Pricing of an Exotic Forward Contract


 Ginger Green
 2 years ago
 Views:
Transcription
1 Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University Nojihigashi, Kusatsu, Shiga , Japan {akahori, rp003994, Abstract In this paper we study a pricing problem of an exotic Forward contract. Unlike the standard Forward, the contract is not fair, and like an option, it is compensated by the premium. Using standard arguments in the Black Scholes economy, an explicit formula for hedging as well as pricing is obtained. This is possible because of an exotic way of settlement, which is another focus of this paper. Contrary to our intuition, simpler ways of settlement do not necessarily imply a simpler formula. 1 Introduction A Forward contract is an agreement between two parties to buy or sell an asset (which can be of any kind) on a preagreed future day at a preagreed price which is called Forward price. Usually the Forward price is set to make the contract fair, and so no payment takes place on the agreement day. For details of standard Forward contracts, see e.g. [2]. If an extra agreement that benefits one party only is added to the contract, as is the situation that we will study, then an adjustment is needed to keep the contract fair. There are two possibilities: one is by a change of the Forward price, and the other is by payment at the agreement day. In this paper we will study such a contract which we call exotic Forward. We adopt the latter adjustment and study the premium how much should be paid for the contract. The Exotic Forward we will study is defined by the following
2 Extra Agreement 1. A buyer has a right to choose the pricedate at the delivery day between N 1 days before the delivery day and N 2 days after, with the Extra Agreement 2 (Settlement of Difference). A settlement day is the delivery day in both cases. If a buyer chooses the N 2 days after, the payment is taken by the way of settlement of difference; she/he is paid a preagreed price at the delivery day T. and then is paid the difference at T + N 2. We will give an explicit formula for the premium and the corresponding hedging strategy under a BlackScholes type model. What interests us most is that the formula is very much alike the BlackScholes formula for the plain European option. The reduction is caused by the exotic way of settlement (Extra Agreement 2). 2 The Setting and Notations We denote the delivery day by T, T 1 := T N 1, and T 2 = T +N 2. We assume the BlackScholes Economy; i.e., a spot price S = {S t } 0 t T2 and riskfree bond B = {B t } 0 t T2 satisfy the following stochastic differential equations: ds t = σs t dw t + µs t dt db t = rb t dt (1) where σ > 0, r 0, µ R, and W is a standard 1dimensional Brownian motion. For simplicity, we assume that B 0 = 1. Under these settings, the Exotic Forward contract in question is restated as follows. 1. The agreement day is time 0, when the Forward price K is quoted in the market. 2. The buyer pays the premium π on the agreement day. 3. On the delivery day T, the buyer chooses the price day; T 1 or T If she/he chooses T 1, she/he is paid S T1 K. 5. If she/he chooses T 2, she/he is paid Y T for the moment. 6. And then on T 2, she/he is paid the difference S T2 K Y T. Though studying general Y T is possible, we concentrate on the case Y T = S T K in this paper. 2
