1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH


 Margaret Claire Morrison
 4 years ago
 Views:
Transcription
1 1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily, and the CCSS focus of the Fact Practices. Meeting Activities Lunch/Attendance Graph Counting Clock Counting Pattern Coin Cup MATH MEETING / CALENDAR TIME Common Core Number Common Core Standard Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Tell and write time. 3. Tell and write time in hours and halfhours using analog and digital clocks. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
2 Weather Graph Problem Solving Fact Practices (1st cluster) Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. SAXON MATH LESSONS Lesson Number And Name 1 Identifying What Mathematicians Do (The Meeting) 2 Making Towers for the Numbers Writing the Numbers 1, 4, and 5 4 Making Towers for the Numbers 1 9 Ordering the Numbers Placing an Object on a Graph Writing the Numbers 2, 3, and 7 6 Identifying a Circle and a Square Identifying the Number of Sides and Angles of a Square Common Core Number Common Core Standard Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
3 7 Graphing a Picture on a Pictograph Identifying Most and Fewest on a Graph Identifying Right and Left 8 Writing the Numbers 0, 6, 8, and 9 9 Ordering Sets From Smallest to Largest Identifying Most and Fewest Ordering Numbers From Least to Greatest 101 Matching a Number to a Set Collecting and Sorting Data Using Data to Construct a BarType Graph 102 Identifying the Steps in the ProblemSolving Process Using Logical Reasoning to Solve a Problem Assessment 1 11 Identifying Morning and Afternoon Identifying First, Last, Between, and Middle Identifying First, Second, and Third 12 Acting Out Some, Some More and Some, Some Went Away Stories 12.MP.1 Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
4 13 Identifying a Triangle Identifying the Number of Sides and Angles of a Triangle Sorting by One Attribute 14 Making a Shape on a Geoboard Identifying Inside and Outside 151 Acting Out and Drawing Pictures for Some, Some More and Some, Some Went Away Stories 152 Sorting by One Attribute Assessment 2 16 Counting Pennies 17 Identifying a Number Between Two Numbers 18 Dividing a Solid in Half Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
5 19 Picturing and Combining Sets Graphing a Picture on a Pictograph 201 Counting From 0 to Making an Organized List to Solve a Problem Assessment 3 21 Writing Addition Number Sentences Representing Equivalent Forms of the Same Number 22 Identifying Ordinal Position to Sixth 23 Addition Facts: Doubles with Sums to MP.1 (4th cluster) Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Work with addition and subtraction equations. 7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 1, = 2 + 5, = Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 +? = 11, 5 = 3, =.
6 24 Identifying a Rectangle Identifying the Number of Sides and Angles of a Rectangle 251 Writing Number Sentences for Some, Some More Stories Creating Addition Problem Situations 252 Identifying the Attributes of Pattern Blocks Assessment 4 26 Creating and Reading a Repeating Pattern 27 Addition Facts: Doubles with Sums to Addition Facts: Doubles with Sums to MP.7 Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. 7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 8 equals the well remembered , in preparation for learning about the distributive property. In the expression x2 + 9x + 14, older students can see the 14 as 2 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y)2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.
