören

47 Yrd. Doç. Dr. Aytaç Gören Flow, Fluid Velocity Sensors A flowmeter is an instrument used to measure linear, nonlinear, mass or volumetric flow rate of a liquid or a gas.

48 Yrd. Doç. Dr. Aytaç Gören Flow, Fluid Velocity Sensors Types of Flowmeters Turbine Differential Pressure Coriolis Mass Ultrasonic Electromagnetic Thermal

49 Flow, Fluid Velocity Sensors Turbine flowmeters Yrd. Doç. Dr. Aytaç Gören Turbine flowmeters use the mechanical energy of the fluid to rotate a pinwheel (rotor) in the flow stream. Blades on the rotor are angled to transform energy from the flow stream into rotational energy. The rotor shaft spins on bearings. When the fluid moves faster, the rotor spins proportionally faster. Ref: reference 14

50 Flow, Fluid Velocity Sensors Differential Pressure Yrd. Doç. Dr. Aytaç Gören Differential pressure flowmeters use Bernoulli's equation to measure the flow of fluid in a pipe. Differential pressure flowmeters introduce a constriction in the pipe that creates a pressure drop across the flowmeter.

51 Flow, Fluid Velocity Sensors Coriolis mass flowmeters Yrd. Doç. Dr. Aytaç Gören Coriolis mass flowmeters measure the force resulting from the acceleration caused by mass moving toward (or away from) a center of rotation

52 Flow, Fluid Velocity Sensors Ultrasonic flowmeters Yrd. Doç. Dr. Aytaç Gören Ultrasonic flowmeters use sound waves to determine the velocity of a fluid flowing in a pipe with uses Doppler Effect. When the fluid moves faster, the frequency shift increases linearly. The transmitter processes signals from the transmitted wave and its reflections to determine the flow rate.

53 Flow, Fluid Velocity Sensors Magnetic flowmeters Yrd. Doç. Dr. Aytaç Gören Magnetic flowmeters use Faraday s Law of Electromagnetic Induction to determine the flow of liquid in a pipe.

54 Flow, Fluid Velocity Sensors Thermal flowmeters Yrd. Doç. Dr. Aytaç Gören Thermal flowmeters use the thermal properties of the fluid to measure the flow of a fluid flowing in a pipe or duct.

55 Global Positioning System (GPS) Yrd. Doç. Dr. Aytaç Gören The Global Positioning System (GPS) is a spacebased satellite navigation system that provides location and time information in all weather, anywhere on or near the Earth, where there is an unobstructed line of sight to four or more GPS satellites. A GPS receiver calculates its position by precisely timing the signals sent by GPS satellites high above the Earth. Each satellite continually transmits messages that include -the time the message was transmitted -satellite position at time of message transmission The receiver uses the messages it receives to determine the transit time of each message and computes the distance to each satellite. These distances along with the satellites' locations are used with the possible aid of trilateration, depending on which algorithm is used, to compute the position of the receiver. This position is then displayed, perhaps with a moving map display or latitude and longitude; elevation information may be included.

56 Global Positioning System (GPS) Yrd. Doç. Dr. Aytaç Gören All satellites broadcast at the same two frequencies, GHz (L1 signal) and GHz (L2 signal). The satellite network uses a CDMA spread-spectrum technique where the low-bitrate message data is encoded with a high-rate pseudorandom (PRN) sequence that is different for each satellite. The receiver must be aware of the PRN codes for each satellite to reconstruct the actual message data. The C/A code, for civilian use, transmits data at million chips per second, whereas the P code, for U.S. military use, transmits at million chips per second. Subframes Description Satellite clock, GPS time relationship Ephemeris (precise satellite orbit) Almanac component (satellite network synopsis, error correction) GPS message format

