GEOLOGI FOR SAMFUNNET

Size: px
Start display at page:

Download "GEOLOGI FOR SAMFUNNET"

Transcription

1 NGU Norges geologiske undersøkelse Geological Survey of Norway GEOLOGI FOR SAMFUNNET GEOLOGY FOR SOCIETY

2

3 CONTENTS 1. INTRODUCTION BIOCLASTIC SEDIMENTS - GENERAL DESCRIPTION INTERPRETATION METHODS Data sources Data processing and interpretation Examples of bioclastic sediments associated with coral mounds ASSESSMENT OF CONFIDENCE AND STRENGTH OF CORAL MOUND PREDICTIONS Comparison of predicted and verified occurrences Assessment of predictions in different geological environments SPATIAL DISTRIBUTION OF BIOCLASTIC SEDIMENTS DISCUSSION CONCLUSIONS REFERENCES... 23

4 1. INTRODUCTION Bioclastic sediments (BS) is a term term commonly used to describe all carbonate sediments resulting from dead organisms (Fig. 1). BS includes carbonate sediments found in the coastal zone, originating from shells and calcareous algae (shell sand), but this type of bioclastic deposit is not considered further here. In this report, we focus on BS found on the continental shelf, frequently occurring in association with stony coral (biogenic) mounds. The term "bioclastic sediment" includes a range of grain sizes from silt to gravel, and both coral rubble and dead coral blocks. BS normally have a minerogenic component, coming from either in situ deposits, traction currents along the seabed or deposition from suspension. Many biogenic mounds are wholly or partly covered by living corals and other organisms, but these are not considered part of the bioclastic sediment. In this report, we have defined biogenic mounds based on morphology; i.e. they are structures which can be mapped from bathymetric data. Backscatter data from multibeam echosounder (which gives an acoustic proxy to the nature of the sediments) has locally proved to offer a good guide to the distribution of BS, but should be used with care. Figure 1. Bioclastic sediments comprise a mixture of minerogenic and biogenic components, covering a wide range of grain sizes. Distance between red laser dots is 1 cm. MAREANO and other projects have shown that acoustic mapping with limited ground truthing is a powerful tool for mapping biogenic mounds and associated BS. These mounds are composite structures, commonly with a marginal zone with a mixture of minerogenic and biogenic material, and a core zone composed of dead and living corals together with varying proportions of BS (e.g., Buhl-Mortensen et al. 21). 4

5 Standard Quaternary geology maps show the genesis of surficial sediments, i.e. the origin of the sediments and how they have been deposited. Such maps are commonly made from both land and ocean areas, e.g. ISPRA (213). In MAREANO, maps of bottom sediment genesis (where bioclastic sediment is one of many sediment classes) are complementary to the maps of bottom sediment grain size. Mapping of BS in MAREANO has been carried out from a geological perspective, focussing on sediment genesis, and not on the biological components of the ecosystems. The maps of BS do not include information on the proportions of dead or living organisms, or any information on which species may occur. This is similar to established standards and procedures in geological mapping onshore, where surficial sediment classes are presented in sediment maps without information about the biology. The report contains: a general description of BS, based on national and international sources a description of how the interpretation and prediction of BS is carried out, including data sources and a case study a comparison of predicted versus verified occurrences of BS, including an assessment of the confidence of the interpretation in different geological environments a description of BS mapped up to now and probable occurrences of BS where mapping has not yet started 2. BIOCLASTIC SEDIMENTS - GENERAL DESCRIPTION Bioclastic sediments containing scleractinian (stony) corals are reported from many stages of the stratigraphic record, from ancient to modern. Zonneveld et al. (27) described bioclastic accumulations composed of crinoids, brachiopods, molluscs, spongiomorphs and scleractinian corals from Upper Triassic sedimentary rocks in British Columbia, Canada. Small mounds are interpreted as patch reefs composed of packstone, bioclastic floatstone/rudstone and carbonate breccia intercalated with mixed siliciclastic carbonate sediments. Biogenic gravel comprising coral and shell fragments in the form of rubble derived locally from a number of cold-water coral mini-mounds have been described from the interfluves of the Dangeard and Explorer canyons in the South Western Approaches in UK (Stewart et al. 213). They also report the presence of mixed substrata, with both lithic and biogenic sand and gravel, between 2 and 5 m water depth. Cold-water coral mounds and a large number of living Lophelia pertusa reefs along the Galicia bank on the Atlantic NW Iberia margin have been reported by Somoza et al. (214). Detection and mapping of living coral reefs and mounds was carried out by means of 5

6 multibeam bathymetry, backscatter, ultra-high and high-resolution multichannel seismic reflection data and sampling. The authors describe mini-mounds (average heights 3-5 m, with 25 m separation) corresponding to living cold-water coral reefs. The mounds are bound upslope by an active field of sandwaves, and downslope by biogenic sands. The summit of the Galicia Bank is covered by a large field of asymmetrical m-scale sandwaves, and samples from these sandwaves yielded coarse fragments of dead Scleractinia corals and other bioclastic sands. Acoustic mapping of cold-water coral reefs and surrounding habitats using multibeam echosounder has been reported by Roberts et al. (25) from four areas west of Scotland. They found that Lophelia pertusa reefs and the associated coral rubble were best treated as one habitat class, because they could not be separated acoustically, even if they were distinct on video surveys. Their study showed that multibeam echosounders are effective for identifying cold-water coral reefs and providing a baseline to interpret distribution of other habitats. They also point out the discovery of small cold-water coral reefs in previously wellstudied waters suggesting that such reefs may be far more widespread than previously thought. BS have also been recorded on the margin west of Ireland. A 44 cm long piston core from the summit of one of the large cold-water carbonate mounds on the Southwest Rockall Trough margin consisted entirely of biogenic carbonate sand and silt with variable amount of coral debris and other coarse grained bioclastic material (Mienis et al. 29). A box core retrieved from the same location contained living colonies of Lophelia pertusa, Stylaster sp. and associated fauna like anemones, crustaceans and sponges on top of a 2 cm thick layer of coral debris. On average, more than 4% of the piston core and box core sediment consists of sand sized particles. On a typical Lophelia pertusa reef, three different zones were recognized by Mortensen et al. (1995), based on observations from Norway. The zones are 1) "the live Lophelia-zone; 2) the dead Lophelia-zone; and 3) the Lophelia rubble zone, with smaller skeletal fragments mixed with sediments, flanking the reefs. Acoustic mapping of Lophelia pertusa coral reefs was performed by Mortensen et al. (21). The multibeam echosounder revealed 7 mounds presumed to be Lophelia reefs. Visual investigation of 15 mounds revealed 1 dead and 14 living Lophelia reefs. 6