7 29 Identifying Lighter and Heavier Using a Balance 301 Addition Facts: Doubles with Sums to Looking for a Pattern to Solve a Problem Assessment 5 31 Covering Designs With Pattern Blocks 32 Ordering Numbers to 20 Adding 1 to a Number 12.MP.5 12.MP.1 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
8 33 Writing Number Sentences for Some, Some Went Away Stories Creating Subtraction Problem Situations 34 Counting Backward From 10 to 1 Adding 1 to a Number 351 Identifying Morning, Afternoon, Evening, and Night 352 Estimating and Measuring Length Using Nonstandard Units Assessment 6 36 Addition Facts: Adding 1 37 Addition Facts: Adding 1 38 Sorting Items and Creating a Graph 39 Weighing Objects Using Nonstandard Units Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Measure lengths indirectly and by iterating length units. 1. Order three objects by length; compare the lengths of two objects indirectly by using a third object. 2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of samesize length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps. Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
9 401 Finding a Sum by Counting On Making and Reading a Bar Graph 402 Using Logical Reasoning to Solve a Problem Assessment 7 41 Addition Facts: Adding 0 42 Covering a Design in Different Ways 43 Counting by 10 s to Subtraction Facts: Subtracting 451 Subtraction Facts: Subtracting 1 12.MP Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Understand and apply properties of operations and the relationship between addition and subtraction. 3. Apply properties of operations as strategies to add and subtract.3 Examples: If = 11 is known, then = 11 is also known. (Commutative property of addition.) To add , the second two numbers can be added to make a ten, so = = 12. (Associative property of addition.) 4. Understand subtraction as an unknownaddend problem. For example, subtract 10 8 by finding the number that makes 10 when added to 8.
10 452 Identifying Identical Designs Assessment 8 46 Counting Dimes 47 Counting by 2 s 48 Telling Time to the Hour 49 Subtraction Facts: Subtracting 0 and Subtracting a Number From Itself 501 Estimating the Capacity of Containers Ordering Containers by Capacity Identifying a 1Cup Liquid Measure Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Tell and write time. 3. Tell and write time in hours and halfhours using analog and digital clocks.
11 502 Drawing a Picture to Solve a Problem Assessment 9 51 Identifying the Even Numbers to Identifying and Locating Numbers on a Hundred Number Chart 53 Counting Dimes and Pennies 54 Creating a Design with a Line of Symmetry Identifying a Line of Symmetry 551 Drawing a Line of Symmetry Identifying One Half of a Whole Writing the Fraction One Half 12.MP.1 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <.
12 552 Estimating and Measuring the Capacity of Containers Using Nonstandard Units Writing a TwoDigit Number for a Set of Objects Comparing and Ordering TwoDigit Numbers Assessment Identifying Odd and Even Numbers 57 Numbering a Clock Face Showing Time to the Hour on a Clock 58 Adding 2 to an Even Number 59 Adding 2 to an Odd Number 601 Covering a Design With Pattern Blocks Sorting, Counting, and Recording the Pattern Blocks Used to Cover a Design Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Tell and write time. 3. Tell and write time in hours and halfhours using analog and digital clocks.
13 602 Looking for a Pattern to Solve a Problem Assessment Addition Facts: Adding 2 62 Comparing and Ordering Objects by Length Measuring Length Using Nonstandard Units Lesson Extension Activity 1 (p 25): Comparing the Lengths of Two Objects Indirectly by Using a Third Object 63 Writing Numbers 0 10 Using Words 64 Identifying Pairs 12.MP.1 12.MP.1 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Measure lengths indirectly and by iterating length units. 1. Order three objects by length; compare the lengths of two objects indirectly by using a third object. 2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of samesize length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
14 651 Graphing Pieces Used to Cover a Design Reading a Graph 652 Identifying Ordinal Position to 26th Assessment Writing Money Amounts Using the Cent Symbol Paying for Items Using Dimes and Pennies 67 Dividing a Square into Halves 68 Subtraction Facts: Subtracting 2 69 Subtraction Facts: Subtracting 2 Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. 5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).
15 701 Tallying Counting by 5 s 702 Drawing a Picture to Solve a Problem Assessment Using a Ruler to Draw a Line Segment 72 Sorting Common Objects 73 Adding TwoDigit Numbers Without Regrouping Using Dimes and Pennies 12.MP.1 12.MP.5 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
16 74 Adding TwoDigit Numbers Without Regrouping Using Dimes and Pennies 751 Adding TwoDigit Numbers Without Regrouping Using Dimes and Pennies 752 Estimating and Measuring Area Using Nonstandard Units Combining Geometric Shapes to Make New Geometric Shapes Assessment Addition Facts: Showing Doubles Plus 1 Facts 77 Addition Facts: Identifying Doubles Plus 1 Facts 78 Addition Facts: Doubles Plus 1 Facts (1st cluster) Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand and apply properties of operations and the relationship between addition and subtraction. 3. Apply properties of operations as strategies to add and subtract.3 Examples: If = 11 is known, then = 11 is also known. (Commutative property of addition.) To add , the second two numbers can be added to make a ten, so = = 12. (Associative property of addition.) 4. Understand subtraction as an unknownaddend problem. For example, subtract 10 8 by finding the number that makes 10 when added to 8.