3 Before stating the results, we introduce some notations. Let d ± (t, x) = (r ± 1 2 σ2 )(T t) + log(2 e r(t 2 T) )x/s T1 σ T t (2) for t [T 1, T) and x > 0. We write simply d ± for d ± (T 1, S T1 ). That is, d ± = (r ± 1 2 σ2 )(T T 1 ) + log(2 e r(t 2 T) ) σ T T 1. (3) Let also A := {S T1 (2 e r(t 2 T) )S T }. (4) Finally, we use the following conventions: φ(x) = 1 2π e x2 2 (5) and Φ(x) = x φ(y) dy, (6) the density and the distribution function of the standard Gaussian random variable. 3 The Results The first result which corresponds to the pricing is the following. Theorem 1. Under the hypothesis of NoArbitrage, the fair premium is given by π = S 0 e r(t T 1) Φ( d ) + S 0 (2 e r(t 2 T) )Φ(d + ) e rt K. (7) From the above result, we notice that the premium of this contract is represented by a monointegral, even though this contract has several exotic aspects. We stress that when Y T = 0, i.e. no settlement of difference, the premium is no more monointegral; a little far away from BlackScholes formula. Further, we can also obtain the explicit hedging strategy for the seller as follows. 3
4 Theorem 2. The contract is perfectly hedged by holding η t = e r(t T 1) Φ( d ) + (2 { e r(t2 T) )Φ(d + ) =: η 0, η 0 + (2 e r(t2 T) )φ(d + (t, S t )) B } ts T1 φ( d (t, S t )) /σ T t, B T S t (0 t < T 1 ) (T 1 t < T) 1 A (T t < T 2 ) amount of the risky asset at time t [0, T 2 ), and ν t = K/B T =: ν 0, (0 t < T 1 ) ν 0 + (2 e r(t2 T) ) S tφ(d + (t, S t )) B 1 t σ T t { + S T1 B 1 T Φ( d (t, S t )) ν A S T (B 1 T B 1 φ( d (t, S t )) σ T t T 2 ) + 1 Ω\A S T1 B 1 T }, (T 1 t < T) (T t < T 2 ) (8) (9) amount of the bond. Remark. The hedging strategy is statistical unless t [T 1, T), as is the case with standard Forward contracts; known as cost of carry (see e.g. [2]). The exotic aspect of our contract forces the seller to hedge dynamically, though it is needed only for t [T 1, T). 4 NoArbitrage Hypothesis Firstly, we review the consequences of the NoArbitrage hypothesis on the BlackScholes economy (1). Let (Ω, F, P) be a probability space on which W is defined, and {F t } be the natural filtration of W. Put θ := (µ r)/σ. The P{F }martingale Z t := exp(θw t 1 2 θ2 t) defines an equivalent probability measure ˆP by d ˆP dp = Z t, t [0, T 2 ]. (10) Ft The probability measure ˆP is usually called equivalent martingale measure, EMM for short, and plays a central role in the pricing of options and other derivatives. 4
5 The BlackScholes economy (1) under the EMM is ds t = σs t dŵ t + rs t dt db t = rb t dt, (11) or equivalently S t = S 0 exp{σŵ t σ2 t 2 }, B t = B 0 exp{rt}. (12) where Ŵ t := W t θt is a standard Brownian motion on ({F t } 0 t T2, ˆP), as the MaruyamaGirsanov theorem says. The fair value at time t of a derivative whose payoff at time T is H, which is the unique one that excludes arbitrage opportunities, is given by C t = e r(t t) E ˆP [H F t ], (0 t T) (13) the discounted conditional expectation of the payoff random variable with respect to the EMM. The hedging strategy for the derivative is obtained via the stochastic differential expression of C; dc t = η t ds t + ν t db t (14) which means holding η amounts of the asset and ν amounts of the nonrisky asset perfectly hedges the derivative. For details of the arguments in this section, see e.g. [1] or [2] and the references therein. 5 Pricing/A Proof of Theorem 1 In this section, we will give the value of the Exotic Forward following the framework of the previous section. To apply (13), we unify the cash flows as an F T2 measurable random variable. Let us define an F T measurable set A(Y T ) := {S T1 K Y T + e r(t2 T) E ˆP [S T2 K Y T F T ]} = {S T1 K (1 e r(t2 T) )Y T + S T e r(t2 T) K} = {S T1 S T (1 e r(t2 T) )(Y T + K)}. (15) 5
