L. Campi and M. Del Vigna Weak Insider Trading and Behavioral Finance


 Erik Peters
 1 years ago
 Views:
Transcription
1 WEAK INSIDER TRADING AND BEHAVIORAL FINANCE L. Campi 1 M. Del Vigna 2 1 Université Paris XIII 2 Department of Mathematics for Economic Decisions University of Florence 5 th FlorenceRitsumeikan Workshop University of Florence March 1213, 2013
2 OUTLINE 1 What is Insider Trading? 2 Cumulative Prospect Theory (CPT) A. Tversky and D. Kahneman, J. Risk Uncertainty, The Weak Approach F. Baudoin, Stoch. Proc. Appl., Enlargement of Filtrations J. Jeulin, Lecture Notes in Mathematics, Further Developments
3 OUTLINE 1 What is Insider Trading? 2 Cumulative Prospect Theory (CPT) A. Tversky and D. Kahneman, J. Risk Uncertainty, The Weak Approach F. Baudoin, Stoch. Proc. Appl., Enlargement of Filtrations J. Jeulin, Lecture Notes in Mathematics, Further Developments
4 OUTLINE 1 What is Insider Trading? 2 Cumulative Prospect Theory (CPT) A. Tversky and D. Kahneman, J. Risk Uncertainty, The Weak Approach F. Baudoin, Stoch. Proc. Appl., Enlargement of Filtrations J. Jeulin, Lecture Notes in Mathematics, Further Developments
5 OUTLINE 1 What is Insider Trading? 2 Cumulative Prospect Theory (CPT) A. Tversky and D. Kahneman, J. Risk Uncertainty, The Weak Approach F. Baudoin, Stoch. Proc. Appl., Enlargement of Filtrations J. Jeulin, Lecture Notes in Mathematics, Further Developments
6 OUTLINE 1 What is Insider Trading? 2 Cumulative Prospect Theory (CPT) A. Tversky and D. Kahneman, J. Risk Uncertainty, The Weak Approach F. Baudoin, Stoch. Proc. Appl., Enlargement of Filtrations J. Jeulin, Lecture Notes in Mathematics, Further Developments
7 INSIDER TRADING IN ADVANCED COUNTRIES Insider dealing: corporate insiders buy and sell stock in their own companies. Market abuse: trading a security in breach of a fiduciary duty or trust while in possession of nonpublic information. It includes tipping and tuyautage". Insider dealing is LEGAL in the U.S. if only if trading activity is reported to the SEC Tipping and tuyautage by banks and financial intermediaries are LEGAL (and common) in Japan, but they are ILLEGAL in the U.S. and in the U.E. Japan announced new insider trading regulations in a year s time, enforcing criminal penalties and heavy fines
8 INSIDER TRADING IN ADVANCED COUNTRIES Insider dealing: corporate insiders buy and sell stock in their own companies. Market abuse: trading a security in breach of a fiduciary duty or trust while in possession of nonpublic information. It includes tipping and tuyautage". Insider dealing is LEGAL in the U.S. if only if trading activity is reported to the SEC Tipping and tuyautage by banks and financial intermediaries are LEGAL (and common) in Japan, but they are ILLEGAL in the U.S. and in the U.E. Japan announced new insider trading regulations in a year s time, enforcing criminal penalties and heavy fines
9 FAMOUS AND RECENT EPISODES In , Rajat Gupta (former Goldman Sachs) tipped Raj Rajaratnam (Galleon hedge fund) for $90m of illegal profits. On November 28, 2011, Rajaratnam was sent to jail (11 years + $10m penalty). On October 25, 2012, Gupta was sent to jail (2 years + $5m penalty) In July 2012, top executives at Nomura resigned. The staff had leaked insider information about new share issues planned by Tepco, Inpex and Mizuho, in 2010 Italian managers of MPS, Saipem and RCS are currently under investigation for insider dealing and market abuse In the U.S. the FBI is investigating on the takeover of the ketchup producer H.J. Heinz Co. by Warren Buffett holding Berkeshire Hathaway (February, 2013)
10 FAMOUS AND RECENT EPISODES In , Rajat Gupta (former Goldman Sachs) tipped Raj Rajaratnam (Galleon hedge fund) for $90m of illegal profits. On November 28, 2011, Rajaratnam was sent to jail (11 years + $10m penalty). On October 25, 2012, Gupta was sent to jail (2 years + $5m penalty) In July 2012, top executives at Nomura resigned. The staff had leaked insider information about new share issues planned by Tepco, Inpex and Mizuho, in 2010 Italian managers of MPS, Saipem and RCS are currently under investigation for insider dealing and market abuse In the U.S. the FBI is investigating on the takeover of the ketchup producer H.J. Heinz Co. by Warren Buffett holding Berkeshire Hathaway (February, 2013)
