# W07 Sensors and Measurement (1/2) Yrd. Doç. Dr. Aytaç Gören

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 W07 Sensors and Measurement (1/2) Yrd. Doç. Dr. Aytaç Gören

2 ELK Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and Applications (H-Bridge) W05 Op Amps and Applications W06 Midterm W07 Sensors and Measurement (1/2) W08 Sensors and Measurement (2/2) W09 Basic Concepts in Digital Electronics (Boolean Algebra, Decimal to binary, gates) W10 Digital Logic Circuits (Gates and Flip Flops) W11 PLC s W12 Microprocessors W13 Data Acquisition, D/A and A/D Converters. 2 Yrd. Doç. Dr. Aytaç Gören

3 ELK 2018 W01 Contents 1. Measurement 2. Position Sensors 3. Velocity Sensors 4. Range Sensors 5. Acceleration Sensors 6. Straingauges, Load Cells and Force Transducers 7. Motion Sensor 3 Yrd. Doç. Dr. Aytaç Gören

4 Reminder N i 1 x i x 1 x 2 x 3 x N Summation function N xi x x x x i Product function N The mean is a measure of the centrality of a set of data. x 1 N N x i i 1 x N x x x x N x g N N i 1 i Mean (arithmetical) Mean (geometric) The geometric mean is primarily used to average ratios or rates of change. Yrd. Doç. Dr. Aytaç Gören

5 Reminder Mean (harmonic) Root mean square (RMS) x rms N x x x x N 1 N N i 1 x 2 i

6 x w N i 1 N x i 1 i w w i i Reminder The Weighted Mean The mode is the value that occurs most often. The midrange is the mean of the highest and lowest values. The median is the value for which half of the remaining values are above and half are below it. I.e., in an ordered array of 15 values, the 8th value is the median. If the array has 16 values, the median is the mean of the 8th and 9th values. The variance is the mean of the squared differences between individual data points and the mean of the array. V 1 N N i 1 ( x i x) 2 The Variance

7 Reminder The standard deviation is the square root of the variance. Standard deviation is not the mean difference between individual data points and the mean of the array. N 1 2 V ( xi x) The Standard Deviation N i 1 CV 100 x The Coefficient of Variation x x N Standard Deviation (or Error) of the Mean

8 Probability Reminder P( x;, ) ( e x ) / 2 The probability of x in a Gaussian distribution with mean and standard deviation z

9 Precision, Range and Accuracy In virtually every engineering application there is the need to measure some physical quantities, such as displacements, speeds, forces, pressures, temperatures, stresses, flows, and so on. These measurements are performed using physical devices called sensors, which are capable of converting a physical quantity to a more readily manipulated electrical quantity (ref: ).

10 Precision, Range and Accuracy The key issues in the selection of sensors are: (a) the field of view and range; (b) accuracy; (c) repeatability and resolution; (d) responsiveness in the target-domain; (e) power consumption; (f) hardware reliability; (g) size; and (h) interpretation reliability. Often the active element of a sensor is referred to as a transducer. Most sensors, therefore, convert the change of a physical quantity (e.g. pressure, temperature) to a corresponding and usually proportional change in an electrical quantity (e.g. voltage or current). Often the direct output from a sensor needs additional manipulation before the electrical output is available to the user.

11 Precision, Range and Accuracy The accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity's actual (true) value. The precision of a measurement system, also called reproducibility or repeatability, is the degree to which repeated measurements under unchanged conditions show the same results. Range is the maximum and the minimum values that can be measured.

12 Linearity, Sensitivityand Accuracy Linearity maximum deviation from a straight-line response normally expressed as a percentage of the full-scale value. Sensitivity a measure of the change produced at the output for a given change in the quantity being measured. Physical phenomenon Measurement Output

13 Yrd. Doç. Dr. Aytaç Gören Position Sensors potentiometer The most commonly used of all the "Position Sensors", is the potentiometer because it is an inexpensive and easy to use position sensor. It has a wiper contact linked to a mechanical shaft that can be either angular (rotational) or linear (slider type) in its movement, and which causes the resistance value between the wiper/slider and the two end connections to change giving an electrical signal output that has a proportional relationship between the actual wiper position on the resistive track and its resistance value. In other words, resistance is proportional to position. The output signal (V out ) from the potentiometer is taken from the centre wiper connection as it moves along the resistive track, and is proportional to the angular position of the shaft.

14 Yrd. Doç. Dr. Aytaç Gören Position Sensors potentiometer When used as a positional sensor the moveable object is connected directly to the shaft or slider of the potentiometer and a DC reference voltage is applied across the two outer fixed connections forming the resistive element while the output signal is taken from the wiper terminal of the sliding contact as shown below thus producing a potential or voltage divider type circuit output.