6 On A(Y T ), the buyer is sure to choose T 2 as the pricedate, while on Ω\A(Y T ) she/he will not fail to choose T 1. The cash flow on Ω \ A(Y T ) is S T1 K at T, and will be e r(t 2 T) (S T1 K) (16) at T 2, if all is invested to the bond. While on A(Y T ), applying the same argument as above, the cash flow at T 2 is e r(t2 T) Y T + S T2 K Y T = (e r(t2 T) 1)Y T + S T2 K. Hence, the payoff at T 2 of the exotic forward can be seen as H(Y T ) = 1 Ω\A(YT )e r(t2 T) (S T1 K) + 1 A(YT ){(e r(t2 T) 1)Y T + S T2 K}. Therefore, applying (13), we have (17) (18) C t (Y T ) = e r(t 2 t) E ˆP [H(Y T ) F t ] (0 t T 2 ) and if t T 1, = e r(t 2 t) e r(t 2 T) E ˆP [1 Ω\A(YT )(S T1 K) F t ] + e r(t 2 t) E ˆP [1 A(YT ){(e r(t 2 T) 1)Y T } F t ] + e r(t 2 t) E ˆP [1 A(YT )(S T2 K) F t ], = e r(t t) E ˆP [1 Ω\A(YT )(S T1 K) F t ] + e r(t t) E ˆP [1 A(YT ){(1 e r(t 2 T) )Y T } F t ] + E ˆP [1 A(YT )(e rt E ˆP [e rt 2 S T2 F T ] e r(t 2 t) K) F t ] = e r(t t)( E ˆP [1 Ω\A(YT )(S T1 K) F t ] + E ˆP [1 A(YT ){(1 e r(t 2 T) )Y T + S T e r(t 2 T) K} F t ] ) (19) (20) = e r(t t) E ˆP [max ( S T1 K, (1 e r(t2 T) )Y T + S T e r(t2 T) K ) F t ]. In particular, we see that C t (S T K) = e r(t t) E ˆP [max ( S T1, (2 e r(t2 T) ) )S T Ft ] e r(t t) K, (21) 6
7 and π = C 0 (S T K) = e rt E ˆP [max ( S T1, (2 e r(t 2 T) )S T ) ] e rt K. (22) We will calculate the expectation in (22), to complete the proof of Theorem 1. The most remarkable property is that A(S T K) is independent of F t for any t T 1, since A(S T K) ={S T1 K (2 e r(t 2 T) )S T K} ={S T1 (2 e r(t 2 T) )S T } = A ={log S 0 + σŵ T1 + (r 1 2 σ2 )T 1 log S 0 + σŵ T + (r 1 2 σ2 )T + log(2 e r(t 2 T) )} (23) = { Ŵ T Ŵ T1 (r 1 2 σ2 )(T T 1 ) + log(2 e r(t 2 T) ) σ ={Ŵ T Ŵ T1 d T T1 }. Therefore, π = e rt E ˆP [S T1 ; Ω \ A] + (2 e r(t2 T) )e rt E ˆP [S T ; A] Ke rt = e rt E ˆP [S T1 ]{ ˆP(Ω \ A) + (2 e r(t2 T) )E ˆP [S T /S T1 ; A]} = e r(t T1) S 0 {Φ( d ) + (2 e r(t2 T) )E ˆP [S T /S T1 ; A]}. (24) Noting that S T /S T1 = exp{σ(ŵ T Ŵ T1 ) σ2 2 (T T 1)}, (25) 7
8 we have E ˆP [S T /S T1 ; A] σ2 (r = e 2 )(T T 1) = e r(t T 1) y d = e r(t T 1) Φ(d + ). By (24) and (26), we obtain (7). y d 1 2π e y2 2 e yσ T T 1 dy 1 2π e 1 2 (y σ T T 1 ) 2 dy (26) Remark. For the cases of Y T = 0, the set A(0) defined in (15) is no longer independent of F T1, and therefore the pricing formula is somehow more complicated than (7). On the other hand, if we have Y T = cs T K (27) for any deterministic c, then A(Y T ) is again independent of F T1. Further generalizations of (27) are possible and will be studied elsewhere. 6 Hedging/A Proof of Theorem 2 As was mentioned in section 4, the expression (14) gives the hedging strategy. Let us start with (19), the expression for all t [0, T 2 ]: C t C t (S T K) = e r(t t) E ˆP [1 Ω\A (S T1 K) F t ] + e r(t2 t) E ˆP [1 A {(e r(t2 T) 1)(S T K)} F t ] + e r(t2 t) E ˆP [1 A (S T2 K) F t ] = e r(t t) E ˆP [1 Ω\A S T1 F t ] e r(t t) K + e r(t2 t) E ˆP [1 A {S T2 + (e r(t2 T) 1)S T } F t ]. (28) First, let us consider the case when t [T, T 2 ). Since all terms except 8