17 79 Addition Facts: Doubles Plus 1 Facts 801 Addition Facts: Doubles Plus 1 Facts 802 Guessing and Checking to Solve a Problem Acting It Out to Solve a Problem Assessment Adding TwoDigit Numbers Without Regrouping 82 Identifying How Many More on a Graph 83 Identifying and Making Congruent Shapes 12.MP.1 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Represent and interpret data. 4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
18 84 Counting Large Collections Grouping by 10 s 851 Using Concrete and Pictorial Models to Represent TwoDigit Numbers Comparing TwoDigit Numbers Identifying the Place Value of Digits in a Two Digit Number 852 Trading Pennies for Dimes Assessment Adding TwoDigit Numbers With Regrouping Using Dimes and Pennies 87 Telling Time to the Half Hour 88 Dividing a Shape Into Fourths Coloring Halves and Fourths Lesson Extension Activity 2 (p 27): Dividing a Shape into Halves and Fourths Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Tell and write time. 3. Tell and write time in hours and halfhours using analog and digital clocks.
19 89 Adding 10 to a Number 901 Counting by 10 s From a SingleDigit Number 902 Drawing a Picture to Solve a Problem Assessment Adding 10 to a Number 92 Comparing and Ordering Numbers to MP.1 Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Use place value understanding and properties of operations to add and subtract. 4. Add within 100, including adding a twodigit number and a onedigit number, and adding a twodigit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding twodigit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. 5. Given a twodigit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used. 6. Subtract multiples of 10 in the range from multiples of 10 in the range (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
20 93 Counting by 100 s 94 Addition Facts: Sums of 10 Identifying a Missing Addend Lesson Extension Activity 3 (p 29): Identifying the Unknown Number in an Addition Equation 951 Addition Facts: Sums of 10 Lesson Extension Activity 4 (p 31): Solving Word Problems with Unknowns 952 Estimating and Measuring Length Using Nonstandard Units Comparing the Size of the Unit & the #s of Units Used to Measure an Object Assessment Drawing Congruent Shapes and Designs (4th cluster) (4th cluster) (1st cluster) Understand place value. 2. Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones called a ten. b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones). 3. Compare two twodigit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, and <. Work with addition and subtraction equations. 7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 1, = 2 + 5, = Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 +? = 11, 5 = 3, =. Work with addition and subtraction equations. 7. Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? 6 = 6, 7 = 8 1, = 2 + 5, = Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations 8 +? = 11, 5 = 3, =. Represent and solve problems involving addition and subtraction. 1. Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.2 2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem. Measure lengths indirectly and by iterating length units. 1. Order three objects by length; compare the lengths of two objects indirectly by using a third object. 2. Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of samesize length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
Pocantico Hills School District Grade 1 Math Curriculum Draft
Pocantico Hills School District Grade 1 Math Curriculum Draft Patterns /Number Sense/Statistics Content Strands: Performance Indicators 1.A.1 Determine and discuss patterns in arithmetic (what comes next
More informationGrades K6. Correlated to the Common Core State Standards
Grades K6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
More informationAnalysis of California Mathematics standards to Common Core standards Kindergarten
Analysis of California Mathematics standards to Common Core standards Kindergarten Strand CA Math Standard Domain Common Core Standard (CCS) Alignment Comments in reference to CCS Strand Number Sense
More informationGrade 1. M3: Ordering and Expressing Length Measurements as Numbers
Grade 1 Key Areas of Focus for Grades K2: Addition and subtractionconcepts, skills and problem solving Expected Fluency: Add and Subtract within 10 Module M1: Addition and Subtraction of Numbers to 10
More informationFIRST GRADE MATH Summer 2011
Standards Summer 2011 1 OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in
More informationChapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter A. Elementary
Elementary 111.A. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter A. Elementary Statutory Authority: The provisions of this Subchapter A issued under the Texas Education Code,
More information1st Grade Math Standard I Rubric. Number Sense. Score 4 Students show proficiency with numbers beyond 100.