57 Global Positioning System (GPS) Yrd. Doç. Dr. Aytaç Gören The receiver uses messages received from satellites to determine the satellite positions and time sent. The x, y, and z components of satellite position and the time sent are designated as [x i, y i, z i, t i ] where the subscript i denotes the satellite and has the value 1, 2,..., n, where Knowing when the message was received, the receiver computes the message's transit time as Note that the receiver indeed knows the reception time indicated by its on-board clock, rather than. Assuming the message traveled at the speed of light (c) the distance traveled is (t r t i )c. Knowing the distance from receiver to satellite and the satellite's position implies that the receiver is on the surface of a sphere centered at the satellite's position. Thus the receiver is at or near the intersection of the surfaces of the spheres. In the ideal case of no errors, the receiver is at the intersection of the surfaces of the spheres. Let b denote the clock error or bias, the amount that the receiver's clock is off. The receiver has four unknowns, the three components of GPS receiver position and the clock bias [x, y, z, b]. The equations of the sphere surfaces are given by:

58 Global Positioning System (GPS) Yrd. Doç. Dr. Aytaç Gören or in terms of pseudoranges,, as These equations can be solved by algebraic or numerical methods.

59 Yrd. Doç. Dr. Aytaç Gören Weather, Moisture, Humidity Sensors A hygrometer is an instrument used for measuring the moisture content in the environmental air, or humidity. Most measurement devices usually rely on measurements of some other quantity such as temperature, pressure, mass or a mechanical or electrical change in a substance as moisture is absorbed. From calculations based on physical principles, or especially by calibration with a reference standard, these measured quantities can lead to a measurement of humidity. Modern electronic devices use temperature of condensation, or changes in electrical capacitance or resistance to measure humidity changes.

60 Yrd. Doç. Dr. Aytaç Gören Weather, Moisture, Humidity Sensors Energy consumption: 80uW (at 12bit, 3V, 1 measurement / s) RH operating range: 0 100% RH T operating range: C ( F) RH response time: 8 sec (tau63%) Output: digital (2-wire interface) Maximal accuracy limits for relative humdity and temperature:

61 Yrd. Doç. Dr. Aytaç Gören Pyranometer A pyranometer is a type of actinometer used to measure broadband solar irradiance on a planar surface and is a sensor that is designed to measure the solar radiation flux density (in watts per metre square) from a field of view of 180 degrees. A typical pyranometer does not require any power to operate.

62 Yrd. Doç. Dr. Aytaç Gören Pyranometer The solar radiation spectrum extends approximately from 300 to 2,800 nm. Pyranometers usually cover that spectrum with a spectral sensitivity that is as flat as possible. To make a measurement of irradiance, it is required by definition that the response to beam radiation varies with the cosine of the angle of incidence, so that there will be a full response when the solar radiation hits the sensor perpendicularly (normal to the surface, sun at zenith, 0 degrees angle of incidence), zero response when the sun is at the horizon (90 degrees angle of incidence, 90 degrees zenith angle), and 0.5 at 60 degrees angle of incidence. It follows that a pyranometer should have a so-called directional response or cosine response that is close to the ideal cosine characteristic. (1) sensor, (2, 3) glass domes, (5) cable, standard length 5 m, (9) desiccant.

63 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor A pressure sensor measures pressure, typically of gases or liquids. Pressure is an expression of the force required to stop a fluid from expanding, and is usually stated in terms of force per unit area. A pressure sensor usually acts as a transducer; it generates a signal as a function of the pressure imposed. For the purposes of this article, such a signal is electrical. Diaphragm (Upper electrode) Lower electrode Types Absolute pressure sensor This sensor measures the pressure relative to perfect vacuum. Gauge pressure sensor This sensor measures the pressure relative to atmospheric pressure. A tire pressure gauge is an example of gauge pressure measurement; when it indicates zero, then the pressure it is measuring is the same as the ambient pressure.