7 3. INTERPRETATION METHODS 3.1 Data sources This section gives an overview of the data sources used in production of geological seabed maps. Bathymetry and backscatter data have been collected using multibeam echosounder according to NHS (21) "Technical specifications Seabed Mapping - MAREANO-programme" published on Seabed video data have been collected in 7 m long transects, using towed HD video equipment and digital storage. All data were collected according to Standard Norge (29) "Visuelle bunnundersøkelser med fjernstyrte og tauede observasjonsfarkoster for innsamling av miljødata" (NS 9435). Seabed sediment samples were collected using grab, box corer and multicorer according to guidance on sampling in marine sediments (Standard Norge 24). Grabs were used to take sediment samples up to a few kilos of the uppermost c. 1 cm of the seabed. Visual description of sediment samples was done onboard according to SOSI-classification, and subsamples were preserved in plastic bags for grain size and other analyses. Box corers were used to obtain sediment samples of the uppermost c. 5 cm of the seabed. Visual description of the sediment surface was done onboard according to SOSI-classification. Box cores were sub-sampled with plastic tubes to obtain cores for grain size and other analyses. All samples and cores were carefully labelled and documented in a station journal. Post-cruise grain-size analyses on subsamples were performed by wet sieving and Laser Coulter Counter ( A TOPAS PS18 ( parametric sub-bottom profiler was used for collecting high-resolution seismic data on R/V G.O. Sars ( Data are stored in TOPAS raw format for later processing. 3.2 Data processing and interpretation This section gives an overview of the steps, from initial data processing to interpretation and digitising of the final map products. Multibeam backscatter data were processed by NGU from raw multibeam data into raster grids of backscatter amplitude in decibels (db). The processed data were converted to ArcGIS format and archived in NGU's Marine Geology database. 7

8 Terrain modelling was used to produce quantitative descriptors (e.g. slope) of the seabed from bathymetry data. Quantitative descriptors were used for identifying potential coral mounds and delimiting the extent of BS. Preliminary maps for cruise planning were compiled prior to the combined geology/biology/pollution mapping cruises. Preliminary maps were based on multibeam bathymetry (including various terrain indices such as slope), backscatter data as well as existing geological information, and were used for planning the location of ground truthing stations (video, grab, boxcorer, multicorer) and shallow seismic profiles. After completing the cruise, all data were integrated in an ArcGIS environment with datasets on bathymetry, backscatter, shaded relief, shallow seismic, seabed samples, videos and photos, and geochemistry. Geological interpretations were done according to the SOSI standard for superficial deposits (Statens kartverk 26). Sediment genesis maps (comparable with Quaternary geology maps on land) were made according to this standard. ArcGis 1.1 from ESRI ( was used for interpretation and compilation of geological maps. Fledermaus ( was used for visualizing bathymetric data (shaded relief). Digitizing of geological boundaries and features was done manually at a scale of 1:2 to make maps suitable for presentation at 1:1 scale. The distance between data points for lines and geological boundaries is set to 5 m. Only objects larger than 1 m in length/diameter are digitized. The interpretation of the spatial distribution of BS is primarily based on the recognition of biogenic mounds from multibeam bathymetry, supplemented with video footage and physical samples where these are available. Multibeam backscatter data has locally proved to be indicative of the spatial distribution of BS, but has to be interpreted with care because it has been difficult to establish a consistent and systematic relationship. The minimum dimensions for structures interpreted as biogenic mounds are 2 m diameter and 2 m height (see example in Fig. 2). This will vary according to the surrounding terrain complexity. A buffer zone of c. 3 m has been drawn around the biogenic mounds. Due to the limitations defined by digitizing resolution, several small mounds are frequently digitised as one area. The grid size of the multibeam bathymetry used is generally 5 m, however, old multibeam bathymetry with lower resolution has had to be used in some areas. This is the case for parts of the shelf edge west of Mørebankene, and the Røst Reef area in Nordland VI. Incorporation of lower resolution data has led to more generalised maps than in areas with full, modern multibeam coverage. For further description of the methods used for geological mapping offshore, please refer to Bøe et al. (21). 8

9 Figure 2. Screen dump from Fledermaus, showing a profile over a biogenic mound at the Sula Reef. The profile line (in the red ellipse) is 5 m long. The height of the mound is m. 3.3 Examples of bioclastic sediments associated with coral mounds The Sula Reef is one of the best documented cold-water coral reef complexes in Europe (see Hovland (28) and references therein), and the bathymetric mapping by MAREANO in 212 shows that there are nearly 1 mounds in the Sula Ridge area. The number of confirmed coral reefs in the coral database of the Institute of Marine Research (IMR) ( is considerably lower. The confirmed coral reefs are published by IMR as points, not polygons delineating areas (Figs. 3 and 4). One video transect (R96) is located in the central-northern part of the reef complex, starting in gravelly muddy sand and extending ENE onto a more than 1 m long coral ridge. The morphology of the ridge, the position of the video line, and 8 pictures from the CAMPOD video are shown in Figure 5. The first pictures (1-2) show that sediments surrounding the ridges and mounds are gravelly muddy sand. Pictures 3-5 show that a large part of the southwestern end of the ridge is covered by BS. On the central part of the ridge, live corals are common (pictures 6-8). 9