9 S T2 are F t measurable, we have C t = e r(t t) 1 Ω\A S T1 e r(t t) K + (e r(t t) e r(t 2 t) )1 A S T + 1 A e rt E ˆP [e rt 2 S T2 F t ] (29) = e r(t t) 1 Ω\A S T1 e r(t t) K + (e r(t t) e r(t 2 t) )1 A S T + 1 A S t. Therefore, we have dc t = 1 A ds t + {1 A S T (e rt e rt 2 ) + 1 Ω\A S T1 e rt e rt K}dB t. (30) Next, when t [T 1, T), C t = e r(t t) S T1 E ˆP [1 Ω\A F t ] e r(t t) K + e r(t t) (2 e r(t 2 T) )S t E ˆP [1 A S T /S t F t ]. (31) Since we have A = {S T1 (2 e r(t 2 T) )S T } = {S T1 /S t (2 e r(t 2 T) )S T /S t } = { log(s T /S t ) log(2 e r(t 2 T) ) + log(s t /S T1 )} (32) = {Ŵ T Ŵ t (r 1 2 σ2 )(T t) + log(2 e r(t2 T) )S t /S T1 } σ from (23), the conditional expectations in (31) are explicitly calculated as and E ˆP [1 Ω\A F t ] = Φ ( d (t, S t )), (33) E ˆP [1 A S T /S t F t ] = e r(t t) Φ (d + (t, S t )). (34) Noting that Φ(±d ± (t, x)) C 1,2 ([T 1, T) R), we can apply Itô s formula to get dφ(±d ± (t, S t )) = x Φ(±d ± (t, x)) x=s t ds t + ( t σ 2 x 2 xx )Φ(±d ± (t, x)) x=s t dt = ± φ(d ±(t, S t )) σ T t [ S 1 t ds t (r σ 2 ± 2 1 σ 2 ) ] dt. (35) 9
10 Hence dc t = e rt {S T1 Φ( d (t, S t )) K} db t + e rt B t S T1 dφ( d (t, S t )) + (2 e r(t 2 t) ) [ Φ(d + (t, S t ))ds t + S t dφ(d + (t, S t )) + d Φ(d + ), S t ] = e rt {S T1 Φ( d (t, S t )) K} db t e rt φ(d (t, S t )) B t S T1 σ (S t 1 ds t rdt) T t + (2 e r(t2 t) ) [ Φ(d + (t, S t ))ds t + S t φ(d + (t, S t )) σ {S t 1 ds t (r + σ 2 ) dt} T t φ(d + (t, S t )) + σs t dt ] T t = [ ( (2 e r(t2 t) ) Φ(d + (t, S t )) + φ(d ) +(t, S t )) σ T t B ts T1 φ( d (t, S t )) B T S t σ ] ds t T t [ ( S T1 + Φ( d (t, S t )) + φ(d (t, S t )) B T σ T t (2 e r(t 2 t) ) S tφ(d + (t, S t )) B t σ T t ) K B T ] db t (36) Finally, consider the cases when t [0, T 1 ). Since A is independent of F t, from (28) we have C t = e r(t T1) S t ˆP(Ω \ A) e r(t t) K + e r(t t) (2 e r(t2 T) )E ˆP [S T1 F t ]E ˆP [1 A S T /S T1 ] = e r(t T1) S t Φ( d ) e r(t t) K + (2 e r(t2 T) )Φ(d + )S t. (37) Therefore, dc t = Ke rt db t + {e r(t T 1) Φ( d ) + (2 e r(t 2 T) )Φ(d + )}ds t. By (30), (36) and (38), we get (8) and (9). (38) 10
11 References [1] J. Akahori: Stochastic Analysis in Mathematical Finance, (in Japanese) Systems, Control and Information, 44, pp , [2] J. C. Hull Options, Futures, and Other Derivatives, (5th Edition), Prentice Hall,
The BlackScholes pricing formulas
The BlackScholes pricing formulas Moty Katzman September 19, 2014 The BlackScholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
More informationMoreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
More informationLecture 6 BlackScholes PDE
Lecture 6 BlackScholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the riskneutral measure Q by If the contingent
More informationThe BlackScholes Formula
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 The BlackScholes Formula These notes examine the BlackScholes formula for European options. The BlackScholes formula are complex as they are based on the
More informationMartingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: DiscreteTime Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
More informationOption Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
More informationτ θ What is the proper price at time t =0of this option?