64 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor Vacuum pressure sensor This term can cause confusion. It may be used to describe a sensor that measures pressures below atmospheric pressure, showing the difference between that low pressure and atmospheric pressure (i.e. negative gauge pressure), but it may also be used to describe a sensor that measures low pressure relative to perfect vacuum (i.e. absolute pressure). Differential pressure sensor This sensor measures the difference between two pressures, one connected to each side of the sensor. Differential pressure sensors are used to measure many properties, such as pressure drops across oil filters or air filters, fluid levels (by comparing the pressure above and below the liquid) or flow rates (by measuring the change in pressure across a restriction). Technically speaking, most pressure sensors are really differential pressure sensors; for example a gauge pressure sensor is merely a differential pressure sensor in which one side is open to the ambient atmosphere. Sealed pressure sensor This sensor is similar to a gauge pressure sensor except that it measures pressure relative to some fixed pressure rather than the ambient atmospheric pressure (which varies according to the location and the weather).

65 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor Pressure-sensing technology There are two basic categories of analog pressure sensors. Force collector types These types of electronic pressure sensors generally use a force collector (such a diaphragm, piston, bourdon tube, or bellows) to measure strain (or deflection) due to applied force (pressure) over an area. Piezoresistive strain gauge Uses the piezoresistive effect of bonded or formed strain gauges to detect strain due to applied pressure. Common technology types are Silicon (Monocrystalline), Polysilicon Thin Film, Bonded Metal Foil, Thick Film, and Sputtered Thin Film. Generally, the strain gauges are connected to form a Wheatstone bridge circuit to maximize the output of the sensor. This is the most commonly employed sensing technology for general purpose pressure measurement. Generally, these technologies are suited to measure absolute, gauge, vacuum, and differential pressures. Capacitive Uses a diaphragm and pressure cavity to create a variable capacitor to detect strain due to applied pressure. Common technologies use metal, ceramic, and silicon diaphragms. Generally, these technologies are most applied to low pressures (Absolute, Differential and Gauge)

66 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor Electromagnetic Measures the displacement of a diaphragm by means of changes in inductance (reluctance), LVDT, Hall Effect, or by eddy current principle. Piezoelectric Uses the piezoelectric effect in certain materials such as quartz to measure the strain upon the sensing mechanism due to pressure. This technology is commonly employed for the measurement of highly dynamic pressures. Optical Techniques include the use of the physical change of an optical fiber to detect strain due to applied pressure. A common example of this type utilizes Fiber Bragg Gratings. This technology is employed in challenging applications where the measurement may be highly remote, under high temperature, or may benefit from technologies inherently immune to electromagnetic interference. Another analogous technique utilizes an elastic film constructed in layers that can change reflected wavelengths according to the applied pressure (strain). [1]. Potentiometric Uses the motion of a wiper along a resistive mechanism to detect the strain caused by applied pressure.

67 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor Where they are used Pressure sensing This is where the measurement of interest is pressure, expressed as a force per unit area Altitude sensing This is useful in aircraft, rockets, satellites, weather balloons, and many other applications. All these applications make use of the relationship between changes in pressure relative to the altitude. p = ( h) ; p[pa], h[m] Flow sensing This is the use of pressure sensors in conjunction with the venturi effect to measure flow. Differential pressure is measured between two segments of a venturi tube that have a different aperture. The pressure difference between the two segments is directly proportional to the flow rate through the venturi tube. A low pressure sensor is almost always required as the pressure difference is relatively small. P = pressure, ρ = density of the fluid, g = standard gravity, h = height of fluid column above pressure sensor Level / depth sensing A pressure sensor may also be used to calculate the level of a fluid. This technique is commonly employed to measure the depth of a submerged body (such as a diver or submarine), or level of contents in a tank (such as in a water tower). For most practical purposes, fluid level is directly proportional to pressure