10 Figure 3. Screen dump from showing the Sediment genesis map including BS (violet polygons) and land forms. Also shown is the distribution of confirmed coral reefs (orange dots). The pink overlay to the left of the red line marks protected coral areas. The position of the video line in Fig. 5 is shown. Figure 4. Map showing BS (yellow outlines) (interpreted by NGU as part of the seabed sediment genesis map) and confirmed coral reefs (IMR, The position of the video line in Fig. 5 is shown. 1

11 Figure 5. Central part - shaded relief map from the Sula Ridge, showing ENE-WSW trending coral ridges on top of glacial ridges, and solitary coral mounds (e.g. upper left corner). The yellow outlines show areas with BS. The CAMPOD video line is shown by a red line, and numbers refer to the pictures in the upper and lower part. 1 - gravelly muddy sand. 2 gravelly muddy sand. 3 - gravelly sand with biogenic material. 4 - muddy sand with coral rubble. 5 - gravelly muddy sand with blocks. 6 - mainly coral rubble or dead coral framework. 7 - muddy sand with coral rubble. 8 - living corals on top of BS. 11

12 4. ASSESSMENT OF CONFIDENCE AND STRENGTH OF CORAL MOUND PREDICTIONS 4.1 Comparison of predicted and verified occurrences This section provides quantitative documentation of the level of agreement between BS occurrences, based on NGUs interpretation of acoustic data, and observed coral mound occurrences. From the four MAREANO cruises in 212 and 213 in the Norwegian Sea, a total of 285 video lines were acquired. BS (various biogenic clasts of silt to gravel size, coral rubble, dead coral blocks partly covered by live corals) were identified on 6 lines (Figure 6, Table 1). The occurrences of BS including biogenic mounds have been grouped according to the bottom environment (geological landscape or landform) where they occur. BS were predicted on 44 of the lines, based on expert interpretation on multibeam data. The predictions were verified in 41 lines, while 3 predicted occurrences were not verified. Of the 41 predicted occurrences, 29 were considered to have a high certainty. All of these predictions turned out to be correct. 15 predictions (out of the 44) had medium to low certainty (MidLowC). The result here was that 12 predictions were verified, while 3 were not verified (2 in bedrock, 1 on a glacial ridge). Table 1. Percentage of verified and non-verified coral mound occurrences versus predictions. Bottom environment Verified (%) Not verified (%) Flat, with low relief 52 structures Bedrock 2 5 (MidLowC, on bedrock) Iceberg ploughmarks Glacial lineations - ridges Moraine ridges 7 2 (MidLowC, on ridge) Pockmarks Shelf edge Slide (scar, ridges) 2 Sum

13 BS were found in 19 video lines without being predicted. Table 2 shows that unpredicted BS occur primarily in the Slide regions. Some were also found in Bedrock, Iceberg ploughmarks, Pockmarks and one on the Shelf edge, based on 15 m grid bathymetry. Table 2. Number of non-predicted coral mound occurrences. Bottom environment Not predicted Flat, with low relief structures Bedrock Iceberg ploughmarks 3 (1 with 5 m grid) 2 Glacial lineations - ridges Moraine ridges Pockmarks 3 Shelf edge 1 (15 m grid) Slide (scar, ridges) 1 (2 with 15 m grid) The rate of successful prediction has increased over the period For example, the first 212 cruise showed that it was difficult to predict correctly the occurrence of BS on Bedrock. This was taken into account during the subsequent interpretation in 213. The last 213 cruise proved that it is very difficult to identify BS with certainty in Slide areas, especially where there are many ridges and small blocks. Biogenic mounds and mounds created by sliding are difficult to distinguish. 13

14 Figure 6. Spatial distribution of verified and non-verified predictions, and occurrences of BS not predicted. 14

15 4.2 Assessment of predictions in different geological environments The experience of the work done in on prediction of biogenic mounds with BS is summarised in Table 3. A qualitative ranking scale for confidence has been implemented based on the geologists ability to interpret BS from acoustic data where Poor means that there is a considerable risk for both under- and overestimation, Moderate to Good means low risk, while Very Good means that there is a very low risk for both under- and overestimation. Very good predictions can be expected in areas of flat bottom and low relief structures (when exceeding the minimum size of 2 m height and 2 m diameter). The Sula Reef area (Fig. 4) is a good example. The biogenic mounds can be distinguished from geological structures with high confidence. The confidence is assessed to be Good to Moderate in slightly more complex bottom environments, such as areas with iceberg ploughmarks, ridges or pockmarks (Fig. 7). In these environments, there are geological structures which may be interpreted incorrectly as biogenic mounds with BS. The most challenging environments are Bedrock and Slides. The very high terrain complexity in these environments make the distinction between biogenic mounds and morphological features created by bedrock erosion or slide processes very difficult, with a high to medium high risk for underestimation, and a medium high to low risk for overestimation (Fig. 8). Table 3. Assessment of predictive capability in different geological environments (classes). Bottom environments Confidence Risk for Risk for underestimation overestimation Flat, with low relief structures Bedrock Very good Poor XX X Iceberg ploughmarks Good XX X Glacial lineations Ridges - Moraines Coral in pockmarks* Good Moderate X X X X Slide (scar, ridges) Shelf edge Poor XXX XX * Small mounds in pockmarks have proved to be easy to recognise, based on post-cruise analysis. Risk classes: - very low; X - low; XX - medium high; XXX - high. 15

16 Figure 7. Shaded relief image of 5 m multibeam bathymetry data showing biogenic mounds and associated BS in an iceberg ploughmark area. The video line (right) shows identified BS (green dots along the line). The circle to the left shows similar structures which are interpreted as BS. Figure 8. Shaded relief image of 5 m multibeam bathymetry data showing slide blocks and ridges in the Storegga Slide area, NW of Mørebankene. The video line (central part) shows identified BS (green dots along the line). It is difficult to interpret BS in this area because of the numerous slide blocks forming hills and mounds resembling coral mounds. 16