Now by Itô s formula But Mu f and u g in Ū. Hence τ θ u(x) =E( Mu(X) ds + u(x(τ θ))) 0 τ θ u(x) E( f(x) ds + g(x(τ θ))) = J x (θ). 0 But since u(x) =J x (θ ), we consequently have u(x) =J x (θ ) = min
More informationThe BlackScholes Model
The BlackScholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The BlackScholes Model Options Markets 1 / 19 The BlackScholesMerton
More information1 The BlackScholes model: extensions and hedging
1 The BlackScholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
More informationwhere N is the standard normal distribution function,
The BlackScholesMerton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
More informationLecture 15. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 BlackScholes Equation and Replicating Portfolio 2 Static
More information金融隨機計算 : 第一章. BlackScholesMerton Theory of Derivative Pricing and Hedging. CH Han Dept of Quantitative Finance, Natl. TsingHua Univ.
金融隨機計算 : 第一章 BlackScholesMerton Theory of Derivative Pricing and Hedging CH Han Dept of Quantitative Finance, Natl. TsingHua Univ. Derivative Contracts Derivatives, also called contingent claims, are
More informationCS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
More informationValuation of the Surrender Option Embedded in EquityLinked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in EquityLinked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
More informationChapter 2: Binomial Methods and the BlackScholes Formula
Chapter 2: Binomial Methods and the BlackScholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a calloption C t = C(t), where the
More informationCall Price as a Function of the Stock Price
Call Price as a Function of the Stock Price Intuitively, the call price should be an increasing function of the stock price. This relationship allows one to develop a theory of option pricing, derived
More informationJungSoon Hyun and YoungHee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL JungSoon Hyun and YoungHee Kim Abstract. We present two approaches of the stochastic interest
More informationTwoState Option Pricing
Rendleman and Bartter [1] present a simple twostate model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
More informationOn MarketMaking and DeltaHedging
On MarketMaking and DeltaHedging 1 Market Makers 2 MarketMaking and BondPricing On MarketMaking and DeltaHedging 1 Market Makers 2 MarketMaking and BondPricing What to market makers do? Provide
More informationFinite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the BlackScholes
More informationFour Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
More information7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The CoxRossRubinstein
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationEuropean Options Pricing Using Monte Carlo Simulation
European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical
More informationReview of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
More informationBlackScholes Option Pricing Model
BlackScholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationMATH3075/3975 Financial Mathematics
MATH3075/3975 Financial Mathematics Week 11: Solutions Exercise 1 We consider the BlackScholes model M = B, S with the initial stock price S 0 = 9, the continuously compounded interest rate r = 0.01 per
More informationArbitrageFree Pricing Models
ArbitrageFree Pricing Models Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) ArbitrageFree Pricing Models 15.450, Fall 2010 1 / 48 Outline 1 Introduction 2 Arbitrage and SPD 3
More informationLectures. Sergei Fedotov. 20912  Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912  Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
More informationComputational Finance Options
1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to
More informationHedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
More informationA SNOWBALL CURRENCY OPTION
J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA Email address: gshim@ajou.ac.kr ABSTRACT. I introduce
More informationUnderstanding Options and Their Role in Hedging via the Greeks
Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 379961200 Options are priced assuming that
More informationChapter 1: Financial Markets and Financial Derivatives
Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange
More informationBond Options, Caps and the Black Model
Bond Options, Caps and the Black Model Black formula Recall the Black formula for pricing options on futures: C(F, K, σ, r, T, r) = Fe rt N(d 1 ) Ke rt N(d 2 ) where d 1 = 1 [ σ ln( F T K ) + 1 ] 2 σ2
More informationMonte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
More informationThe interest volatility surface
The interest volatility surface David Kohlberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:7 Matematisk statistik Juni 2011 www.math.su.se Matematisk
More informationOptions 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
More informationSession X: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics. Department of Economics, City University, London
Session X: Options: Hedging, Insurance and Trading Strategies Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Option
More informationCall and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options
Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder
More information1.1 Some General Relations (for the no dividend case)
1 American Options Most traded stock options and futures options are of Americantype while most index options are of Europeantype. The central issue is when to exercise? From the holder point of view,
More informationOption Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25
Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward
More informationStocks paying discrete dividends: modelling and option pricing