11 FAMOUS AND RECENT EPISODES In , Rajat Gupta (former Goldman Sachs) tipped Raj Rajaratnam (Galleon hedge fund) for $90m of illegal profits. On November 28, 2011, Rajaratnam was sent to jail (11 years + $10m penalty). On October 25, 2012, Gupta was sent to jail (2 years + $5m penalty) In July 2012, top executives at Nomura resigned. The staff had leaked insider information about new share issues planned by Tepco, Inpex and Mizuho, in 2010 Italian managers of MPS, Saipem and RCS are currently under investigation for insider dealing and market abuse In the U.S. the FBI is investigating on the takeover of the ketchup producer H.J. Heinz Co. by Warren Buffett holding Berkeshire Hathaway (February, 2013)
12 FAMOUS AND RECENT EPISODES In , Rajat Gupta (former Goldman Sachs) tipped Raj Rajaratnam (Galleon hedge fund) for $90m of illegal profits. On November 28, 2011, Rajaratnam was sent to jail (11 years + $10m penalty). On October 25, 2012, Gupta was sent to jail (2 years + $5m penalty) In July 2012, top executives at Nomura resigned. The staff had leaked insider information about new share issues planned by Tepco, Inpex and Mizuho, in 2010 Italian managers of MPS, Saipem and RCS are currently under investigation for insider dealing and market abuse In the U.S. the FBI is investigating on the takeover of the ketchup producer H.J. Heinz Co. by Warren Buffett holding Berkeshire Hathaway (February, 2013)
13 IN SUPPORT OF INSIDER TRADING MILTON FRIEDMAN, 2003 You want more insider trading, not less. You want to give the people most likely to have knowledge about deficiencies of the company an incentive to make the public aware of that. Investors benefit from insider trading since nonpublic information is immediately incorporated in the price > Efficient Market Hypothesis (Fama, J. Finance, 1991) Trading where one party is more informed than the other is legal in other markets, such as real estate or commodity markets
14 IN SUPPORT OF INSIDER TRADING MILTON FRIEDMAN, 2003 You want more insider trading, not less. You want to give the people most likely to have knowledge about deficiencies of the company an incentive to make the public aware of that. Investors benefit from insider trading since nonpublic information is immediately incorporated in the price > Efficient Market Hypothesis (Fama, J. Finance, 1991) Trading where one party is more informed than the other is legal in other markets, such as real estate or commodity markets
15 IN SUPPORT OF INSIDER TRADING MILTON FRIEDMAN, 2003 You want more insider trading, not less. You want to give the people most likely to have knowledge about deficiencies of the company an incentive to make the public aware of that. Investors benefit from insider trading since nonpublic information is immediately incorporated in the price > Efficient Market Hypothesis (Fama, J. Finance, 1991) Trading where one party is more informed than the other is legal in other markets, such as real estate or commodity markets
16 CUMULATIVE PROSPECT THEORY (A. TVERSKY AND D. KAHNEMAN, 1992) Wealth Reference Point for Gains and Losses (RP) Sshaped Value Function with Loss Aversion (u +, u ) Reversed Sshaped Probability Distortions (T +, T )
17 CUMULATIVE PROSPECT THEORY (A. TVERSKY AND D. KAHNEMAN, 1992) Wealth Reference Point for Gains and Losses (RP) Sshaped Value Function with Loss Aversion (u +, u ) Reversed Sshaped Probability Distortions (T +, T )
18 CUMULATIVE PROSPECT THEORY (A. TVERSKY AND D. KAHNEMAN, 1992) Wealth Reference Point for Gains and Losses (RP) Sshaped Value Function with Loss Aversion (u +, u ) Reversed Sshaped Probability Distortions (T +, T )