1st Grade Math Standard I Rubric Number Sense Students show proficiency with numbers beyond 100. Students will demonstrate an understanding of number sense by: counting, reading, and writing whole numbers
More informationMathematics Florida Standards (MAFS) Grade 2
Mathematics Florida Standards (MAFS) Grade 2 Domain: OPERATIONS AND ALGEBRAIC THINKING Cluster 1: Represent and solve problems involving addition and subtraction. MAFS.2.OA.1.1 Use addition and subtraction
More informationIndicator 2: Use a variety of algebraic concepts and methods to solve equations and inequalities.
3 rd Grade Math Learning Targets Algebra: Indicator 1: Use procedures to transform algebraic expressions. 3.A.1.1. Students are able to explain the relationship between repeated addition and multiplication.
More informationGeometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
More informationfor the Common Core State Standards 2012
A Correlation of for the Common Core State s 2012 to the Common Core Georgia Performance s Grade 2 FORMAT FOR CORRELATION TO THE COMMON CORE GEORGIA PERFORMANCE STANDARDS (CCGPS) Subject Area: K12 Mathematics
More informationK12 Louisiana Student Standards for Mathematics: Table of Contents
K12 Louisiana Student Standards for Mathematics: Table of Contents Introduction Development of K12 Louisiana Student Standards for Mathematics... 2 The Role of Standards in Establishing Key Student Skills
More informationMathematics Scope and Sequence, K8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
More informationQuarter One: AugustOctober
Quarter One: AugustOctober (Chapters 1 3, 56, 10) August  December Quarterly Addition facts with sums through 20 General Math Content 1. Write sums through 20. 1. Choose and enter the appropriate answer.
More informationPUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION ELEMENTARY MATH GRADE 2 MATH IN FOCUS
PUBLIC SCHOOLS OF EDISON TOWNSHIP DIVISION OF CURRICULUM AND INSTRUCTION ELEMENTARY MATH GRADE 2 MATH IN FOCUS Length of Course: Term Elective / Required: Required Schools: Elementary Student Eligibility:
More informationMinnesota Academic Standards
A Correlation of to the Minnesota Academic Standards Grades K6 G/M204 Introduction This document demonstrates the high degree of success students will achieve when using Scott Foresman Addison Wesley
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More informationMAFS: Mathematics Standards GRADE: K
MAFS: Mathematics Standards GRADE: K Domain: COUNTING AND CARDINALITY Cluster 1: Know number names and the count sequence. CODE MAFS.K.CC.1.1 Count to 100 by ones and by tens. MAFS.K.CC.1.2 MAFS.K.CC.1.3
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More information2nd Grade Math Common Core Curriculum
Quarter 1 I. Number 2.1.2.B.1 To allow for refinement of curricular content and to guide the creation of quality aligned assessments, the Objectives column is intentionally incomplete. The District s Curriculum
More informationSCOPE & SEQUENCE. Kindergarten, First Grade, and Second Grade. Skills and Activities
SCOPE & SEQUENCE Kindergarten, First Grade, and Second Grade Skills and Activities INNOVATIVE LEARNING CONCEPTS INC. creators of TOUCHMATH TouchMath materials were first published in 1975. Innovative Learning
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationProgressing toward the standard
Report Card Language: The student can add and subtract fluently within 20. CCSS: 2.OA.2 Fluently add and subtract within 20 using mental strategies, by end of grade, know from memory all sums of two onedigit
More informationNumber, Operation, and Quantitative Reasoning
2 nd Grade Math TEKS I Can Statements Website Resources Number, Operation, and Quantitative Reasoning 2.1A I can use models to make a number that has hundreds, tens,and ones 2.1B I can read and write whole