15 Yrd. Doç. Dr. Aytaç Gören Position Sensors One type of positional sensor that does not suffer from mechanical wear problems is the "Linear Variable Differential Transformer" or LVDT for short. This is an inductive type position sensor which works on the same principle as the AC transformer that is used to measure movement. It is a very accurate device for measuring linear displacement and whose output is proportional to the position of its moveable core. It basically consists of three coils wound on a hollow tube former, one forming the primary coil and the other two coils forming identical secondaries connected electrically together in series but 180 o out of phase either side of the primary coil. A moveable soft iron ferromagnetic core (sometimes called an "armature") which is connected to the object being measured, slides or moves up and down inside the tube. LVDT

16 Yrd. Doç. Dr. Aytaç Gören Position Sensors LVDT A small AC reference voltage called the "excitation signal" (2-20V rms, 2-20kHz) is applied to the primary winding which inturn induces an EMF signal into the two adjacent secondary windings (transformer principles).

17 Yrd. Doç. Dr. Aytaç Gören Position Sensors LVDT A typical application of this type of sensor would be a pressure transducers, were the pressure being measured pushes against a diaphragm to produce a force. Advantages of the linear variable differential transformer, or LVDT compared to a resistive potentiometer are that its linearity, that is its voltage output to displacement is excellent, very good accuracy, good resolution, high sensitivity as well as frictionless operation and is sealed against hostile environments.

18 Yrd. Doç. Dr. Aytaç Gören Position Sensors LVDT

19 Position Sensors Proximity Sensors Yrd. Doç. Dr. Aytaç Gören Another type of inductive sensor in common use is the Inductive Proximity Sensor also called an Eddy current sensor. While they do not actually measure displacement or angular rotation they are mainly used to detect the presence of an object in front of them or within a close proximity, hence the name proximity sensors. Proximity sensors, are non-contact devices that use a magnetic field for detection with the simplest magnetic sensor being the reed switch. In an inductive sensor, a coil is wound around an iron core within an electromagnetic field to form an inductive loop. When a ferromagnetic material is placed within the eddy current field generated around the sensor, such as a ferromagnetic metal plate or metal screw, the inductance of the coil changes significantly. The proximity sensors detection circuit detects this change producing an output voltage. Therefore, inductive proximity sensors operate under the electrical principle of Faraday's Law of inductance.

20 Yrd. Doç. Dr. Aytaç Gören Position Sensors An inductive proximity sensor has four main components; The oscillator which produces the electromagnetic field, the coil which generates the magnetic field, the detection circuit which detects any change in the field when an object enters it and the output circuit which produces the output signal, either with normally closed (NC) or normally open (NO) contacts. Inductive proximity sensors allow for the detection of metallic objects in front of the sensor head without any physical contact of the object itself being detected. This makes them ideal for use in dirty or wet environments. The "sensing" range of proximity sensors is very small, typically 0.1mm to 12mm. Proximity Sensors

21 Position Sensors Proximity Sensors (capacitive) Yrd. Doç. Dr. Aytaç Gören

22 Position Sensors Encoders Yrd. Doç. Dr. Aytaç Gören Rotary Encoders resemble potentiometers mentioned earlier but are noncontact optical devices used for converting the angular position of a rotating shaft into an analogue or digital data code. In other words, they convert mechanical movement into an electrical signal (preferably digital). All optical encoders work on the same basic principle. Light from an LED or infra-red light source is passed through a rotating high-resolution encoded disk that contains the required code patterns, either binary, grey code or BCD. Photo detectors scan the disk as it rotates and an electronic circuit processes the information into a digital form as a stream of binary output pulses that are fed to counters or controllers which determine the actual angular position of the shaft. There are two basic types of rotary optical encoders, Incremental Encoders and Absolute Position Encoders. Inductive sensor Opto-switch sensor

23 Position Sensors Encoders Yrd. Doç. Dr. Aytaç Gören Inductive sensor Opto-switch sensor Incremental Encoders, also known as quadrature encoders or relative rotary encoder, are the simplest of the two position sensors. Their output is a series of square wave pulses generated by a photocell arrangement as the coded disk, with evenly spaced transparent and dark lines called segments on its surface, moves or rotates past the light source. The encoder produces a stream of square wave pulses which, when counted, indicates the angular position of the rotating shaft. Incremental encoders have two outputs called quadrature outputs that are 90 o out of phase and the direction of rotation can be determined from output sequence. The number of transparent and dark segments or slots on the disk determines the resolution of the device and increasing the number of lines in the pattern increases the resolution per degree of rotation. Typical encoded discs have a resolution of up to 256 pulses or 8-bits per rotation.

24 Yrd. Doç. Dr. Aytaç Gören Position Sensors Encoders The simplest incremental encoder is called a tachometer. It has one single square wave output and is often used in unidirectional applications where basic position or speed information only is required. The "Quadrature" or "Sine wave" encoder is the more common and has two output square waves commonly called channel A and channel B. This device uses two photo detectors, slightly offset from each other by 90 o thereby producing two separate sine and cosine output signals.