Stocks paying discrete dividends: modelling and option pricing Ralf Korn 1 and L. C. G. Rogers 2 Abstract In the BlackScholes model, any dividends on stocks are paid continuously, but in reality dividends
More informationQUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS
QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for
More informationAdditional questions for chapter 4
Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two sixmonth periods it is expected to go up by 1% or go down by 1%. The riskfree interest rate is 8% per annum with
More informationOPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES
OPTION PRICING FOR WEIGHTED AVERAGE OF ASSET PRICES Hiroshi Inoue 1, Masatoshi Miyake 2, Satoru Takahashi 1 1 School of Management, T okyo University of Science, Kukishi Saitama 3468512, Japan 2 Department
More informationThe Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees
The Effect of Management Discretion on Hedging and Fair Valuation of Participating Policies with Maturity Guarantees Torsten Kleinow HeriotWatt University, Edinburgh (joint work with Mark Willder) Marketconsistent
More informationBlackScholes Equation for Option Pricing
BlackScholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
More informationTHE BLACKSCHOLES MODEL AND EXTENSIONS
THE BLACSCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the BlackScholes pricing model of a European option by calculating the expected value of the option. We will assume that
More informationLECTURE 9: A MODEL FOR FOREIGN EXCHANGE
LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling
More informationThe British Put Option
Appl. Math. Finance, Vol. 18, No. 6, 211, (537563) Research Report No. 1, 28, Probab. Statist. Group Manchester (25 pp) The British Put Option G. Peskir & F. Samee We present a new put option where the
More informationNumerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
More informationThe BlackScholesMerton Approach to Pricing Options
he BlackScholesMerton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the BlackScholesMerton approach to determining
More informationMore Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
More informationOn Quantile Hedging and Its Applications to the Pricing of EquityLinked Life Insurance Contracts 1
On Quantile Hedging and Its Applications to the Pricing of EquityLinked Life Insurance Contracts 1 Alexander Melnikov Steklov Mathematical Institute of Russian Academy Sciences and Department of Mathematical
More information1 Geometric Brownian motion
Copyright c 006 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM
More informationOptions and Derivative Pricing. U. NaikNimbalkar, Department of Statistics, Savitribai Phule Pune University.
Options and Derivative Pricing U. NaikNimbalkar, Department of Statistics, Savitribai Phule Pune University. email: uvnaik@gmail.com The slides are based on the following: References 1. J. Hull. Options,
More informationBarrier Options. Peter Carr
Barrier Options Peter Carr Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU March 14th, 2008 What are Barrier Options?
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
More informationIntroduction to Stochastic Differential Equations (SDEs) for Finance
Introduction to Stochastic Differential Equations (SDEs) for Finance Andrew Papanicolaou January, 013 Contents 1 Financial Introduction 3 1.1 A Market in Discrete Time and Space..................... 3
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More informationOption Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013
Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed
More informationOption Pricing. Chapter 12  Local volatility models  Stefan Ankirchner. University of Bonn. last update: 13th January 2014
Option Pricing Chapter 12  Local volatility models  Stefan Ankirchner University of Bonn last update: 13th January 2014 Stefan Ankirchner Option Pricing 1 Agenda The volatility surface Local volatility
More informationLecture 11. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
More informationHedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
More informationLECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
More informationOther variables as arguments besides S. Want those other variables to be observables.
Valuation of options before expiration Need to distinguish between American and European options. Consider European options with time t until expiration. Value now of receiving c T at expiration? (Value
More informationSimulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationFORWARDS AND EUROPEAN OPTIONS ON CDO TRANCHES. John Hull and Alan White. First Draft: December, 2006 This Draft: March 2007
FORWARDS AND EUROPEAN OPTIONS ON CDO TRANCHES John Hull and Alan White First Draft: December, 006 This Draft: March 007 Joseph L. Rotman School of Management University of Toronto 105 St George Street
More informationAmerican Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
More informationCOMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS
COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic meanvariance problems in
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 11. The BlackScholes Model: Hull, Ch. 13.
Week 11 The BlackScholes Model: Hull, Ch. 13. 1 The BlackScholes Model Objective: To show how the BlackScholes formula is derived and how it can be used to value options. 2 The BlackScholes Model 1.
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More informationSome stability results of parameter identification in a jump diffusion model
Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss
More informationOn BlackScholes Equation, Black Scholes Formula and Binary Option Price
On BlackScholes Equation, Black Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. BlackScholes Equation is derived using two methods: (1) riskneutral measure; (2)  hedge. II.