68 Yrd. Doç. Dr. Aytaç Gören Pressure Sensor Where they are used Leak testing A pressure sensor may be used to sense the decay of pressure due to a system leak. Ratiometric Correction of Transducer Output Piezoresistive transducers configured as Wheatstone bridges often exhibit ratiometric behavior with respect not only to the measured pressure, but also the transducer supply voltage. where: is the output voltage of the transducer. is the actual measured pressure. is the nominal transducer scale factor (given an ideal transducer supply voltage) in units of voltage per pressure. is the actual transducer supply voltage. is the ideal transducer supply voltage. Correcting measurements from transducers exhibiting this behavior requires measuring the actual transducer supply voltage as well as the output voltage and applying the inverse transform of this behavior to the output signal:

69 Yrd. Doç. Dr. Aytaç Gören Electric Current, Electric Potential Hall effect sensor A Hall effect sensor is a transducer that varies its output voltage in response to a magnetic field. Hall effect sensors are used for proximity switching, positioning, speed detection, and current sensing applications. In its simplest form, the sensor operates as an analogue transducer, directly returning a voltage. With a known magnetic field, its distance from the Hall plate can be determined. Using groups of sensors, the relative position of the magnet can be deduced. Electricity carried through a conductor will produce a magnetic field that varies with current, and a Hall sensor can be used to measure the current without interrupting the circuit. Typically, the sensor is integrated with a wound core or permanent magnet that surrounds the conductor to be measured. Frequently, a Hall sensor is combined with circuitry that allows the device to act in a digital (on/off) mode, and may be called a switch in this configuration. Commonly seen in industrial applications such as the pictured pneumatic cylinder, they are also used in consumer equipment; for example some computer printers use them to detect missing paper and open covers. When high reliability is required, they are used in keyboards.

70 Yrd. Doç. Dr. Aytaç Gören Electric Current, Electric Potential The Hall effect comes about due to the nature of the current in a conductor. For a simple metal where there is only one type of charge carrier (electrons) the Hall voltage V H is given by Hall effect sensor where I is the current across the plate length, B is the magnetic field, d is the depth (thickness) of the plate, e is the electron charge, and n is the charge carrier density of the carrier electrons. The Hall coefficient is defined as where j is the current density of the carrier electrons, and the induced electric field. In SI units, this becomes is

71 Yrd. Doç. Dr. Aytaç Gören Magnetic Sensors Active (emitting) Metal detectors Follows metallic strips on or under the floor Magnetometer Magnetic Resonance Imaging (MRI) Magnetic Sensor Passive (sensors only) Compass Magnetic field sensor ( oscillating current) Wheatstone bridge configuration that converts magnetic fields into a millivolt output. These wheatstone bridges are passive components that don t emit any fields or broadband noise. Resolution: The magnetic sensors feature very low noise floors for their size. Typical resolution ranges from 27 to 120 microgauss (for HMC). *reference 15

72 Yrd. Doç. Dr. Aytaç Gören Magnetic Sensors MRI Magnetic resonance imaging (MRI), nuclear magnetic resonance imaging (NMRI), or magnetic resonance tomography (MRT) is a medical imaging technique used in radiology to visualize detailed internal structures. MRI makes use of the property of nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. An MRI machine uses a powerful magnetic field to align the magnetization of some atomic nuclei in the body, and radio frequency fields to systematically alter the alignment of this magnetization. This causes the nuclei to produce a rotating magnetic field detectable by the scanner and this information is recorded to construct an image of the scanned area of the body. Magnetic field gradients cause nuclei at different locations to rotate at different speeds. By using gradients in different directions 2D images or 3D volumes can be obtained in any arbitrary orientation.

73 Yrd. Doç. Dr. Aytaç Gören Magnetic and Radio Sensors MRI

74 Thanks, Assist. Prof. Dr. Aytaç Gören. References for this week 1. Practical Applications of Statistical Methods in the Clinical Laboratory, Roger L. Bertholf, Ph.D., DABCC, Mechatronics Principles and Applications, Godfrey C. Onwubolu 4. THE MECHATRONICS H A N D B O O K, E d i t o r - i n - C h i e f, Robert H. Bishop Sensors, Prof. A. Mason 10. Electrical and Electronic Systems Pearson Educaton Ltd Design Realization lecture 18, John Canny. 13. Wikipedia Yrd. Doç. Dr. Aytaç Gören