More informationMath Journal HMH Mega Math. itools Number
Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders
Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for wholenumber quotients with remainders of up to fourdigit dividends
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationISAT Mathematics Performance Definitions Grade 4
ISAT Mathematics Performance Definitions Grade 4 EXCEEDS STANDARDS Fourthgrade students whose measured performance exceeds standards are able to identify, read, write, represent, and model whole numbers
More informationProblem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationSTRAND: Number and Operations Algebra Geometry Measurement Data Analysis and Probability STANDARD:
how August/September Demonstrate an understanding of the placevalue structure of the baseten number system by; (a) counting with understanding and recognizing how many in sets of objects up to 50, (b)
More informationYear R Maths Objectives
Year R Maths Objectives In order to meet the Early Learning Goals at the end of Year R children must be able to: Numbers Count reliably with numbers from 0, place them in order and say which number is
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationCommon Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve
Common Core State Standards for Mathematics for California Public Schools Kindergarten Through Grade Twelve Adopted by the California State Board of Education August 2010 Updated January 2013 Prepublication
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
More informationPerformance Assessment Task Which Shape? Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationStandards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
More informationProblem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve equations and inequalities in one variable.
Performance Assessment Task Quadratic (2009) Grade 9 The task challenges a student to demonstrate an understanding of quadratic functions in various forms. A student must make sense of the meaning of relations
More informationEveryday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of 6 GradeLevel Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
More informationGrade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman  Addison Wesley 2008 Test Preparation Timeline Recommendation: September  November Chapters 15 December
More informationRepublic of the Philippines Department of Education DepEd Complex, Meralco Avenue Pasig City. K to 12 Curriculum Guide MATHEMATICS
Republic of the Philippines Department of Education DepEd Complex, Meralco Avenue Pasig City K to 12 Curriculum Guide MATHEMATICS (Grade 1 to Grade 10) January 31, 2012 CONCEPTUAL FRAMEWORK Mathematics
More informationMercer County Schools
Mercer County Schools PRIORITIZED CURRICULUM Mathematics Content Maps Second Grade Mercer County Schools PRIORITIZED CURRICULUM The Mercer County Schools Prioritized Curriculum is composed of West Virginia
More informationProblem of the Month: Double Down
Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationEVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 35 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationCommon Core State Standards for. Mathematics
Common Core State Standards for Mathematics Table of Contents Introduction 3 Standards for Mathematical Practice 6 Standards for Mathematical Content Kindergarten 9 Grade 1 13 Grade 2 17 Grade 3 21 Grade
More informationProblem of the Month: Once Upon a Time
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More information MartensdaleSt. Marys Community School Math Curriculum
 MartensdaleSt. Marys Community School Standard 1: Students can understand and apply a variety of math concepts. Benchmark; The student will: A. Understand and apply number properties and operations.