25 Yrd. Doç. Dr. Aytaç Gören Position Sensors Encoders By using the Arc Tangent mathematical function the angle of the shaft in radians can be calculated. Generally, the optical disk used in rotary position encoders is circular, then the resolution of the output will be given as: θ = 360/n, where n equals the number of segments on coded disk. Then for example, the number of segments required to give an incremental encoder a resolution of 1 o will be: 1 o = 360/n, therefore, n = 360 windows, etc. Also the direction of rotation is determined by noting which channel produces an output first, either channel A or channel B giving two directions of rotation, A leads B or B leads A. This arrangement is shown below.

26 Position Sensors Absolute Position Encoders Yrd. Doç. Dr. Aytaç Gören Absolute Position Encoders are more complex than quadrature encoders. They provide a unique output code for every single position of rotation indicating both position and direction. Their coded disk consists of multiple concentric "tracks" of light and dark segments. Each track is independent with its own photo detector to simultaneously read a unique coded position value for each angle of movement. The number of tracks on the disk corresponds to the binary "bit"-resolution of the encoder so a 12-bit absolute encoder would have 12 tracks and the same coded value only appears once per revolution

27 Position Sensors Absolute Position Encoders Yrd. Doç. Dr. Aytaç Gören

28 Yrd. Doç. Dr. Aytaç Gören Velocity Sensors Encoders and Tachometers may be also used as velocity sensors. Other types of velocity sensors can be specifeid as, Doppler Sensors GPS sensors

29 Velocity Sensors Doppler Sensors Yrd. Doç. Dr. Aytaç Gören

30 Yrd. Doç. Dr. Aytaç Gören Range Sensors Scanning laser range finders provide a relatively new and exciting high-resolution robotics sensor. Common in high-end robotics for many years, these sensors are becoming more common on relatively inexpensive robotics applications due to the rich, high resolution, and high frequency data they generate. Laser Range Sensors USB Interface 240º Field of View 0.36º Angular Resolution 10Hz Refresh Rate 20mm to 4m

31 Range Sensors Ultrasonic Sensors Ultrasonic sensors (also known as transceivers when they both send and receive) work on a principle similar to radar or sonar which evaluate attributes of a target by interpreting the echoes from radio or sound waves respectively. Ultrasonic sensors generate high frequency sound waves and evaluate the echo which is received back by the sensor. Sensors calculate the time interval between sending the signal and receiving the echo to determine the distance to an object. Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18,000 hertz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed. Yrd. Doç. Dr. Aytaç Gören

32 Range Sensors Ultrasonic Sensors Yrd. Doç. Dr. Aytaç Gören In reflection mode (also known as echo ranging ), an ultrasonic transmitter emits a short burst of sound in a particular direction. The pulse bounces off a target and returns to the receiver after a time interval t. The receiver records the length of this time interval, and calculates the distance travelled r based on the speed of sound c: r = c * t

33 Yrd. Doç. Dr. Aytaç Gören Acceleration Sensors Acceleration is related to motion, a vector quantity, exhibiting a direction as well as magnitude. The direction of motion is described in terms of some arbitrary Cartesian or orthogonal coordinate systems.

34 Acceleration Sensors Yrd. Doç. Dr. Aytaç Gören

35 Yrd. Doç. Dr. Aytaç Gören Acceleration Sensors Piezoelectric accelerometers are widely used for general-purpose acceleration, shock, and vibration measurements. They are basically motion transducers with large output signals and comparatively small sizes and they are self generators not requiring external power sources. They are available with very high natural frequencies and are therefore suitable for high-frequency applications and shock measurements. where q is the charge developed and dij is the piezoelectric coefficient of the material.

36 Yrd. Doç. Dr. Aytaç Gören Acceleration Sensors Piezoelectric accelerometer Nonzero lower cutoff frequency (0.1 1 Hz for 5%) Light, compact size (miniature accelerometer weighing 0.7 g is available) Measurement range up to +/- 500 g Less expensive than capacitive accelerometer Sensitivity typically from mv/g Broad frequency bandwidth (typically khz) Operating temperature: C Capacitive accelerometer Good performance over low frequency range, can measure gravity! Heavier (~ 100 g) and bigger size than piezoelectric accelerometer Measurement range up to +/- 200 g More expensive than piezoelectric accelerometer Sensitivity typically from mv/g Frequency bandwidth typically from 0 to 800 Hz Operating temperature: C

37 Acceleration Sensors Piezoresistive Accelerometers Piezoresistive accelerometers are essentially semiconductor strain gauges with large gauge factors. High gauge factors are obtained since the material resistivity is dependent primarily on the stress, not only on the dimensions. This effect can be greatly enhanced by appropriate doping of semiconductors such as silicon. Most piezoresistive accelerometers use two or four active gauges arranged in a Wheatstone bridge. Extra precision resistors are used, as part of the circuit, in series with the input to control the sensitivity, for balancing, and for offsetting temperature effects. The sensitivity of a piezoresistive sensor comes from the elastic response of its structure and resistivity of the material. Wire and thick or thin film resistors have low gauge factors, that is, the resistance change due to strain is small. Yrd. Doç. Dr. Aytaç Gören