19 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (1) (Ω, F, P) is an atomless probability space F = {F t } t T is a completed rightcontinuous filtration W is a (F, P) mdimensional Brownian motion T > 0 is a fixed constant time horizon THE MARKET 1 riskfree asset ds 0 (t) = S 0 (t)r(t)dt m risky assets ds i (t) = S i (t)[b i (t)dt + m j=1 σ ij(t)dw j (t)], i = 1,..., m in L 2 (Ω, F, P), continuous, adapted Hypotheses: ρ is the unique atomless pricing kernel (or SDF) Q is the unique EMM on F T
20 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (1) (Ω, F, P) is an atomless probability space F = {F t } t T is a completed rightcontinuous filtration W is a (F, P) mdimensional Brownian motion T > 0 is a fixed constant time horizon THE MARKET 1 riskfree asset ds 0 (t) = S 0 (t)r(t)dt m risky assets ds i (t) = S i (t)[b i (t)dt + m j=1 σ ij(t)dw j (t)], i = 1,..., m in L 2 (Ω, F, P), continuous, adapted Hypotheses: ρ is the unique atomless pricing kernel (or SDF) Q is the unique EMM on F T
21 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (1) (Ω, F, P) is an atomless probability space F = {F t } t T is a completed rightcontinuous filtration W is a (F, P) mdimensional Brownian motion T > 0 is a fixed constant time horizon THE MARKET 1 riskfree asset ds 0 (t) = S 0 (t)r(t)dt m risky assets ds i (t) = S i (t)[b i (t)dt + m j=1 σ ij(t)dw j (t)], i = 1,..., m in L 2 (Ω, F, P), continuous, adapted Hypotheses: ρ is the unique atomless pricing kernel (or SDF) Q is the unique EMM on F T
22 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (2) (H. JIN AND X.Y. ZHOU, Math. Financ., 2008) THE OPTIMIZATION PROBLEM Given the initial wealth x 0 R and a RP = 0: Maximize V (X) := V + (X + ) V (X ) subject to E P [ρx] = x 0, X is F T measurable and Pa.s. lower bounded V + (X + ) := + 0 T + (P{u + (X + ) > y}) dy V (X ) := + 0 T (P{u (X ) > y}) dy Idea: Split up Merge Positive part: concave max use convex duality Negative part: concave min find a corner point solution
23 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (2) (H. JIN AND X.Y. ZHOU, Math. Financ., 2008) THE OPTIMIZATION PROBLEM Given the initial wealth x 0 R and a RP = 0: Maximize V (X) := V + (X + ) V (X ) subject to E P [ρx] = x 0, X is F T measurable and Pa.s. lower bounded V + (X + ) := + 0 T + (P{u + (X + ) > y}) dy V (X ) := + 0 T (P{u (X ) > y}) dy Idea: Split up Merge Positive part: concave max use convex duality Negative part: concave min find a corner point solution
24 PORTFOLIO OPTIMIZATION FOR A CPT TRADER (2) (H. JIN AND X.Y. ZHOU, Math. Financ., 2008) THE OPTIMIZATION PROBLEM Given the initial wealth x 0 R and a RP = 0: Maximize V (X) := V + (X + ) V (X ) subject to E P [ρx] = x 0, X is F T measurable and Pa.s. lower bounded V + (X + ) := + 0 T + (P{u + (X + ) > y}) dy V (X ) := + 0 T (P{u (X ) > y}) dy Idea: Split up Merge Positive part: concave max use convex duality Negative part: concave min find a corner point solution
25 THE SOLUTION OF THE PROBLEM THEOREM (H. JIN AND X.Y. ZHOU, 2008) If u ( ) is strictly concave at 0, then the optimal solution is ( ) X = (u +) 1 λ ρ T + (F(ρ)) I ρ c x + x 0 E P [ρi ρ>c ] I ρ>c Gain(ω) I ρ c Loss I ρ>c The realization of a gain or a loss only depends on the terminal state of the pricing kernel ρ Since x + x 0, the trader possibly takes a leverage to finance a shortfall x + x 0 The payoff is a combination of two binary options and resembles a lottery ticket
26 THE SOLUTION OF THE PROBLEM THEOREM (H. JIN AND X.Y. ZHOU, 2008) If u ( ) is strictly concave at 0, then the optimal solution is ( ) X = (u +) 1 λ ρ T + (F(ρ)) I ρ c x + x 0 E P [ρi ρ>c ] I ρ>c Gain(ω) I ρ c Loss I ρ>c The realization of a gain or a loss only depends on the terminal state of the pricing kernel ρ Since x + x 0, the trader possibly takes a leverage to finance a shortfall x + x 0 The payoff is a combination of two binary options and resembles a lottery ticket