More informationMathematical Practices
The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K12 MP 1 CC.K12.MP.1 Make sense of problems and persevere in
More informationEveryday Mathematics GOALS
Copyright Wright Group/McGrawHill GOALS The following tables list the GradeLevel Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More information5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
More informationProblem of the Month The Wheel Shop
Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationPerformance Assessment Task Baseball Players Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Baseball Players Grade 6 The task challenges a student to demonstrate understanding of the measures of center the mean, median and range. A student must be able to use the measures
More informationSouth Carolina College and CareerReady Standards for Mathematics
South Carolina College and CareerReady Standards for Mathematics South Carolina Department of Education Columbia, South Carolina 2015 State Board of Education Approved First Reading on February 11, 2015
More informationMy Year 1 Maths Targets
My Year 1 Maths Targets Number number and place value I can count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. I can count in multiples of twos, fives and
More informationUnit 9. Unit 10. Unit 11. Unit 12. Introduction Busy Ant Maths Year 2 MediumTerm Plans. Number  Geometry  Position & direction
Busy Ant Maths Year MediumTerm Plans Unit 9 Geometry  Position & direction Unit 0 ( Temperature) Unit Statistics Unit Fractions (time) 8 Busy Ant Maths Year MediumTerm Plans Introduction Unit Geometry
More informationSouth Carolina College and CareerReady Standards for Mathematics
South Carolina College and CareerReady Standards for Mathematics South Carolina Department of Education Columbia, South Carolina 2015 State Board of Education Approved First Reading on February 11, 2015
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationCOMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS
COMMON CORE STATE STANDARDS FOR MATHEMATICS 35 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving
More information1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems.
NCTM STANDARD 1: Numbers and Operations Kindergarten Grade 2 1A: Understand numbers, ways of representing numbers, relationships among numbers, and number systems. Kindergarten Grade One Grade Two 1. Count
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationVoyager Sopris Learning Vmath, Levels CI, correlated to the South Carolina College and CareerReady Standards for Mathematics, Grades 28
Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156159 Module 4: Lesson 7: 220223 2. Reason both contextually
More informationBPS Math Year at a Glance (Adapted from A Story Of Units Curriculum Maps in Mathematics K5) 1
Grade 4 Key Areas of Focus for Grades 35: Multiplication and division of whole numbers and fractionsconcepts, skills and problem solving Expected Fluency: Add and subtract within 1,000,000 Module M1:
More informationIllinois State Standards Alignments Grades Three through Eleven
Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other
More information2 nd Grade Texas Mathematics: Unpacked Content
2 nd Grade Texas Mathematics: Unpacked Content What is the purpose of this document? To increase student achievement by ensuring educators understand specifically what the new standards mean a student
More informationProblem of the Month: Cutting a Cube
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationNew York State. P12 Common Core. Learning Standards for. Mathematics
New York State P12 Common Core Learning Standards for Mathematics This document includes all of the Common Core State Standards in Mathematics plus the New York recommended additions. All of the New York
More informationa. Look under the menu item Introduction to see how the standards are organized by Standards, Clusters and Domains.
Chapter One Section 1.1 1. Go to the Common Core State Standards website (http://www.corestandards.org/math). This is the main site for further questions about the Common Core Standards for Mathematics.
More informationnumerical place value additional topics rounding off numbers power of numbers negative numbers addition with materials fundamentals
Math Scope & Sequence fundamentals number sense and numeration of the decimal system Count to 10 by units Associate number to numeral (110) KN 1 KN 1 KN 2 KN 2 Identify odd and even numbers/numerals and
More informationStudents are able to represent and solve problems involving multiplication and division.