38 Yrd. Doç. Dr. Aytaç Gören Acceleration Sensors Strain-gauge accelerometers Strain-gauge accelerometers are based on resistance properties of electrical conductors. If a conductor is stretched or compressed, its resistance alters due to (a) dimensional changes, and (b) the changes in the fundamental property of material called piezoresistance. This indicates that the resistivity ρ of the conductor depends on the mechanical strain applied onto it. Electrostatic accelerometers are based on Coulomb s law between two charged electrodes; therefore, they are capacitive types. Depending on the operation principles and external circuits they can be broadly classified as (a) electrostatic-force-feedback accelerometers, and (b) differential-capacitance accelerometers.

39 Yrd. Doç. Dr. Aytaç Gören Acceleration Sensors Micro- and Nanoaccelerometers Multiple accelerometers can be mounted on a single chip, sensing accelerations in x, y, and z directions. The primary signal conditioning is also provided in the same chip. The output from the chip is usually read in the digital form.

40 Yrd. Doç. Dr. Aytaç Gören Gyroscope A gyroscope is a device for measuring or maintaining orientation, based on the principles of angular momentum. In essence, a mechanical gyroscope is a spinning wheel or disk whose axle is free to take any orientation. Although this orientation does not remain fixed, it changes in response to an external torque much less and in a different direction than it would without the large angular momentum associated with the disk's high rate of spin and moment of inertia. Since external torque is minimized by mounting the device in gimbals, its orientation remains nearly fixed, regardless of any motion of the platform on which it is mounted. Gyroscopes based on other operating principles also exist, such as the electronic, microchip-packaged MEMS gyroscope* devices found in consumer electronic devices, solid-state ring lasers, fibre optic gyroscopes, and the extremely sensitive quantum gyroscope. * Acronym for Microelectromechanical Systems

41 Gyroscope Yrd. Doç. Dr. Aytaç Gören

42 Yrd. Doç. Dr. Aytaç Gören Gyroscope Gyroscope measures Rate Of Turn. Integrate for angle Digital-output X-, Y-, and Z-Axis angular rate sensors (gyros) on one integrated circuit Digitally-programmable low-pass filter Low 6.5mA operating current consumption for long battery life Wide VDD supply voltage range of 2.1V to 3.6V Standby current: 5μA Digital-output temperature sensor Fast Mode I 2 C (400kHz) serial interface Optional external clock inputs of kHz or 19.2MHz to synchronize with system clock Pins broken out to a breadboard friendly 7-pin 0.1" pitch header

43 Yrd. Doç. Dr. Aytaç Gören Force Transducers The use of strain gages is based on the fact that the resistance of a conductor changes when the conductor is subjected to strain. The resistance of an electrically conductive material changes with dimensional changes which take place when the conductor is deformed elastically. When such a material is stretched, the conductors become longer and narrower, which causes an increase in resistance. Straingauges, Load Cells, Force Transducers

44 Yrd. Doç. Dr. Aytaç Gören Force Transducers Straingauges, Load Cells, Force Transducers Static balanced Wheatstone Bridge.

45 Force Transducers Straingauges, Load Cells, Force Transducers

46 Yrd. Doç. Dr. Aytaç Gören Force Transducers Straingauges, Load Cells, Force Transducers Both half-bridge and full-bridge configurations grant greater sensitivity over the quarterbridge circuit, but often it is not possible to bond complementary pairs of strain gauges to the test specimen. Thus, the quarter-bridge circuit is frequently used in strain measurement systems. When possible, the full-bridge configuration is the best to use. This is true not only because it is more sensitive than the others, but because it is linear while the others are not. Quarter-bridge and half-bridge circuits provide an output (imbalance) signal that is only approximately proportional to applied strain gauge force. Linearity, or proportionality, of these bridge circuits is best when the amount of resistance change due to applied force is very small compared to the nominal resistance of the gauge(s). With a full-bridge, however, the output voltage is directly proportional to applied force, with no approximation.

47 Yrd. Doç. Dr. Aytaç Gören Force Transducers Straingauges, Load Cells, Force Transducers Tension Compression Load Cell

48 Yrd. Doç. Dr. Aytaç Gören Motion Sensor Pyroelectricity is the ability of certain materials to generate a temporary voltage when they are heated or cooled. PIR sensors allow you to sense motion, almost always used to detect whether a human has moved in or out of the sensors range. The PIR sensor itself has two slots in it, each slot is made of a special material that is sensitive to Infra Red.