27 THE SOLUTION OF THE PROBLEM THEOREM (H. JIN AND X.Y. ZHOU, 2008) If u ( ) is strictly concave at 0, then the optimal solution is ( ) X = (u +) 1 λ ρ T + (F(ρ)) I ρ c x + x 0 E P [ρi ρ>c ] I ρ>c Gain(ω) I ρ c Loss I ρ>c The realization of a gain or a loss only depends on the terminal state of the pricing kernel ρ Since x + x 0, the trader possibly takes a leverage to finance a shortfall x + x 0 The payoff is a combination of two binary options and resembles a lottery ticket
28 WEAK INSIDER TRADING (F. BAUDOIN, 2002) (Ω, F, Q, F) is an atomless probability space 1 riskfree asset with price S 0 1 m risky assets whose prices S(t) = (S 1 (t),..., S m (t)) L 2 (Ω, F, Q, F)martingales, continuous, adapted Extra information on the r.v. Y (related to the stock prices) INFORMATION OF THE NONINFORMED TRADER Q the unique EMM Q Y the law of Y under Q INFORMATION OF THE INSIDER Q and Q Y ν the law of Y under P (the unknown historical probability)
29 WEAK INSIDER TRADING (F. BAUDOIN, 2002) (Ω, F, Q, F) is an atomless probability space 1 riskfree asset with price S 0 1 m risky assets whose prices S(t) = (S 1 (t),..., S m (t)) L 2 (Ω, F, Q, F)martingales, continuous, adapted Extra information on the r.v. Y (related to the stock prices) INFORMATION OF THE NONINFORMED TRADER Q the unique EMM Q Y the law of Y under Q INFORMATION OF THE INSIDER Q and Q Y ν the law of Y under P (the unknown historical probability)
30 WEAK INSIDER TRADING (F. BAUDOIN, 2002) (Ω, F, Q, F) is an atomless probability space 1 riskfree asset with price S 0 1 m risky assets whose prices S(t) = (S 1 (t),..., S m (t)) L 2 (Ω, F, Q, F)martingales, continuous, adapted Extra information on the r.v. Y (related to the stock prices) INFORMATION OF THE NONINFORMED TRADER Q the unique EMM Q Y the law of Y under Q INFORMATION OF THE INSIDER Q and Q Y ν the law of Y under P (the unknown historical probability)
31 THE MINIMAL PROBABILITY Hypothesis: ν Q Y with density ξ := dν dq Y DEFINITION (F. BAUDOIN, 2002) The probability measure Q ν defined on (Ω, F T ) by Q ν (A) := Q(A Y = y)ν( dy), A F T R is called the minimal probability associated with the weak information (Y, ν). Why minimal? E := {µ Q on Ω s.t. the law of Y under µ is ν}
32 THE MINIMAL PROBABILITY Hypothesis: ν Q Y with density ξ := dν dq Y DEFINITION (F. BAUDOIN, 2002) The probability measure Q ν defined on (Ω, F T ) by Q ν (A) := Q(A Y = y)ν( dy), A F T R is called the minimal probability associated with the weak information (Y, ν). Why minimal? E := {µ Q on Ω s.t. the law of Y under µ is ν}
33 THE MINIMAL PROBABILITY Hypothesis: ν Q Y with density ξ := dν dq Y DEFINITION (F. BAUDOIN, 2002) The probability measure Q ν defined on (Ω, F T ) by Q ν (A) := Q(A Y = y)ν( dy), A F T R is called the minimal probability associated with the weak information (Y, ν). Why minimal? E := {µ Q on Ω s.t. the law of Y under µ is ν}
34 WHY MINIMAL? U : R + R + is a strictly concave utility function X is the terminal wealth of the insider Insider s problem: max Π admissible E??? [U(X)] THEOREM (F. BAUDOIN, 2002) inf µ E sup E µ [U(X)] = Π admissible sup E ν [U(X)] Π admissible The optimal terminal wealth is ˆX = (U ) 1 (λξ(y ) 1 ), where λ is the associated Lagrange multiplier. PROOF. Use the martingale approach + convex duality.
35 WHY MINIMAL? U : R + R + is a strictly concave utility function X is the terminal wealth of the insider Insider s problem: max Π admissible E??? [U(X)] THEOREM (F. BAUDOIN, 2002) inf µ E sup E µ [U(X)] = Π admissible sup E ν [U(X)] Π admissible The optimal terminal wealth is ˆX = (U ) 1 (λξ(y ) 1 ), where λ is the associated Lagrange multiplier. PROOF. Use the martingale approach + convex duality.
36 WHY MINIMAL? U : R + R + is a strictly concave utility function X is the terminal wealth of the insider Insider s problem: max Π admissible E??? [U(X)] THEOREM (F. BAUDOIN, 2002) inf µ E sup E µ [U(X)] = Π admissible sup E ν [U(X)] Π admissible The optimal terminal wealth is ˆX = (U ) 1 (λξ(y ) 1 ), where λ is the associated Lagrange multiplier. PROOF. Use the martingale approach + convex duality.