W07 Sensors and Measurement (1/2) Yrd. Doç. Dr. Aytaç Gören

W07 Sensors and Measurement (1/2) Yrd. Doç. Dr. Aytaç Gören W07 Sensors and Measurement (1/2) Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Measuring Temperature withthermistors a Tutorial David Potter

Measuring Temperature withthermistors a Tutorial David Potter NATIONAL INSTRUMENTS The Software is the Instrument Application Note 065 Measuring Temperature withthermistors a Tutorial David Potter Introduction Thermistors are thermally sensitive resistors used in

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

Microcontroller to Sensor Interfacing Techniques

Microcontroller to Sensor Interfacing Techniques to Sensor Interfacing Techniques Document Revision: 1.01 Date: 3rd February, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: info@bipom.com

More information

Micro Power Generators. Sung Park Kelvin Yuk ECS 203

Micro Power Generators. Sung Park Kelvin Yuk ECS 203 Micro Power Generators Sung Park Kelvin Yuk ECS 203 Overview Why Micro Power Generators are becoming important Types of Micro Power Generators Power Generators Reviewed Ambient Vibrational energy Radiant

More information

Sensors Collecting Manufacturing Process Data

Sensors Collecting Manufacturing Process Data Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Electronic Instrumentation

Electronic Instrumentation Chapter 4 Electronic Sensors for Industrial Measurements 1 Chapter 4. Electronic Sensors For Industrial Measurements Introduction Position, Displacement and Level Strain and force Velocity and Acceleration

More information

Sensors and Cellphones

Sensors and Cellphones Sensors and Cellphones What is a sensor? A converter that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument What are some sensors we use every

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

INSTRUMENTATION AND CONTROL TUTORIAL 2 SENSORS AND PRIMARY TRANSDUCERS. On completion of this tutorial, you should be able to do the following.

INSTRUMENTATION AND CONTROL TUTORIAL 2 SENSORS AND PRIMARY TRANSDUCERS. On completion of this tutorial, you should be able to do the following. INSTRUMENTATION AND CONTROL TUTORIAL 2 SENSORS AND PRIMARY TRANSDUCERS This tutorial provides an overview of instrument sensors used in process and automatic control. It is useful to anyone studying measurement

More information

BB-18 Black Body High Vacuum System Technical Description

BB-18 Black Body High Vacuum System Technical Description BB-18 Black Body High Vacuum System Technical Description The BB-18 Black Body is versatile and is programmed for use as a fixed cold target at 80 K or variable target, at 80 K- 350 K no extra cost. The

More information

Unit 55: Instrumentation and Control Principles

Unit 55: Instrumentation and Control Principles Unit 55: Instrumentation and Control Principles Unit code: J/601/1417 QCF level: 4 Credit value: 15 OUTCOME 1 INSTRUMENTATION SYSTEMS TUTORIAL 1 SENSORS AND TRANSDUCERS 1. Understand instrumentation systems

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

How to measure absolute pressure using piezoresistive sensing elements

How to measure absolute pressure using piezoresistive sensing elements In sensor technology several different methods are used to measure pressure. It is usually differentiated between the measurement of relative, differential, and absolute pressure. The following article

More information

Typical ECM/PCM Inputs

Typical ECM/PCM Inputs Typical ECM/PCM Inputs The computer system components fall into two categories: sensors (inputs) and controlled components (outputs). Each system has sensors. Not every system has all the ones listed,

More information

Subminiature Load Cell Model 8417

Subminiature Load Cell Model 8417 w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...