49 PIR Sensor Yrd. Doç. Dr. Aytaç Gören

50 Yrd. Doç. Dr. Aytaç51Gören

### Displacement, and Position sensors

Displacement, and Position sensors Displacement Measurement Measurement of displacement is the basis of measuring: Position Velocity Acceleration Stress Force Pressure Proximity Thickness 1 Displacement

### Electronics - Physics 2010/11. Transducers

Transducers Transducers Sensors Performance Type: Temperature, Light, Force, Motion, Displacement, Sound Interfacing Actuators Type: Heat, Light, Force, Displacement, Motion, Sound Interfacing Introduction

### CIS009-2, Mechatronics Sensors & Signal Conditioning

CIS009-2, & Signal Conditioning Bedfordshire 29 th November 2012 Outline Bedfordshire 31 1 Linear variable differential transformer Temperature Resistance Temperature Detector 3 4 ˆ are Input devices which

### Yrd. Doç. Dr. Aytaç Gören

H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### Velocity and Motion sensors (1)

Velocity and Motion sensors (1) Many sensors is now under operation to monitor linear and angular velocity and detect motion however the most used are Encoders, Tacho-generators Pyroelectic sensors Both

### Displacement, position and proximity sensor

Displacement, position and proximity sensor Displacement sensors are concerned with the measurement of amount by which some object has moved Position sensors are concerned with the determination of the

### Actuators & Sensors. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Actuators & Sensors Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 2 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE463 Introduction

### The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Quick Assembly Two and Three Channel Optical Encoders Technical Data HEDM-550x/560x HEDS-550x/554x HEDS-560x/564x Features Two Channel Quadrature Output with Optional Index Pulse Quick and Easy Assembly

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### Sensors Collecting Manufacturing Process Data

Sensors & Actuators Sensors Collecting Manufacturing Process Data Data must be collected from the manufacturing process Data (commands and instructions) must be communicated to the process Data are of

### Sensors and Cellphones

Sensors and Cellphones What is a sensor? A converter that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument What are some sensors we use every

### Input and Output Devices

Input and Output Devices Brief overview of typical input and output devices used with PLC s. INPUT DEVICES: Sensors which give digital/discrete, i.e. on/off signal to the input ports of the PLC. Mechanical

### Three Channel Optical Incremental Encoder Modules Technical Data

Three Channel Optical Incremental Encoder Modules Technical Data HEDS-9040 HEDS-9140 Features Two Channel Quadrature Output with Index Pulse Resolution Up to 2000 CPR Counts Per Revolution Low Cost Easy

### INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS

INSTRUMENTATION AND CONTROL TUTORIAL 3 SIGNAL PROCESSORS AND RECEIVERS This tutorial provides an overview of signal processing and conditioning for use in instrumentation and automatic control systems.

### CHAPTER 8 OBJECT REGISTERING SENSORS

CHAPTER 8 OBJECT REGISTERING SENSORS 8.1. Contact sensors for object registering Mechanical switches can be used as contact sensors for object registering. They generate signals of the on/off type as a

### COS Lecture 8 Autonomous Robot Navigation

COS 495 - Lecture 8 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

### 1. Title Electrical fundamentals II (Mechanics Repair and Maintenance)

1. Title Electrical fundamentals II (Mechanics Repair and Maintenance) 2. Code EMAMBG429A 3. Range The knowledge is needed for a wide range of aircraft repair and maintenance works,e.g. applicable to aircrafts,

### PIPS A New Technology In Inductive Position Sensing

PIPS A New Technology In Inductive Position Sensing Positek Limited L6 The Link Andoversford Industrial Estate Andoversford Cheltenham Gloucestershire GL54 4LB England Telephone (44) (0)1242 820027 Fax:

### 3.6 Solving Problems Involving Projectile Motion

INTRODUCTION 1-2 Physics and its relation to other fields introduction of physics, its importance and scope 1-5 Units, standards, and the SI System description of the SI System description of base and

### UEI App Notes: Using Accelerometers in a Data Acquisition System

UEI App Notes: Using Accelerometers in a Data Acquisition System by Bob Judd Director of Marketing 1 Using Accelerometers in a Data Acquisition System Accelerometers are widely used in industry for measuring

### BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

### Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

### Electronic Instrumentation

Chapter 4 Electronic Sensors for Industrial Measurements 1 Chapter 4. Electronic Sensors For Industrial Measurements Introduction Position, Displacement and Level Strain and force Velocity and Acceleration

### Optical Encoders. K. Craig 1. Actuators & Sensors in Mechatronics. Optical Encoders

Any transducer that generates a coded reading of a measurement can be termed an encoder. Shaft Encoders are digital transducers that are used for measuring angular displacements and velocities. Relative

### Content Map For Career & Technology

Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

### Description. Dimensions. Features. www.pwb-encoders.com. precision works better

Description The MEC22 is a high resolution optical hollow shaft encoder that can be fixed quickly and easily on different sizes of motor shafts. The encoder provides two square wave outputs in quadrature

### Principles of Adjustable Frequency Drives

What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

### MEMS: Microelectromechanical Systems

MEMS: Microelectromechanical Systems What are MEMS? Micro-electro-mechanical systems miniaturized mechanical and electro-mechanical elements having some sort of mechanical functionality convert a measured

### Technology and Benefits of Programmable Linear Position Sensors (Based on Inductive Measurement)

Technology and Benefits of Programmable Linear Position Sensors (Based on Inductive Measurement) This white paper describes new technology that enable engineers to easily program key functions into a linear

### Subminiature Load Cell Model 8417

w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...