37 WHY MINIMAL? U : R + R + is a strictly concave utility function X is the terminal wealth of the insider Insider s problem: max Π admissible E??? [U(X)] THEOREM (F. BAUDOIN, 2002) inf µ E sup E µ [U(X)] = Π admissible sup E ν [U(X)] Π admissible The optimal terminal wealth is ˆX = (U ) 1 (λξ(y ) 1 ), where λ is the associated Lagrange multiplier. PROOF. Use the martingale approach + convex duality.
38 THE PROBLEM FOR A WEAK CPT INSIDER THE OPTIMIZATION PROBLEM Maximize V ν (X) := V ν +(X + ) V ν (X ) subject to E ν [ 1 ξ(y ) X ] = x 0 X is F T measurable and Q ν a.s. lower bounded V ν +(X + ) := + 0 T + (Q ν {u + (X + ) > y}) dy V ν (X ) := + 0 T (Q ν {u (X ) > y}) dy The solving technique is the same, replace ρ with 1 ξ(y ) and P with Q ν
39 THE PROBLEM FOR A WEAK CPT INSIDER THE OPTIMIZATION PROBLEM Maximize V ν (X) := V ν +(X + ) V ν (X ) subject to E ν [ 1 ξ(y ) X ] = x 0 X is F T measurable and Q ν a.s. lower bounded V ν +(X + ) := + 0 T + (Q ν {u + (X + ) > y}) dy V ν (X ) := + 0 T (Q ν {u (X ) > y}) dy The solving technique is the same, replace ρ with 1 ξ(y ) and P with Q ν
40 THE SOLUTION FOR A WEAK CPT INSIDER THEOREM (L. CAMPI AND M. D V, 2011) The optimal solution for a CPT insider is ( X ν = (u +) 1 λ ν ξ(y ) 1 ) T + (F ν (ξ(y ) 1 I )) ξ(y ) 1 c x + x 0 1 E ν [ξ(y ) 1 I ξ(y ) 1 c ]I ξ(y ) 1 >c COMPARISON RESULTS ˆX = (U ) 1 (λξ(y ) 1 ) vs X ν = Gain(ω) I A Loss I A C where A F T depends on the final prices and on (Y, ν) CPT insider selects a combination of two binary options A CPT insider obtains more prospect value than a CPT noninsider (L. Campi and M. D V, 2011)
41 THE SOLUTION FOR A WEAK CPT INSIDER THEOREM (L. CAMPI AND M. D V, 2011) The optimal solution for a CPT insider is ( X ν = (u +) 1 λ ν ξ(y ) 1 ) T + (F ν (ξ(y ) 1 I )) ξ(y ) 1 c x + x 0 1 E ν [ξ(y ) 1 I ξ(y ) 1 c ]I ξ(y ) 1 >c COMPARISON RESULTS ˆX = (U ) 1 (λξ(y ) 1 ) vs X ν = Gain(ω) I A Loss I A C where A F T depends on the final prices and on (Y, ν) CPT insider selects a combination of two binary options A CPT insider obtains more prospect value than a CPT noninsider (L. Campi and M. D V, 2011)
42 THE SOLUTION FOR A WEAK CPT INSIDER THEOREM (L. CAMPI AND M. D V, 2011) The optimal solution for a CPT insider is ( X ν = (u +) 1 λ ν ξ(y ) 1 ) T + (F ν (ξ(y ) 1 I )) ξ(y ) 1 c x + x 0 1 E ν [ξ(y ) 1 I ξ(y ) 1 c ]I ξ(y ) 1 >c COMPARISON RESULTS ˆX = (U ) 1 (λξ(y ) 1 ) vs X ν = Gain(ω) I A Loss I A C where A F T depends on the final prices and on (Y, ν) CPT insider selects a combination of two binary options A CPT insider obtains more prospect value than a CPT noninsider (L. Campi and M. D V, 2011)
43 ENLARGEMENT OF FILTRATIONS Let G be a F measurable random variable. Define G := {G t } t [0,T ], G t = F t σ(g). Hypotheses: P[G F t ](ω) P[G ] t [0, T ], P a.s.; r(t) 0. THEOREM (J. JACOD, 1985, & J. AMENDINGER, 2000) Define Q G ρ (A) := dp, A G T, pt x = dp[g dx F T ] dp[g dx]. p A T G Q G is a Martingale Preserving Probability Measure (MPPM) Then: Stock prices are (G, Q G )martingales; Q G is the unique (modulo G 0 ) MPPM and implies market completeness for the insider (i.e. a Martingale Representation Theorem on (Ω, F, Q G, G)).