More informationCaps and Floors. John Crosby
Caps and Floors John Crosby Glasgow University My website is: http://www.johncrosby.co.uk If you spot any typos or errors, please email me. My email address is on my website Lecture given 19th February
More informationDoes BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem
Does BlackScholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial
More informationManual for SOA Exam FM/CAS Exam 2.
Manual for SOA Exam FM/CAS Exam 2. Chapter 7. Derivatives markets. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall
More informationFinance 400 A. Penati  G. Pennacchi. Option Pricing
Finance 400 A. Penati  G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary
More informationPutCall Parity. chris bemis
PutCall Parity chris bemis May 22, 2006 Recall that a replicating portfolio of a contingent claim determines the claim s price. This was justified by the no arbitrage principle. Using this idea, we obtain
More informationValuing Stock Options: The BlackScholesMerton Model. Chapter 13
Valuing Stock Options: The BlackScholesMerton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The BlackScholesMerton Random Walk Assumption
More informationARBITRAGEFREE OPTION PRICING MODELS. Denis Bell. University of North Florida
ARBITRAGEFREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic
More informationForeign Exchange Symmetries
Foreign Exchange Symmetries Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 8 September 2008 Contents 1 Foreign Exchange Symmetries 2 1.1 Motivation.................................... 2
More informationIntroduction to Mathematical Finance
Introduction to Mathematical Finance Martin Baxter Barcelona 11 December 2007 1 Contents Financial markets and derivatives Basic derivative pricing and hedging Advanced derivatives 2 Banking Retail banking
More informationA Martingale System Theorem for Stock Investments
A Martingale System Theorem for Stock Investments Robert J. Vanderbei April 26, 1999 DIMACS New Market Models Workshop 1 Beginning Middle End Controversial Remarks Outline DIMACS New Market Models Workshop
More informationChapter 13 The BlackScholesMerton Model
Chapter 13 The BlackScholesMerton Model March 3, 009 13.1. The BlackScholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)
More informationNotes on BlackScholes Option Pricing Formula
. Notes on BlackScholes Option Pricing Formula by DeXing Guan March 2006 These notes are a brief introduction to the BlackScholes formula, which prices the European call options. The essential reading
More informationPricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation Yoon W. Kwon CIMS 1, Math. Finance Suzanne A. Lewis CIMS, Math. Finance May 9, 000 1 Courant Institue of Mathematical Science,
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More informationASimpleMarketModel. 2.1 Model Assumptions. Assumption 2.1 (Two trading dates)
2 ASimpleMarketModel In the simplest possible market model there are two assets (one stock and one bond), one time step and just two possible future scenarios. Many of the basic ideas of mathematical finance
More informationENGINEERING AND HEDGING OF CORRIDOR PRODUCTS  with focus on FX linked instruments 
AARHUS SCHOOL OF BUSINESS AARHUS UNIVERSITY MASTER THESIS ENGINEERING AND HEDGING OF CORRIDOR PRODUCTS  with focus on FX linked instruments  AUTHORS: DANIELA ZABRE GEORGE RARES RADU SIMIAN SUPERVISOR:
More informationPricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching
Pricing Options with Discrete Dividends by High Order Finite Differences and Grid Stretching Kees Oosterlee Numerical analysis group, Delft University of Technology Joint work with Coen Leentvaar, Ariel
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationLecture. S t = S t δ[s t ].
Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important
More informationMTH6120 Further Topics in Mathematical Finance Lesson 2
MTH6120 Further Topics in Mathematical Finance Lesson 2 Contents 1.2.3 Nonconstant interest rates....................... 15 1.3 Arbitrage and BlackScholes Theory....................... 16 1.3.1 Informal
More informationA Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting Model
Applied Mathematical Sciences, vol 8, 14, no 143, 7157135 HIKARI Ltd, wwwmhikaricom http://dxdoiorg/11988/ams144644 A Genetic Algorithm to Price an European Put Option Using the Geometric Mean Reverting
More informationThe Valuation of Currency Options
The Valuation of Currency Options Nahum Biger and John Hull Both Nahum Biger and John Hull are Associate Professors of Finance in the Faculty of Administrative Studies, York University, Canada. Introduction
More information