More information

PC BASED PID TEMPERATURE CONTROLLER

PC BASED PID TEMPERATURE CONTROLLER PC BASED PID TEMPERATURE CONTROLLER R. Nisha * and K.N. Madhusoodanan Dept. of Instrumentation, Cochin University of Science and Technology, Cochin 22, India ABSTRACT: A simple and versatile PC based Programmable

More information

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

ngenieros Ingenieros Asociados De Control S.L.

ngenieros Ingenieros Asociados De Control S.L. ngenieros sociados de ontrol 1 Company founded in 1985 to serve commercial and technical assistance in the fields of instrumentation, control and installation for all types of industries. We offer top

More information

Digital vs. Analogue Control Systems

Digital vs. Analogue Control Systems Digital vs. Analogue Control Systems Presented at the 2011 Annual Meeting of the American College of Medical Physics, Chattanooga, TN, May 1, 2011 Ivan A. Brezovich, PhD, Dept. of Rad Onc, Univ of Alabama

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Measuring Laser Power and Energy Output

Measuring Laser Power and Energy Output Measuring Laser Power and Energy Output Introduction The most fundamental method of checking the performance of a laser is to measure its power or energy output. Laser output directly affects a laser s

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

Application Note for SDP600 and SDP1000 Series Measuring Differential Pressure and Air Volume with Sensirion s CMOSens technology

Application Note for SDP600 and SDP1000 Series Measuring Differential Pressure and Air Volume with Sensirion s CMOSens technology Application Note for SDP600 and SDP1000 Series Measuring Differential Pressure and Air Volume with Sensirion s CMOSens technology Summary The increasing customer requirements for comfort and safety and

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

Environmental Monitoring with Sensors: Hands-on Exercise

Environmental Monitoring with Sensors: Hands-on Exercise Environmental Monitoring with Sensors: Hands-on Exercise Now that you ve seen a few types of sensors, along with some circuits that can be developed to condition their responses, let s spend a bit of time

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

More information

Pressure Transducer to ADC Application

Pressure Transducer to ADC Application Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

Automation System TROVIS 6400 TROVIS 6493 Compact Controller

Automation System TROVIS 6400 TROVIS 6493 Compact Controller Automation System TROVIS 6400 TROVIS 6493 Compact Controller For panel mounting (front frame 48 x 96 mm/1.89 x 3.78 inch) Application Digital controller to automate industrial and process plants for general

More information

Energy and Flow Measurement for Hydronic Systems

Energy and Flow Measurement for Hydronic Systems Energy and Flow Measurement for Hydronic Systems Presented By: George Szyszko Applications Consultant MCR for ONICON Incorporated Why Measure Thermal Energy? To control something, you must first measure

More information

Low Cost, Precision IC Temperature Transducer AD592*

Low Cost, Precision IC Temperature Transducer AD592* a FEATURES High Precalibrated Accuracy:.5 C max @ +25 C Excellent Linearity:.15 C max ( C to +7 C) Wide Operating Temperature Range: 25 C to +15 C Single Supply Operation: +4 V to +3 V Excellent Repeatability

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring

LNG Monitoring. Fiber-Optic Leakage Detection System. Pipeline leakage detection. Regasification and liquefaction monitoring LNG Monitoring Fiber-Optic Leakage Detection System Pipeline leakage detection Regasification and liquefaction monitoring Tank annulus and base slab monitoring Spill containment control Intelligent Solutions

More information

Basic RTD Measurements. Basics of Resistance Temperature Detectors

Basic RTD Measurements. Basics of Resistance Temperature Detectors Basic RTD Measurements Basics of Resistance Temperature Detectors Platinum RTD resistances range from about 10 O for a birdcage configuration to 10k O for a film type, but the most common is 100 O at 0

More information

The Three Heat Transfer Modes in Reflow Soldering

The Three Heat Transfer Modes in Reflow Soldering Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

More information

What Is Regeneration?