44 ENLARGEMENT OF FILTRATIONS Let G be a F measurable random variable. Define G := {G t } t [0,T ], G t = F t σ(g). Hypotheses: P[G F t ](ω) P[G ] t [0, T ], P a.s.; r(t) 0. THEOREM (J. JACOD, 1985, & J. AMENDINGER, 2000) Define Q G ρ (A) := dp, A G T, pt x = dp[g dx F T ] dp[g dx]. p A T G Q G is a Martingale Preserving Probability Measure (MPPM) Then: Stock prices are (G, Q G )martingales; Q G is the unique (modulo G 0 ) MPPM and implies market completeness for the insider (i.e. a Martingale Representation Theorem on (Ω, F, Q G, G)).
45 ENLARGEMENT OF FILTRATIONS Let G be a F measurable random variable. Define G := {G t } t [0,T ], G t = F t σ(g). Hypotheses: P[G F t ](ω) P[G ] t [0, T ], P a.s.; r(t) 0. THEOREM (J. JACOD, 1985, & J. AMENDINGER, 2000) Define Q G ρ (A) := dp, A G T, pt x = dp[g dx F T ] dp[g dx]. p A T G Q G is a Martingale Preserving Probability Measure (MPPM) Then: Stock prices are (G, Q G )martingales; Q G is the unique (modulo G 0 ) MPPM and implies market completeness for the insider (i.e. a Martingale Representation Theorem on (Ω, F, Q G, G)).
46 ENLARGEMENT OF FILTRATIONS Let G be a F measurable random variable. Define G := {G t } t [0,T ], G t = F t σ(g). Hypotheses: P[G F t ](ω) P[G ] t [0, T ], P a.s.; r(t) 0. THEOREM (J. JACOD, 1985, & J. AMENDINGER, 2000) Define Q G ρ (A) := dp, A G T, pt x = dp[g dx F T ] dp[g dx]. p A T G Q G is a Martingale Preserving Probability Measure (MPPM) Then: Stock prices are (G, Q G )martingales; Q G is the unique (modulo G 0 ) MPPM and implies market completeness for the insider (i.e. a Martingale Representation Theorem on (Ω, F, Q G, G)).
47 THE SOLUTION FOR AN INSIDER At t = 0, the insider knows, ω by ω, G (related to stock prices) THE OPTIMIZATION PROBLEM FOR THE INSIDER Maximize V (X) = V + (X + ) V (X ) subject to [ ] E P ρ X = x pt G 0, X is G T measurable and Pa.s. lower bounded The solving technique is the same, just replace ρ with ρ pt G PROPOSITION (M. D V, 2011) The insider s gain is nonnegative. PROOF. For the insider, the feasible set is larger.
48 THE SOLUTION FOR AN INSIDER At t = 0, the insider knows, ω by ω, G (related to stock prices) THE OPTIMIZATION PROBLEM FOR THE INSIDER Maximize V (X) = V + (X + ) V (X ) subject to [ ] E P ρ X = x pt G 0, X is G T measurable and Pa.s. lower bounded The solving technique is the same, just replace ρ with ρ pt G PROPOSITION (M. D V, 2011) The insider s gain is nonnegative. PROOF. For the insider, the feasible set is larger.
49 THE SOLUTION FOR AN INSIDER At t = 0, the insider knows, ω by ω, G (related to stock prices) THE OPTIMIZATION PROBLEM FOR THE INSIDER Maximize V (X) = V + (X + ) V (X ) subject to [ ] E P ρ X = x pt G 0, X is G T measurable and Pa.s. lower bounded The solving technique is the same, just replace ρ with ρ pt G PROPOSITION (M. D V, 2011) The insider s gain is nonnegative. PROOF. For the insider, the feasible set is larger.
50 FURTHER DEVELOPMENTS (PH.D. THESIS) A similar technique applies to Dual Theory of Choice V DT (X) = + 0 T (1 F X (x))dx (M. Yaari, Econometrica, 1987) Goal Reaching V GR (X) = P(X B) (S. Browne, Adv. Appl. Probab., 1999) Partially Informed Trader using filtering techniques (T. Björk et al., Math. Method. Oper. Res., 2010) CPT Trader under EMM
51 FURTHER DEVELOPMENTS (PH.D. THESIS) A similar technique applies to Dual Theory of Choice V DT (X) = + 0 T (1 F X (x))dx (M. Yaari, Econometrica, 1987) Goal Reaching V GR (X) = P(X B) (S. Browne, Adv. Appl. Probab., 1999) Partially Informed Trader using filtering techniques (T. Björk et al., Math. Method. Oper. Res., 2010) CPT Trader under EMM
52 FURTHER DEVELOPMENTS (PH.D. THESIS) A similar technique applies to Dual Theory of Choice V DT (X) = + 0 T (1 F X (x))dx (M. Yaari, Econometrica, 1987) Goal Reaching V GR (X) = P(X B) (S. Browne, Adv. Appl. Probab., 1999) Partially Informed Trader using filtering techniques (T. Björk et al., Math. Method. Oper. Res., 2010) CPT Trader under EMM
53 FURTHER DEVELOPMENTS (PH.D. THESIS) A similar technique applies to Dual Theory of Choice V DT (X) = + 0 T (1 F X (x))dx (M. Yaari, Econometrica, 1987) Goal Reaching V GR (X) = P(X B) (S. Browne, Adv. Appl. Probab., 1999) Partially Informed Trader using filtering techniques (T. Björk et al., Math. Method. Oper. Res., 2010) CPT Trader under EMM