17 5. SPATIAL DISTRIBUTION OF BIOCLASTIC SEDIMENTS Bioclastic sediments described in this report have been mapped between the outlet of the Norwegian Trench at c. 62º N in the south and Fugløybanken at 7º32 N in the north. The mapping is based on multibeam bathymetry and other data from an area of c. 95 km2. This includes large parts of the shelf edge, Mørebankene, Sularevet, Iverryggen, parts of the coastal belt, Nordland VI, Nordland VII and Troms III. All of these areas have been given a special status in the management plans for the Norwegian Sea, and for the Lofoten - Barents Sea. Mapped BS cover an area of c. 1 km2. Biogenic mounds make up 1-2% of the total area interpreted as BS, i.e. 1-2 km2. This proportion will vary significantly by area. In places with single biogenic mounds on flat bottom with low relief, the proportion will exceed 5%. In areas where the interpretation is based on multibeam bathymetry with lower resolution, and where the bottom environment is characterised by for example ploughmarks, the proportion of biogenic mounds may be 1% or lower. The frequency of BS and biogenic mounds is considerably higher on the mid-norwegian shelf south of 68º N, than on the shelf north of 68º N (Figs. 9 and 1). There is full multibeam bathymetric data coverage from 4 nautical miles and outwards down to 1-3 water depth north of 67º N, while south of 67º N only selected areas have been mapped with multibeam bathymetry. This mirrors the apparent reduction in coral reef abundance northwards. The area covered by BS between the 12 nautical mile boundary and the inner boundary of the ocean management plan area south of 67º N is 24 km2, while the area covered by multibeam bathymetry is 663 km2. This gives an average cover of c. 3%. The area covered by BS in this zone north of 67º N is 37 km2, while the area covered by multibeam bathymetry is 96 km2. This gives an average cover of.4%. There are large areas still not covered by multibeam bathymetry, such as the coastal belt, parts of the shelf edge, and the shelf areas between the coastal belt and shelf edge including Haltenbanken. Some coral reefs have been identified by IMR and the petroleum industry from these areas, but it is expected that a considerable number of biogenic mounds with associated BS will be found once these areas are mapped. The two major slide areas along the shelf edge, the Storegga Slide in the south, and the Træna Deep Slide in the north can also be expected to have large areas of BS which have not yet been identified using the existing methods and technology. 17

18 Figure 9. Spatial distribution of BS (red areas) on the continental shelf and upper slope in the Norwegian Sea between 62º N and 68º N. Dark green polygons show areas with multibeam bathymetry that have been mapped. Yellow line - 12 nautical mile boundary. Light grey line boundary for ocean management plan areas. 18

19 Figure 1. Spatial distribution of BS (red areas) in the Norwegian Sea-Barents Sea between 67º N and 71º N. Dark green polygon show areas with multibeam bathymetry that have been mapped. Yellow line - 12 nautical mile boundary. Light grey line - boundary for ocean management plan areas. 19

20 6. DISCUSSION Bioclastic sediments associated with biogenic mounds are widespread in areas mapped by MAREANO south of 7º32 N. The interpretation of spatial distribution of biogenic mounds is based mainly on multibeam bathymetry. The confidence of this mapping is considered to be high in certain environments such as flat bottom with low relief structures, while the confidence is poor in slide and bedrock areas. Recognition of biogenic mounds has so far primarily been based on the use of terrain indices combined with expert interpretation of shaded relief maps. More automated methods such as Object-based image classification offer potential improvements for interpretation of biogenic mounds and associated BS, and would allow interpretation to become faster and less subjective. New technologies such as Autonomous Underwater Vehicles (AUVs) equipped with Synthetic Aperture Sonar (SAS) are expected to become powerful instruments for identifying biogenic mounds and associated BS. In slide and bedrock areas the increased resolution offered by these instruments will prove particularly useful in light of the limitations of existing, hull mounted multibeam data. An example illustrating this is shown in Figure 11, from a survey conducted by Lundin Norway AS, the Norwegian Defence Research Establishment (FFI) and NGU in the Troms III area west of Lopphavet. The sonar image has a resolution of 6x6 cm, and provides detailed images of sediments and structures such as stony corals, but not soft tissue organisms. AUVs also have the capability to carry photographic equipment which can give visual ground truthing for the interpretation of biogenic mounds and BS. 2

21 Figure 11. Sonar image (SAS, mounted on a HUGIN AUV) from Troms III, showing a biogenic mound fringed by a 3 m wide zone of BS. Note abundant small pockmarks and trawl marks. Courtesy: Lundin Norway AS and FFI. 7. CONCLUSIONS Bioclastic sediments have been mapped between the outlet of the Norwegian Trench at c. 62º N in the south, and as far north as Fugløybanken at 7º32 N. A total area of c. 95 km2 has been mapped, and BS cover c. 1 km2. Biogenic mounds, with possible coral reefs, constitute 1-2 km2 of the mapped areas. The confidence of the maps of biogenic mounds and BS vary considerably. Areas with flat bottom and low relief structures can be mapped with high confidence while in slide and bedrock areas, the confidence is low. Mapping of biogenic mounds and associated BS by use of acoustic methods is considered to be a powerful tool although limited confidence in some geological environments is noted. New methods such as object-based image classification may help for the interpretation of biogenic mounds and BS. These methods may give quantitative classifications that can be reproduced so one does not have to rely solely on expert interpretations. 21

22 New technologies like AUV carrying SAS and other instruments may partly overcome challenges associated with hull-borne multibeam echosounders and increase mapping confidence in challenging bottom environments such as slide and bedrock areas. 22