What Is Regeneration? What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming

More information

Practical Application of Industrial Fiber Optic Sensing Systems

Practical Application of Industrial Fiber Optic Sensing Systems Practical Application of Industrial Fiber Optic Sensing Systems John W. Berthold and David B. Needham Davidson Instruments, Inc. P.O. Box 130100, The Woodlands, TX 77393 ABSTRACT In this presentation,

More information

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C)

Cold-Junction-Compensated K-Thermocoupleto-Digital Converter (0 C to +1024 C) 19-2235; Rev 1; 3/02 Cold-Junction-Compensated K-Thermocoupleto-Digital General Description The performs cold-junction compensation and digitizes the signal from a type-k thermocouple. The data is output

More information

# 2. Selecting and Using Thermistors for Temperature Control

# 2. Selecting and Using Thermistors for Temperature Control # 2 Selecting and Using Thermistors for Temperature Control Selecting and Using Thermistors for Temperature Control Thermally sensitive resistors (thermistors) are used widely in laser diode and detector

More information

Theory of Transistors and Other Semiconductor Devices

Theory of Transistors and Other Semiconductor Devices Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per

More information

Resistor Theory and Technology

Resistor Theory and Technology Resistor Theory and Technology Felix Zandman Chairman, Scientific Director, and CEO, Vishay Intertechnology, Inc. Paul-Rene Simon Consultant Joseph Szwarc Chief Engineer, Vishay Israel Ltd SciTECH PUBLISHING;

More information

E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace.

E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace. SAFETY Industrial DESCRIBE hazards and precautions taken to avoid injury in the workplace. Example #1: All of the following are common PPE used to perform maintenance activities EXCEPT: a. Safety Glasses

More information

The Do s and Don ts of Pressure Transducers

The Do s and Don ts of Pressure Transducers The Do s and Don ts of Pressure Transducers ABSTRACT When specifying a pressure transducer for a process measurement, a number of items have to be considered. Some of the more important ones are discussed

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

THERMAL ANEMOMETRY ELECTRONICS, SOFTWARE AND ACCESSORIES

THERMAL ANEMOMETRY ELECTRONICS, SOFTWARE AND ACCESSORIES TSI and TSI logo are registered trademarks of TSI Incorporated. SmartTune is a trademark of TSI Incorporated. THERMAL ANEMOMETRY ELECTRONICS, SOFTWARE AND ACCESSORIES IFA 300 Constant Temperature Anemometry

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

Troubleshooting accelerometer installations

Troubleshooting accelerometer installations Troubleshooting accelerometer installations Accelerometer based monitoring systems can be tested to verify proper installation and operation. Testing ensures data integrity and can identify most problems.

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Various Technics of Liquids and Solids Level Measurements. (Part 3)

Various Technics of Liquids and Solids Level Measurements. (Part 3) (Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

THE STRAIN GAGE PRESSURE TRANSDUCER

THE STRAIN GAGE PRESSURE TRANSDUCER THE STRAIN GAGE PRESSURE TRANSDUCER Pressure transducers use a variety of sensing devices to provide an electrical output proportional to applied pressure. The sensing device employed in the transducers

More information

Innovative Practices in Optimal Utilization of Solar Energy (Solar Tracking System)

Innovative Practices in Optimal Utilization of Solar Energy (Solar Tracking System) Innovative Practices in Optimal Utilization of Solar Energy (Solar Tracking System) Dr. G. Suresh Babu EEE Dept., C.B.I.T Abstract: As the demand is ahead of the supply there is a dire need for efficient

More information

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T. Displays Semiconductor Elements 1 Cathode Ray Tube Basic applications Oscilloscope TV Old monitors 2 1 Idea of Electrostatic Deflection 3 Inside an Electrostatic Deflection Cathode Ray Tube Gun creates

More information

LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

More information

Forms of Energy. Freshman Seminar

Forms of Energy. Freshman Seminar Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

SMART SENSOR COLLECTION

SMART SENSOR COLLECTION TEMPERATURE SENSOR This sensor measures temperature in degrees Celsius or Fahrenheit. It works with all SensorHawk base units (SensorHawk-2, SensorHawk-8 and SensorHawk8/20) as well as the SecurityHawk-8