54 Thank you!
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic meanvariance problems in
More informationPricing and Hedging of Credit Risk: Replication and MeanVariance Approaches
Contemporary Mathematics Pricing and Hedging of Credit Risk: Replication and MeanVariance Approaches Tomasz R. Bielecki, Monique Jeanblanc, and Marek Rutkowski Abstract. The paper presents some methods
More informationMeanVariance Optimal Adaptive Execution
MeanVariance Optimal Adaptive Execution Julian Lorenz and Robert Almgren January 23, 2011 Abstract Electronic trading of equities and other securities makes heavy use of arrival price algorithms, that
More informationTWO L 1 BASED NONCONVEX METHODS FOR CONSTRUCTING SPARSE MEAN REVERTING PORTFOLIOS
TWO L 1 BASED NONCONVEX METHODS FOR CONSTRUCTING SPARSE MEAN REVERTING PORTFOLIOS XIAOLONG LONG, KNUT SOLNA, AND JACK XIN Abstract. We study the problem of constructing sparse and fast mean reverting portfolios.
More informationThe British Call Option
Quant. Finance Vol. 13, No. 1, 213, (95 19) Research Report No. 2, 28, Probab. Statist. Group Manchester (25 pp) The British Call Option G. Peskir & F. Samee Alongside the British put option [11] we present
More informationSome Research Problems in Uncertainty Theory
Journal of Uncertain Systems Vol.3, No.1, pp.310, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences
More informationContinuous time meanvariance portfolio optimization through the mean field approach
Continuous time meanvariance portfolio optimization through the mean field approach Markus Fischer Giulia Livieri January 3, 214; revised April 2, 215 Abstract A simple meanvariance portfolio optimization
More informationNew insights on the meanvariance portfolio selection from de Finetti s suggestions. Flavio Pressacco and Paolo Serafini, Università di Udine
New insights on the meanvariance portfolio selection from de Finetti s suggestions Flavio Pressacco and Paolo Serafini, Università di Udine Abstract: In this paper we offer an alternative approach to
More informationWhich Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios
Which Free Lunch Would You Like Today, Sir?: Delta Hedging, Volatility Arbitrage and Optimal Portfolios Riaz Ahmad Course Director for CQF, 7city, London Paul Wilmott Wilmott Associates, London Abstract:
More informationA Dynamic Model with Import Quota Constraints
A Dynamic Model with Import Quota Constraints Suleyman Basak Anna Pavlova London Business School and CEPR Sloan School of Management Institute of Finance and Accounting Massachusetts Institute of Technology
More informationDynamic meanvariance portfolio analysis under model risk
The Journal of Computational Finance (91 115) Volume 12/Number 4, Summer 2009 Dynamic meanvariance portfolio analysis under model risk Daniel Kuhn Department of Computing, Imperial College of Science,
More informationAN INSTITUTIONAL EVALUATION OF PENSION FUNDS AND LIFE INSURANCE COMPANIES
AN INSTITUTIONAL EVALUATION OF PENSION FUNDS AND LIFE INSURANCE COMPANIES DIRK BROEDERS, AN CHEN, AND BIRGIT KOOS Abstract. This paper analyzes two different types of annuity providers. In the first case,
More informationMEANVARIANCE HEDGING WITH RANDOM VOLATILITY JUMPS
MEANVARIANCE HEDGING WIH RANDOM VOLAILIY JUMPS PAOLO GUASONI AND FRANCESCA BIAGINI Abstract. We introduce a general framework for stochastic volatility models, with the risky asset dynamics given by:
More informationNATURAL HEDGING OF LIFE AND ANNUITY MORTALITY RISKS
NATURAL HEDGING OF LIFE AND ANNUITY MORTALITY RISKS SAMUEL H. COX AND YIJIA LIN ABSTRACT. The values of life insurance and annuity liabilities move in opposite directions in response to a change in the
More informationSukanto Bhattacharya School of Information Technology Bond University, Australia. Abstract
Computational Exploration of Investor Utilities Underlying a Portfolio Insurance Strategy Dr. M. Khoshnevisan School of Accounting & Finance Griffith University, Australia & Dr. Florentin Smarandache University
More informationA Generalization of the MeanVariance Analysis