23 8. REFERENCES Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, P., Gheerardyn, H., King, N.J. and Raes, M. 21: Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine Ecology 31 21, Bøe, R., Dolan, M., Thorsnes, T., Lepland, A., Olsen, H., Totland, O. and Elvenes, S. 21: Standard for geological seabed mapping offshore. NGU report 21.33, 15 pages. Hovland, M. 28: Deep water coral reefs: Unique Biodiversity hotspots. Praxis Publishing (Springer), Chichester, UK. 278 pp. ISPRA 213: Geological map with thematic elements and submerged landscapes map of the National Park of Cilento, Vallo di Diano and Alburni European and Global Geopark. Mienis, F., van der Land, C., de Stigter, H.C, van de Vorstenbosch, M. de Haas, H., Richter, T. and van Weering, T.C.E. 29: Sediment accumulation on a cold-water carbonate mound at the Southwest Rockall Trough margin. Marine Geology 265 (29) 4 5. Mortensen, P.B., Hovland, M., Brattegard, T., Farestveit, R., Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64 N on the Norwegian shelf: structure and associated megafauna. Sarsia 8, Mortensen, P.B., Hovland, M.T., Fosså, J.H., Furevik, D.M., 21. Distribution, abundance and size of Lophelia pertusa coral reefs in mid Norway in relation to seabed characteristics. J MarBiol. Assoc UK 81, NHS 21: Technical Specifications Seabed Mapping. MAREANO programme. data/page/9162/technical_specifications.pdf Roberts, J.M., Brown, C.J., Long, D. and Bates, C.R. 25: Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats, Coral reefs, 24 (4), Standard Norge 24: Water quality sampling Part 19: Guidance on sampling in marine sediments. Norsk Standard NS-EN ISO , 14 pp. Standard Norge 29: Visuelle bunnundersøkelser med fjernstyrte og tauede observasjonsfarkoster for innsamling av miljødata. Norsk Standard NS9435, 2 pp. Statens kartverk 26: SOSI standard - generell objektkatalog versjon 4., Fagområde: Løsmassegeologi. Stewart, H.A., Davies, J.S., Guinan, J. and Howell, K.L. 213: The Dangeard and Explorer canyons, South Western Approaches UK: Geology, sedimentology and newly discovered cold-water coral mini-mounds. Deep Sea Research Part II: Topical Studies in Oceanography (in press, available online ) Somoza, L., Ercilla, G., Urgorri, V.,Le on, R., Medialdea, T., Paredes, M., Gonzalez, F.J. and Nombela, M.A.: 214: Detection and mapping of cold-water coral mounds and living 23

24 Lophelia reefs in the Galicia Bank, Atlantic NW Iberia margin. Marine Geology (in press, available online ), doi: 1.116/j.margeo Zonneveld, J.-P., Henderson, C.M., Stanley Jr., G.D., Orchard, M.J. and Gingra, M.K. 27: Oldest scleractinian coral reefs on the North American craton: Upper Triassic (Carnian), northeastern British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 243, (3 4),

25 NGU Norges geologiske undersøkelse Geological Survey of Norway Norges geologiske undersøkelse Postboks 6315, Sluppen 7491 Trondheim, Norge Besøksadresse Leiv Eirikssons vei 39, 74 Trondheim Telefon Telefax E-post ngu@ngu.no Nettside Geological Survey of Norway PO Box 6315, Sluppen 7491 Trondheim, Norway Visitor address Leiv Eirikssons vei 39, 74 Trondheim Tel (+ 47) Fax (+ 47) ngu@ngu.no Web

Figure 2.2 BGS survey (seabed sampling and seismic) coverage around the UK

Figure 2.2 BGS survey (seabed sampling and seismic) coverage around the UK Natura 2000 in UK Offshore Waters Figure 2.2 BGS survey (seabed sampling and seismic) coverage around the UK Scale 1:11000000 Seismic tracks BGS seabed samples Median line Bathymetric contour >200m BGS

More information

An Overview of Seabed Surveys (High resolution Geophysical Site Surveys)

An Overview of Seabed Surveys (High resolution Geophysical Site Surveys) An Overview of Seabed Surveys (High resolution Geophysical Site Surveys) Anna Fulop Chief Geoscientist Fugro Survey Limited 22 April 2015 Agenda Introduction Site survey - purpose and requirements Principles,

More information

Contents. 1. PROFILE p2. 2. SERVICES 2.1 Offshore Support Services p 4 Offshore support p 6 ROV operations p 8

Contents. 1. PROFILE p2. 2. SERVICES 2.1 Offshore Support Services p 4 Offshore support p 6 ROV operations p 8 OCTOBER 2013 22 Contents 1. PROFILE p2 2. SERVICES 2.1 Offshore Support Services p 4 Offshore support p 6 ROV operations p 8 2.2 Hydrographic & Geophysical services p 10 Bathymetric surveys p 12 High resolution

More information

Great Barrier Reef Marine Park sedimentology revealed

Great Barrier Reef Marine Park sedimentology revealed issue 84 Dec 2006 Great Barrier Reef Marine Park sedimentology revealed New research into inter-reefal environments will assist reef managers Emma Mathews and Andrew Heap Geoscience Australia has completed

More information

Final Project Report

Final Project Report CURTIN UNIVERSITY OF TECHNOLOGY Department of Applied Geology Western Australia School of Mines Applied Sedimentology, Coastal and Marine Geoscience Group GERALDTON EMBAYMENTS COASTAL SEDIMENT BUDGET STUDY

More information

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces

Chapter Overview. Bathymetry. Measuring Bathymetry. Echo Sounding Record. Measuring Bathymetry. CHAPTER 3 Marine Provinces Chapter Overview CHAPTER 3 Marine Provinces The study of bathymetry charts ocean depths and ocean floor topography. Echo sounding and satellites are efficient bathymetric tools. Most ocean floor features

More information

The Integration of Hydrographic and Oceanographic Data in a Marine Geographic Information System U.S. Hydro 2015

The Integration of Hydrographic and Oceanographic Data in a Marine Geographic Information System U.S. Hydro 2015 The Integration of Hydrographic and Oceanographic Data in a Marine Geographic Information System U.S. Hydro 2015 Karen Hart CARIS USA Oceanography and Hydrography Defined Oceanography: The branch of Earth

More information

"49 39' 49 38.7' E 49 39.0' E 37 46.7' S 37 47.1' S.