### Robot Hardware Non-visual Sensors. Ioannis Rekleitis

Robot Hardware Non-visual Sensors Ioannis Rekleitis Robot Sensors Sensors are devices that can sense and measure physical properties of the environment, e.g. temperature, luminance, resistance to touch,

### Solid State Replacements for Electro-Mechanical Potentiometer Type Pressure Transducers. Abstract. Introduction

Solid State Replacements for Electro-Mechanical Potentiometer Type Pressure Transducers Wolf Landmann Director of Advanced Development Kulite Semiconductor Products, Inc. 1 Willow Tree Road Leonia, NJ

### Sensors of position and motion

Sensors of position and motion Linear (translational) /angular (rotary) binary (logical output variable) with digital output : incremental (relative) / absolute, optical / magnetic Linear resistive inductance

### Dimensions: Specifications:

Rover 5 Rover 5 is a new breed of tracked robot chassis designed specifically for students and hobbyist. Unlike conventional tracked chassis s the clearance can be adjusted by rotating the gearboxes in

### Robot Perception Continued

Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

### Introduction to Robotics Analysis, Systems, Applications

Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH

### Inductive and Magnetic Sensors

Chapter 12 Inductive and Magnetic Sensors 12.1 Inductive Sensors A number of the actuators developed in previous chapters depend on the variation of reluctance with changes in angle or displacement. Since

### High Tech High Top Hat Technicians. Introduction to Encoders. You spin me right 'round, baby, right 'round

High Tech High Top Hat Technicians Introduction to Encoders Or You spin me right 'round, baby, right 'round Encoders: Linear versus Rotary Linear encoders measure linear motion A coded linear scale moves

### Trench Etched Resonant Pressure Sensor: TERPS

Trench Etched Resonant Pressure Sensor: TERPS Russell Craddock & Peter Kinnell GE Measurement & Control Solutions, Fir Tree lane, Groby, UK LE6 0FH INTRODUCTION High precision pressure sensors based on

### 6. Typical discrete input and output devices 6.1 Discrete input devices

6. Typical discrete input and output devices 6.1 Discrete input devices Manual switches and push buttons. They are used to initiate or select process operations or input values by the system operator.

### Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen

Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1

### Chapter 5: Tool Dynamometers

Chapter 5: Tool Dynamometers LEARNING OBJECTIVES Different types of transducers used in Dynamometers Design Requirements Types of Dynamometers ---------------------------------------------------------------------------------------------------------------------

### Position Sensors MicroSense, LLC

Understanding Capacitive Position Sensors 2011 MicroSense, LLC Table of Contents 1. Introduction to Capacitive Sensors... 3 1.1 Characteristics of Capacitive Sensors... 3 1.1.1 Non Contact... 3 1.1.2 High

### 3.8 Summary Problems... 94

Contents Acknowledgement... xvii Preface... xix Chapter 1 Fundamentals of Measurement Systems... 1 1.1 Introduction... 1 1.2 Measurement Units... 2 1.3 Measurement System Design... 3 1.3.1 Elements of

### MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Mechanical Drawing. Features

Description Page 1 of 8 The MA3 is a miniature rotary absolute shaft encoder that reports the shaft position over 360 with no stops or gaps. The MA3 is available with an analog or a pulse width modulated

### APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

### Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors

Stepper motor Keywords Stepper motor Fieldbus Microstepping Encoder Phase current Travel distance control Speed interface KL2531 KL2541 Part A of this Application Example provides general information on

### Incremental & Absolute Encoders: What s the Best Solution for Your Application?

Incremental & Absolute Encoders: What s the Best Solution for Your Application? There are many factors you need to take into account when selecting the right encoder for your application. How do you choose

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

### Application Note: MSS-7302

Application Note: MSS-7302 Using Table the MPS160 of Contents ASIC 1. Overview 2. Quadrature Signals 3. Resolution 4. Accuracy 5. Positioning and Speed Applications 5.1. Positioning Applications 5.2. Speed

### MA3. Miniature Absolute Magnetic Shaft Encoder Page 1 of 8. Description. Mechanical Drawing. Features

Description Page 1 of 8 The MA3 is a miniature rotary absolute shaft encoder that reports the shaft position over 360 with no stops or gaps. The MA3 is available with an analog or a pulse width modulated