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful

More information

Michelin North America

Michelin North America www.centecinc.com SC Telephone: 864.527.7750 Outside SC: 800.227.0855 Michelin North America Industrial Maintenance Technical Interview Outline Industrial Maintenance Technical Interview Outline The Technical

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

More information

Temperature Sensors. Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors

Temperature Sensors. Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors Temperature Sensors Resistance Temperature Detectors (RTDs) Thermistors IC Temperature Sensors Drew Gilliam GE/MfgE 330: Introduction to Mechatronics 03.19.2003 Introduction There are a wide variety of

More information

Solar Powered Wireless Sensors & Instrumentation: Energy Harvesting Technology Reduces Operating Cost at Remote Sites

Solar Powered Wireless Sensors & Instrumentation: Energy Harvesting Technology Reduces Operating Cost at Remote Sites Solar Powered Wireless Sensors & Instrumentation: Energy Harvesting Technology Reduces Operating Cost at Remote Sites Standards Certification Education & Training Publishing Conferences & Exhibits Michael

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Tire pressure monitoring

Tire pressure monitoring Application Note AN601 Tire pressure monitoring 1 Purpose This document is intended to give hints on how to use the Intersema pressure sensors in a low cost tire pressure monitoring system (TPMS). 2 Introduction

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Micro-Step Driving for Stepper Motors: A Case Study

Micro-Step Driving for Stepper Motors: A Case Study Micro-Step Driving for Stepper Motors: A Case Study N. Sedaghati-Mokhtari Graduate Student, School of ECE, University of Tehran, Tehran, Iran n.sedaghati @ece.ut.ac.ir Abstract: In this paper, a case study

More information

Sense it! Connect it! Bus it! Solve it! EncoderS

Sense it! Connect it! Bus it! Solve it! EncoderS Sense it! Connect it! Bus it! Solve it! EncoderS Incremental encoders Incremental encoders use electrical pulses to measure rotation speed or position. The dual-channel incremental encoders of the Ri series,

More information

1 de 13. Kit de 37 sensores compatibles con Arduino

1 de 13. Kit de 37 sensores compatibles con Arduino 1 de 13 Kit de 37 sensores compatibles con Arduino 2 de 13 Item Picture Description KY001: Temperature This module measures the temperature and reports it through the 1-wire bus digitally to the Arduino.

More information

Overview of the state of the art heat measurement technologies for larger solar thermal systems

Overview of the state of the art heat measurement technologies for larger solar thermal systems Overview of the state of the art heat measurement technologies for larger solar thermal systems Overview of the state of the art heat measurement technologies for larger solar thermal systems... 1 Introduction...

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Procon Engineering. Technical Document PELR 1002. TERMS and DEFINITIONS

Procon Engineering. Technical Document PELR 1002. TERMS and DEFINITIONS Procon Engineering Technical Document PELR 1002 TERMS and DEFINITIONS The following terms are widely used in the weighing industry. Informal comment on terms is in italics and is not part of the formal

More information

Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

More information

Elettronica dei Sistemi Digitali Costantino Giaconia SERIAL I/O COMMON PROTOCOLS

Elettronica dei Sistemi Digitali Costantino Giaconia SERIAL I/O COMMON PROTOCOLS SERIAL I/O COMMON PROTOCOLS RS-232 Fundamentals What is RS-232 RS-232 is a popular communications interface for connecting modems and data acquisition devices (i.e. GPS receivers, electronic balances,

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite

More information

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of

More information

How To Use A Ds340 (Dsp)

How To Use A Ds340 (Dsp) Ideal for monitoring dust levels in the exhaust gas of industrial combustion or air filtration processes. Innovative Dynamic Detection Principle (DDP) measurement technique Immune to gradual reductions

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Current Loop Application Note 1495

Current Loop Application Note 1495 Current Loop Application Note Document No. CLAN1495 International Headquarter B&B Electronics Mfg. Co. Inc. 707 Dayton Road -- P.O. Box 1040 -- Ottawa, IL 61350 USA Phone (815) 433-5100 -- General Fax

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement

More information