49 39' 49 38.7' E 49 39.0' E 37 46.7' S 37 47.1' S. Appendix Template for Submission of Scientific Information to Describe Ecologically or Biologically Significant Marine Areas Note: Please DO NOT embed tables, graphs, figures, photos, or other artwork

More information

A METHODOLOGY FOR GIS INTERFACING OF MARINE DATA

A METHODOLOGY FOR GIS INTERFACING OF MARINE DATA A METHODOLOGY FOR GIS INTERFACING OF MARINE DATA Proceedings of GIS PLANET 98: International Conference and Exhibition on Geographic Information, Lisbon, Portugal, 7-11 September 1998 Vasilis Valavanis,

More information

Overview of Submarine Cable Route Planning & Cable Route Survey Activities. Graham Evans Director EGS Survey Group www.egssurvey.

Overview of Submarine Cable Route Planning & Cable Route Survey Activities. Graham Evans Director EGS Survey Group www.egssurvey. Overview of Submarine Cable Route Planning & Cable Route Survey Activities Graham Evans Director EGS Survey Group www.egssurvey.com Presentation Summary Submarine cable systems concept to reality Objectives

More information

Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments

Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seasonal Changes in the Mekong River Delta's Distributary Channels and Nearshore Sedimentary Environments LONG-TERM GOALS

More information

How Did These Ocean Features and Continental Margins Form?

How Did These Ocean Features and Continental Margins Form? 298 10.14 INVESTIGATION How Did These Ocean Features and Continental Margins Form? The terrain below contains various features on the seafloor, as well as parts of three continents. Some general observations

More information

All sediments have a source or provenance, a place or number of places of origin where they were produced.

All sediments have a source or provenance, a place or number of places of origin where they were produced. Sedimentary Rocks, Processes, and Environments Sediments are loose grains and chemical residues of earth materials, which include things such as rock fragments, mineral grains, part of plants or animals,

More information

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc.

NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. NEW DIGITAL TERRAIN MODELING (DTM) TOOLS FOR CABLE ROUTE PLANNING by Dr. Jose M. Andres Makai Ocean Engineering Inc. EXISTING CABLE ROUTE PLANNING TOOLS In recent years, methods used for submarine cable

More information

Managing Bathymetry in the Cloud with GIS

Managing Bathymetry in the Cloud with GIS Esri Maritime Professional Services GEBCO Science Day Tuesday, October 4, 2011 Managing Bathymetry in the Cloud with GIS Timothy Kearns & Beata Van Esch Overview The challenges of bathymetry in GIS - What

More information

Optical Analysis Overview

Optical Analysis Overview Optical Analysis Overview To analyze seafloor videography collected by the TOAD camera sled deployments, a series of five small circles extending in a straight horizontal line are marked on a video monitor

More information

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation

FROM SEDIMENT INTO SEDIMENTARY ROCK. Objectives. Sediments and Sedimentation FROM SEDIMENT INTO SEDIMENTARY ROCK Objectives Identify three types of sediments. Explain where and how chemical and biogenic sediments form. Explain three processes that lead to the lithification of sediments.

More information

Aquaculture Monitoring Standard

Aquaculture Monitoring Standard Aquaculture Monitoring Standard Fisheries and Oceans Canada Date modified: 2015-07-22 Table of Contents Introduction 3 Definitions 3 I. Survey for Baseline Information [AAR section 8] 4 Predicted Contours

More information

The concepts developed in this standard include the following: Oceans cover about 70% of the surface of the Earth.

The concepts developed in this standard include the following: Oceans cover about 70% of the surface of the Earth. Name Date Grade 5 SOL 5.6 Review Oceans Made by SOLpass - www.solpass.org solpass100@comcast.net Reproduction is permitted for SOLpass subscribers only. The concepts developed in this standard include

More information

National Oceanography Centre, Southampton. Research & Consultancy Report No. 18

National Oceanography Centre, Southampton. Research & Consultancy Report No. 18 National Oceanography Centre, Southampton Research & Consultancy Report No. 18 An Appraisal of the Surface Geology and Sedimentary Processes within SEA7, the UK Continental Shelf Colin L Jacobs 2006 National

More information

Landforms form an integral part

Landforms form an integral part Landform classification using GIS by Karsten Drescher, Terralogix Consulting, and Willem de Frey, Ekoinfo Refining existing landform classifications using ESRI s model builder. Landforms form an integral

More information

PRESS KIT PL 553 KVITVOLA. Exploration well 34/7 36 S

PRESS KIT PL 553 KVITVOLA. Exploration well 34/7 36 S PRESS KIT PL 553 KVITVOLA Exploration well 34/7 36 S PAGE : 2 of 8 TABLE OF CONTENTS 1 INTRODUCTION... 3 1.1 PURPOSE OF DOCUMENT... 3 1.2 DET NORSKE OLJESELSKAP... 3 2 LICENSE PL 553 KVITVOLA, EXPLORATION

More information

Chapter 5 - Sediments

Chapter 5 - Sediments Chapter 5 - Sediments Distribution of sediments on the sea floor Seabed Resources Study of Sediments is important to oceanography because: 1. Sediments and volcanism are the most important agents of physical

More information

(1) define the objectives and intended use of the maps and spatial data and

(1) define the objectives and intended use of the maps and spatial data and Mapping coastal seabed habitats in Tasmania: development and integration of remote sensing techniques within a hierarchical framework Alan Jordan Vanessa Halley Miles Lawler Richard Mount Project Planning

More information

FDOU Project 26B Task 4 Our Florida Reefs Community Working Group Scenario Planning Results

FDOU Project 26B Task 4 Our Florida Reefs Community Working Group Scenario Planning Results FDOU Project 26B Task 4 Our Florida Reefs Community Working Group Scenario Planning Results Florida Department of Environmental Protection Coral Reef Conservation Program Project 26B FDOU Project 26B Task

More information

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2009 2010 2011 2012 2013 Year

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2009 2010 2011 2012 2013 Year Figures Wave Height (ft) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2009 2010 2011 2012 2013 Year Figure 1. Annual mean wave height (feet) at the Massachusetts Bay A buoy. The red line is the 2001-2009

More information

The Arctic-2010 cruise: bathymetric survey for delineation of the extended continental shelf of the Russian Federation in the Arctic

The Arctic-2010 cruise: bathymetric survey for delineation of the extended continental shelf of the Russian Federation in the Arctic The Arctic-2010 cruise: bathymetric survey for delineation of the extended continental shelf of the Russian Federation in the Arctic Sergey Alekseev 1, Ivan Glumov 2, Andrey Morozov 3, Konstantin Stavrov

More information

EcoInformatics International Inc.