### Section 6 - Electronics

Section 6 - Electronics 6.1. Power for Excitation Piezoresistive transducers are passive devices and require an external power supply to provide the necessary current (I x ) or voltage excitation (E x

### Using Quadrature Encoders with E Series DAQ Boards

Application Note 084 Introduction Using Quadrature Encoders with E Series DAQ Boards The DAQ-STC, the System Timing Controller device, is used on National Instruments E Series MIO DAQ boards as the timing

### A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices Part 60: Last updated: 3rd February 2006 Author: Patrick J. Kelly Electrical power is frequently generated by spinning the shaft of a generator which has some arrangement

### AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders. Features. Applications

AEDA-3300 Series Ultra Miniature, High Resolution Incremental Kit Encoders Data Sheet Description The AEDA-3300 series are high performance, cost effective, three-channel optical incremental encoder modules

### Contactless Encoder RI360P0-QR24M0-INCRX2-H1181

Compact, rugged housing Many mounting possibilities Status displayed via LED Immune to electromagnetic interference 1024 pulses per revolution (default) 360, 512, 1000, 1024, 2048, 2500, 3600, 4096, parametr.

### Surface Profilometry as a tool to Measure Thin Film Stress, A Practical Approach. Gianni Franceschinis, RIT MicroE Graduate Student

1 Surface Profilometry as a tool to Measure Thin Film Stress, A Practical Approach. Gianni Franceschinis, RIT MicroE Graduate Student Abstract-- As the film decreases in thickness the requirements of more

### Week 6. Lecture 1 Velocity Measurement. Velocity (Speed) Measurement

Week 6 Lecture 1: Velocity Measurement Lecture 2: Acceleration Measurement Activity: Module 6 Tutorial: Solving ODEs with Simulink and MATLAB solvers (ode45, ode23, etc.) Lecture 1 Velocity Measurement

### A2.4 LINEAR POSITION SENSING USING MAGNETORESISTIVE SENSORS. Abstract

A2.4 LIEAR POSITIO SESIG USIG MAGETORESISTIVE SESORS By Bratland, Tamara Product Line Manager, Magnetic Sensors Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota, 55441

### Lecture 4: Kinesthetic haptic devices: Sensors and Actuators

ME 327: Design and Control of Haptic Systems Autumn 2015 Lecture 4: Kinesthetic haptic devices: Sensors and Actuators Allison M. Okamura Stanford University a kinesthetic haptic system Motion Digital position

### AMT 102 & 103 capacitive encoder CUI Inc

AMT 102 & 103 capacitive encoder 1 Contents Purpose the purpose of this training module is to familiarize you with rotary encoders and to show the benefits of the AMT102 & 103 Objectives understand what

### 222fg REV HD HEX MOTOR ENCODER. October 10, HD Motor Encoder Guide Copyright 2016 REV Robotics, LLC 1

222fg REV-41-1300 HD HEX MOTOR ENCODER October 10, 2016 HD Motor Encoder Guide Copyright 2016 REV Robotics, LLC 1 TABLE OF CONTENTS 1 ENCODER BASICS... 3 1.1 WHAT IS AN ENCODER?... 3 1.2 MAGNETIC QUADRATURE

### Applications for velocity measurement include: Controlling the speed at which metal stock is fed into a machine tool.

Applications Applications for velocity measurement include: Controlling the speed at which metal stock is fed into a machine tool. Measuring the approach speed of a robotic tool onto its target. Monitoring

### Chen. Vibration Motor. Application note

Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

### BI Technologies R2R Resistor Ladder Networks

BI Technologies esistor Ladder Networks 8-Bit and 0-Bit resistor ladder networks for DAC and ADC applications. Auto calibration circuits Slope generators Function generators Motor speed control Model BCN3Ladder

### Chapter 9. Pressure. Pressure. Pressure and Velocity Measurements

Chapter 9 Pressure and Velocity Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Pressure Pressure is force per unit area. It acts inward or outward, normal

### Mechanical Pressure Measurement David Gardellin, P.E.

Mechanical Pressure Measurement David Gardellin, P.E. Bourdon tube-type pressure sensors are the most common for industrial use in the family of elastic pressure elements. They have been in use for over

### Sense it! Connect it! Bus it! Solve it! EncoderS

Sense it! Connect it! Bus it! Solve it! EncoderS Incremental encoders Incremental encoders use electrical pulses to measure rotation speed or position. The dual-channel incremental encoders of the Ri series,

### Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of

Hello and welcome to this training module for the STM32L4 Liquid Crystal Display (LCD) controller. This controller can be used in a wide range of applications such as home appliances, medical, automotive,

### Microcontroller to Sensor Interfacing Techniques

to Sensor Interfacing Techniques Document Revision: 1.01 Date: 3rd February, 2006 16301 Blue Ridge Road, Missouri City, Texas 77489 Telephone: 1-713-283-9970 Fax: 1-281-416-2806 E-mail: info@bipom.com