A Generalization of the MeanVariance Analysis Valeri Zakamouline and Steen Koekebakker This revision: May 30, 2008 Abstract In this paper we consider a decision maker whose utility function has a kink
More informationReference point adaptation: Tests in the domain of security trading q
Available online at www.sciencedirect.com Organizational Behavior and Human Decision Processes 105 (2008) 67 81 www.elsevier.com/locate/obhdp Reference point adaptation: Tests in the domain of security
More informationSSE/EFI Working Paper Series in Economics and Finance, No. 472
econstor www.econstor.eu Der OpenAccessPublikationsserver der ZBW LeibnizInformationszentrum Wirtschaft The Open Access Publication Server of the ZBW Leibniz Information Centre for Economics Giannetti,
More informationAsset Allocation with Annuities for Retirement Income Management
Asset Allocation with Annuities for Retirement Income Management April 2005 Paul D. Kaplan, Ph.D., CFA Vice President, Quantitative Research Morningstar, Inc. 225 West Wacker Drive Chicago, IL 60606 The
More informationMean field games and applications
Mean field games and applications Olivier Guéant, JeanMichel Lasry, PierreLouis Lions Contents 1 Introduction to mean field games 2 1.1 Three routes............................. 3 1.1.1 First route:
More informationRobust MeanCovariance Solutions for Stochastic Optimization
OPERATIONS RESEARCH Vol. 00, No. 0, Xxxxx 0000, pp. 000 000 issn 0030364X eissn 15265463 00 0000 0001 INFORMS doi 10.1287/xxxx.0000.0000 c 0000 INFORMS Robust MeanCovariance Solutions for Stochastic
More informationSelloffs, Bailouts, and Feedback: Can Asset Markets Inform Policy?
Selloffs, Bailouts, and Feedback: Can Asset Markets Inform Policy? RAPHAEL BOLESLAVSKY DAVID L. KELLY CURTIS R. TAYLOR JUNE 21, 2014 Abstract We present a model in which a policymaker observes trade in
More informationProspect Theory and the Disposition Effect
Prospect Theory and the Disposition Effect Markku Kaustia Abstract This paper shows that prospect theory is unlikely to explain the disposition effect. Prospect theory predicts that the propensity to sell
More informationMarket Efficiency: A Theoretical Distinction and So What? Harry M. Markowitz
Market Efficiency: A Theoretical Distinction So What? Harry M. Markowitz The capital asset pricing model (CAPM) is an elegant theory. With the aid of some simplifying assumptions, it comes to dramatic
More informationOn Numéraires and Growth Optimum Portfolios an expository note
On Numéraires and Growth Optimum Portfolios an expository note Theo K. Dijkstra Department of Economics, Econometrics & Finance University of Groningen Groningen, The Netherlands t.k.dijkstra@rug.nl working
More informationTHE ROLE OF INTUITION
PERIODICALS OF IMPLICIT COGNITION (2007) 2, 121. THE ROLE OF INTUITION IN DECISIONMAKING AND ECONOMICS (SPECIAL ISSUE) Proceedings of the Second Annual Implicit Laboratory Workshop 2007 30 th June 2007,
More informationQuantitative Strategies Research Notes
Quantitative Strategies Research Notes March 999 More Than You Ever Wanted To Know * About Volatility Swaps Kresimir Demeterfi Emanuel Derman Michael Kamal Joseph Zou * But Less Than Can Be Said Copyright
More informationProspect Theory, Life Insurance, and Annuities
Prospect Theory, Life Insurance, and Annuities Daniel Gottlieb July 26, 212 Abstract This paper presents a prospect theorybased model of insurance against mortality risk. The model accounts for five main
More informationCombinatorial Information Market Design
Information Systems Frontiers 5:1, 107 119, 2003 C 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Combinatorial Information Market Design Robin Hanson Department of Economics, George
More informationNot Only What but also When: A Theory of Dynamic Voluntary Disclosure
Not Only What but also When: A Theory of Dynamic Voluntary Disclosure By ILAN GUTTMAN, ILAN KREMER, AND ANDRZEJ SKRZYPACZ We examine a dynamic model of voluntary disclosure of multiple pieces of private
More information