EcoInformatics International Inc. 1 von 10 03.08.2010 14:25 EcoInformatics International Inc. Home Services - solutions Projects Concepts Tools Links Contact EXPLORING BEAVER HABITAT AND DISTRIBUTION WITH GOOGLE EARTH: THE LONGEST BEAVER

More information

Sedimentary Rocks Practice Questions and Answers Revised September 2007

Sedimentary Rocks Practice Questions and Answers Revised September 2007 Sedimentary Rocks Practice Questions and Answers Revised September 2007 1. Clastic sedimentary rocks are composed of and derived from pre-existing material. 2. What is physical weathering? 3. What is chemical

More information

DEEP-WATER REEFS OFF THE SOUTHEASTERN U.S.: RECENT DISCOVERIES AND RESEARCH

DEEP-WATER REEFS OFF THE SOUTHEASTERN U.S.: RECENT DISCOVERIES AND RESEARCH DEEP-WATER REEFS OFF THE SOUTHEASTERN U.S.: RECENT DISCOVERIES AND RESEARCH BY JOHN K. REED AND STEVE W. ROSS SOME OF THE MOST SPECTACULAR CORALS found off the southeastern U.S. were discovered as recently

More information

Applications of Integrated Vessel-based LiDAR, Multibeam Bathymetry, and Geophysical Surveys for Geohazard Assessments and Site Characterization

Applications of Integrated Vessel-based LiDAR, Multibeam Bathymetry, and Geophysical Surveys for Geohazard Assessments and Site Characterization Applications of Integrated Vessel-based LiDAR, Multibeam Bathymetry, and Geophysical Surveys for Geohazard Assessments and Site Characterization James Fisher Engineering Geologist Todd Mitchell Survey

More information

DELPH v3.0. seabed mapping software suite

DELPH v3.0. seabed mapping software suite DELPH v3.0 seabed mapping software suite DELPH seabed mapping software suite DELPH SEISMIC, DELPH SONAR and DELPH MAG are complete software packages with dedicated acquisition, processing and interpretation

More information

OCEANOGRAPHY Vol.II Morphology of Ocean Floor and Plate Tectonics - Chengsung Wang MORPHOLOGY OF OCEAN FLOOR AND PLATE TECTONICS

OCEANOGRAPHY Vol.II Morphology of Ocean Floor and Plate Tectonics - Chengsung Wang MORPHOLOGY OF OCEAN FLOOR AND PLATE TECTONICS MORPHOLOGY OF OCEAN FLOOR AND PLATE TECTONICS Chengsung Wang National Taiwan Ocean University, Keelung 202, Taiwan, China Keywords: Morphology of sea floor, continental margins, mid-ocean ridges, deep-sea

More information

Survey Sensors Hydrofest 2014. Ross Leitch Project Surveyor

Survey Sensors Hydrofest 2014. Ross Leitch Project Surveyor Survey Sensors Hydrofest 2014 Ross Leitch Project Surveyor Satellite Positioning Only provides position of antenna Acoustic Positioning Only provides position of transponder relative to transceiver How

More information

Last Time. Sedimentary Facies. Facies Modeling. Walther s Law. Overall beach dynamics. MAS 603: Geological Oceanography

Last Time. Sedimentary Facies. Facies Modeling. Walther s Law. Overall beach dynamics. MAS 603: Geological Oceanography UNIVERSITY OF SOUTH ALABAMA Last Time MAS 603: Geological Oceanography Lecture 13: Sedimentary Facies Facies versus depositional environments Walther s Law Beaches Sedimentary Facies Facies Modeling There

More information

Lesson 13: Plate Tectonics I

Lesson 13: Plate Tectonics I Standards Addressed Lesson 13: Plate Tectonics I Overview Lesson 13 introduces students to geological oceanography by presenting the basic structure of the Earth and the properties of Earth s primary layers.

More information

Approaches to biogeographic classification of the world s oceans. Marjo Vierros United Nations University Institute of Advanced Studies

Approaches to biogeographic classification of the world s oceans. Marjo Vierros United Nations University Institute of Advanced Studies Approaches to biogeographic classification of the world s oceans Marjo Vierros United Nations University Institute of Advanced Studies This presentation will cover International policy developments of

More information

Geologic History Review

Geologic History Review 1. The climate that existed in an area during the early Paleozoic Era can best be determined by studying (1) the present climate of the area (2) recorded climate data of the area since 1700 (3) present

More information

Search for Containers of Radioactive Waste on the Sea Floor Herman A. Karl

Search for Containers of Radioactive Waste on the Sea Floor Herman A. Karl Search for Containers of Radioactive Waste on the Sea Floor Herman A. Karl Summary and Introduction Between 1946 and 1970, approximately 47,800 large containers of low-level radioactive waste were dumped

More information

Igneous rocks formed when hot molten material (magma) cools and hardens (crystallizes).

Igneous rocks formed when hot molten material (magma) cools and hardens (crystallizes). Objectives You will learn about how the land of North Dakota was formed. Introduction North Dakota is a wonderful place to live. Have you ever though about how it was formed? To answer that question, you

More information

Step 2: Learn where the nearest divergent boundaries are located.

Step 2: Learn where the nearest divergent boundaries are located. What happens when plates diverge? Plates spread apart, or diverge, from each other at divergent boundaries. At these boundaries new ocean crust is added to the Earth s surface and ocean basins are created.