Grade 3 Learning Targets and I Can Statements Operations and Algebraic Thinking Students are able to represent and solve problems involving multiplication and division. o I understand the product of multiplication
More informationProblem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationProblem of the Month Through the Grapevine
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationCCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks
First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multidigit number, a digit in one place represents 10 times as much
More informationMATHEMATICS GRADE 2 Extension Projects
MATHEMATICS GRADE 2 Extension Projects WITH INVESTIGATIONS 2009 These projects are optional and are meant to be a springboard for ideas to enhance the Investigations curriculum. Use them to help your students
More informationPrimary Curriculum 2014
Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,
More informationMATHEMATICS. Standard Course of Study and Grade Level Competencies
MATHEMATICS Standard Course of Study and Grade Level Competencies K12 Public Schools of North Carolina State Board of Education Department of Public Instruction TABLE OF CONTENTS ACKNOWLEDGMENTS...1
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards Kindergarten Fifth Grade K12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development
More informationOverview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs
Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture
More informationWashington Grade Level Content Expectations EALR s Grades K5
A Correlation of to the Washington Grade Level Content Expectations EALR s Grades K5 M/M112 INTRODUCTION This document demonstrates how well Investigations in Number, Data, and Space integrates with
More informationEvaluation Tool for Assessment Instrument Quality
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationMathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies
Mathematics Before reading this section, make sure you have read the appropriate description of the mathematics section test (computerized or paper) to understand what is expected of you in the mathematics
More informationMaths Targets for pupils in Year 2
Maths Targets for pupils in Year 2 A booklet for parents Help your child with mathematics For additional information on the agreed calculation methods, please see the school website. ABOUT THE TARGETS
More informationNUMBER CORNER YEARLONG CONTENT OVERVIEW
August & September Workouts Calendar Grid Quilt Block Symmetries Identifying shapes and symmetries Calendar Collector Two Penny Toss Probability and data analysis Computational Fluency Mental Math Fluently
More information2 nd Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 201213.
2 nd Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 201213. This document is designed to help North Carolina educators
More information1 st Grade Math DoAnytime Activities
1 st Grade Have your child help create a number line (015) outside with sidewalk chalk. Call out a number and have your child jump on that number. Make up directions such as Hop to the number that is
More informationArizona s College and Career Ready Standards Mathematics
Arizona s College and Career Ready Mathematics Mathematical Practices Explanations and Examples Third Grade ARIZONA DEPARTMENT OF EDUCATION HIGH ACADEMIC STANDARDS FOR STUDENTS State Board Approved June
More informationGrade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
More informationJust want the standards alone? You can find the standards alone at http://corestandards.org/thestandards
4 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 201213 school year. This document is designed to help North
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationOA310 Patterns in Addition Tables
OA310 Patterns in Addition Tables Pages 60 63 Standards: 3.OA.D.9 Goals: Students will identify and describe various patterns in addition tables. Prior Knowledge Required: Can add two numbers within 20
More informationCommon Core State Standards for Mathematics. Flip Book Grade 2
Common Core State Standards for Mathematics Flip Book Grade 2 Updated Fall, 2014 This project used the work done by the Departments of Educations in Ohio, North Carolina, Georgia, engageny, NCTM, and the
More informationScaffolding Task: Angle Tangle
Fourth Grade Mathematics Unit Scaffolding Task: Angle Tangle STANDARDS FOR MATHEMATICAL CONTENT MCC4.MD.5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint,
More informationThank you for your interest in Inspiration and Kidspiration!
The Inspired Standards Match is designed to demonstrate the many ways Kidspiration and Inspiration support the standards and to give educators ideas for using these tools to meet learning goals across
More informationKindergarten Math Content 1
Kindergarten Math Content 1 Number and Operations: Whole Numbers Counting and the Number System A main focus in Kindergarten is counting, which is the basis for understanding the number system and for
More informationA booklet for Parents
By the end of Year 2, most children should be able to Count up to 100 objects by grouping them and counting in tens, fives or twos; explain what each digit in a twodigit number represents, including numbers
More informationThe National Curriculum 2014 Programmes of Study for Mathematics
The National Curriculum 2014 Programmes of Study for Mathematics Information inserted by the Lancashire Mathematics Team to support schools and teachers in identifying elements of the curriculum that have
More informationCCSSM Critical Areas: Kindergarten
CCSSM Critical Areas: Kindergarten Critical Area 1: Represent and compare whole numbers Students use numbers, including written numerals, to represent quantities and to solve quantitative problems, such
More informationNancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board
Nancy Rubino, PhD Senior Director, Office of Academic Initiatives The College Board Amy Charleroy Director of Arts, Office of Academic Initiatives The College Board Two approaches to alignment: Identifying
More information