### The Electronic Scale

The Electronic Scale Learning Objectives By the end of this laboratory experiment, the experimenter should be able to: Explain what an operational amplifier is and how it can be used in amplifying signal

### Weight Measurement Technology

Kistler-Morse (KM) introduced bolt-on weight measuring systems three decades ago. These devices featured Walter Kistler s invention, the Microcell. Over the years, many improvements were made to the Microcell

### CMA / Flodyne Drive for Technology

CMA / Flodyne Drive for Technology Linear Position Measurement Technologies Scott Rosenberger Market Manager, Linear Position Sensing Balluff, Inc. What Are We Talking About Today? General Applications

### Development of intelligent systems

Development of intelligent systems (RInS) Robot sensors Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science v5.0 Academic year: 2015/16 Development of intelligent systems

### How the sensors work

How the sensors work Introduction There are six different sensor types integrated into SensorStick. Some are shown in Fig.. Humidity HIH-00-00 Accelerometer MMA76LR Pressure MPH65A6U Compass HMC58 Figure

### Why an Encoder 252 Spotlight on MR2 Encoder 253 Encoder Specifications 256

Encoders Feedback mechanisms for gauging motor position and speed are highly essential for a wide range of applications in medical, industrial automation, security and access. Portescap s encoder technologies

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### The Do s and Don ts of Pressure Transducers

The Do s and Don ts of Pressure Transducers ABSTRACT When specifying a pressure transducer for a process measurement, a number of items have to be considered. Some of the more important ones are discussed

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 9: Pressure measurement Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of Engineering

### Proximity and Limit Switches

Proximity and Limit Switches A variety of sensors are available that give ON/OFF (or yes/no) binary outputs Mechanical limit switches often called microswitches activation causes electrical contacts to

### Unit I Measurement of voltage and Current

MARIA COLLEGE OF ENGINEERING AND TECHNOLOGY, ATTOOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MEASUREMENTS AND INSTRUMENTATION 2 MARKS QUESTIONS & ANSWERS Unit I Measurement of voltage and

### Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet

Agilent AEDB-9140 Series Three Channel Optical Incremental Encoder Modules with Codewheel, 100 CPR to 500 CPR Data Sheet Description The AEDB-9140 series are three channel optical incremental encoder modules

### OPERATING INSTRUCTIONS

OPERATING INSTRUCTIONS Use Vane anemometers are used for the velocity measurement of directed air flows being free from eddies and turbulences. Because of the small, sturdy construction the instrument

### Capacitive Proximity Sensors Theory of Operation

Capacitive Proximity Sensors Theory of Operation Capacitive proximity sensors are similar to inductive proximity sensors. The main difference between the two types is that capacitive proximity sensors

### maxon EC motor An introduction to brushless DC motors

This presentation introduces the design and operation principle of the brushless maxon EC motors. EC motors are also called brushless DC (BLDC) motors. In a first part we show the basic designs of brushless

### ALTERNATING CURRENTS

ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q-1. What is the SI unit of? Q-2. What is the average value of alternating emf over one cycle? Q-3. Does capacitor allow ac to pass through it? Q-4. What

### Tamura Open Loop Hall Effect Current Sensors

Tamura Open Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response 50kHz small signal frequency bandwidth Quality & Reliability RoHs compliance Overview The following

### Measurement Types in Machinery Monitoring

February 2014 Measurement Types in Machinery Monitoring Online machinery monitoring for rotating equipment is typically divided into two categories: 1. Protection Monitoring 2. Prediction Monitoring This

### EL5223. Basic Concepts of Robot Sensors, Actuators, Localization, Navigation, and1 Mappin / 12

Basic Concepts of Robot Sensors, Actuators, Localization, Navigation, and Mapping Basic Concepts of Robot Sensors, Actuators, Localization, Navigation, and1 Mappin / 12 Sensors and Actuators Robotic systems

### Flexible Counter Series in DIN size 24 x 48 mm

Flexible Counter Series in DIN size 24 x 48 mm high contrast 8-digit LCD display or brilliant 6-digit LED display 2 different supply voltages available: independent of mains supply with lithium battery

### Small Optical Encoder Modules 480lpi Digital Output. Features. Applications VCC 3 CHANNEL A 2 CHANNEL B 4 GND 1

HEDS-9730, HEDS-9731 Small Optical Encoder Modules 480lpi Digital Output Data Sheet Description The HEDS-973X is a high performance incremental encoder module. When operated in conjunction with either

### APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

### Mechanical Actuators. Mechanical MEMS. Electrostatic Actuators. Electrostatic Actuation Cantilever Actuators

Mechanical Actuators Mechanical MEMS Dr. Bruce K. Gale Fundamentals of Micromachining Actuation mechanisms: electrostatic = electrostatic attraction of charged plates thermal = expansion of solids or fluids