More information

COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA

COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA COASTAL DAMAGE INSPECTION SOUTHWEST VITI LEVU, FIJI AFTER CYCLONE SINA Brendan J. Holden SOPAC Technical Secretariat July 1992 SOPAC Technical Report 148 Prepared for: South Pacific Applied Geoscience

More information

Ocean Engineering, Surveying and Mapping Services

Ocean Engineering, Surveying and Mapping Services Ocean Engineering, Surveying and Mapping Services FUGRO PELAGOS, INC. Fugro collects and interprets data related to the earth s surface and the soils and rocks beneath. It provides advice based on the

More information

TECHNIQUES FOR SPATIAL ANALYSIS AND VISUALIZATION OF BENTHIC MAPPING DATA

TECHNIQUES FOR SPATIAL ANALYSIS AND VISUALIZATION OF BENTHIC MAPPING DATA TECHNIQUES FOR SPATIAL ANALYSIS AND VISUALIZATION OF BENTHIC MAPPING DATA FINAL REPORT April 2003 SAIC Report No. 623 Prepared for: NOAA Coastal Services Center 2234 South Hobson Avenue Charleston SC 29405-2413

More information

Principles and Practices of Data Integration

Principles and Practices of Data Integration Data Integration Data integration is the process of combining data of different themes, content, scale or spatial extent, projections, acquisition methods, formats, schema, or even levels of uncertainty,

More information

San Francisco Bay Margin Conservation Decision Support System (DSS)

San Francisco Bay Margin Conservation Decision Support System (DSS) San Francisco Bay Margin Conservation Decision Support System (DSS) Presented by Brian Fulfrost1, MS David Thomson2, MS 1 Brian Fulfrost and Associates 2 San Francisco Bay Bird Observatory Transitional

More information

Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf

Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf Broadband seismic to support hydrocarbon exploration on the UK Continental Shelf Gregor Duval 1 1 CGGVeritas Services UK Ltd, Crompton Way, Manor Royal Estate, Crawley, RH10 9QN, UK Variable-depth streamer

More information

Chatham Rock Phosphate Marine Consent Application. P Kennedy - Environmental Impact Assessment Evidence Summary

Chatham Rock Phosphate Marine Consent Application. P Kennedy - Environmental Impact Assessment Evidence Summary Chatham Rock Phosphate Marine Consent Application P Kennedy - Environmental Impact Assessment Evidence Summary My evidence and this summary cover the following matters: Seabed and sediment Discharge and

More information

Havforskningsinstituttet

Havforskningsinstituttet to conduct Marine Scientific Research Versjon: 1.02 Opprettet: 11.12.2013 Skrevet av: BTC Godkjent av: KRR Gjelder fra: 11.12.2013 Standard Sidenr: 1 av 6 Application for Consent to conduct Marine Scientific

More information

INTERPRETATION ADDENDUM CANADIAN MINING COMPANY INC. SUITE 2300-1066 WEST HASTINGS STREET VANCOUVER, BC V6E 3X2 3D INDUCED POLARIZATION

INTERPRETATION ADDENDUM CANADIAN MINING COMPANY INC. SUITE 2300-1066 WEST HASTINGS STREET VANCOUVER, BC V6E 3X2 3D INDUCED POLARIZATION INTERPRETATION ADDENDUM FOR CANADIAN MINING COMPANY INC. SUITE 2300-1066 WEST HASTINGS STREET VANCOUVER, BC V6E 3X2 3D INDUCED POLARIZATION ON THE SAN BERNARDO PROJECT EL GOCHICO GRID Approximate Location:

More information

Managing bathymetric data in a hydrographic survey company and making the data accessible to clients

Managing bathymetric data in a hydrographic survey company and making the data accessible to clients Managing bathymetric data in a hydrographic survey company and making the data accessible to clients Duncan Mallace 1 Tim Kearns 2 1NetSurvey Limited, 2A Banbury Office Village, Noral Way, Banbury, OX16

More information

THE FISHERIES REQUIREMENTS FOR AREA IN RELATION TO SEISMIC ACTIVITIES THE FISHERIES

THE FISHERIES REQUIREMENTS FOR AREA IN RELATION TO SEISMIC ACTIVITIES THE FISHERIES THE FISHERIES REQUIREMENTS FOR AREA IN RELATION TO SEISMIC ACTIVITIES THE FISHERIES The fish stocks in the Norwegian sector can be divided into two separate categories: The pelagic species comprise herring,

More information

It also covers the following optional activities:

It also covers the following optional activities: 2 PROJECT DESCRIPTION UPDATE 2.1 INTRODUCTION The Original EMPr evaluated the potential impacts of 2D seismic surveys in the Exploration Area. Two seismic surveys were subsequently carried out: one in

More information

Historic Land-use Assessment. Data in GIS

Historic Land-use Assessment. Data in GIS Historic Land-use Assessment Data in GIS Copyright Unless otherwise specified, the contents of this document are Crown Copyright 2013. You may re-use this information (excluding logos) free of charge in

More information

A New Method of Chart Validation & Wreck/Contact database creation using 3D visualisation and Image Draping techniques

A New Method of Chart Validation & Wreck/Contact database creation using 3D visualisation and Image Draping techniques A New Method of Chart Validation & Wreck/Contact database creation using 3D visualisation and Image Draping techniques Duncan Mallace 1 Ian Davies 2 1 NetSurvey Limited, Oathill Farm, Cropredy, Banbury,

More information

The Geology of the Marginal Way, Ogunquit, Maine

The Geology of the Marginal Way, Ogunquit, Maine Geologic Site of the Month February, 2002 The Geology of the Marginal Way, Ogunquit, Maine 43 14 23.88 N, 70 35 18.36 W Text by Arthur M. Hussey II, Bowdoin College and Robert G. Marvinney,, Department

More information

SURVEY RESULTS OVERVIEW. Fergal McGrath INFOMAR Team Leader Marine Institute

SURVEY RESULTS OVERVIEW. Fergal McGrath INFOMAR Team Leader Marine Institute SURVEY RESULTS OVERVIEW Fergal McGrath INFOMAR Team Leader Marine Institute PROJECT STRUCTURE INTERREG IVA 3.2Million. MF: NERC, NLB, DOENI, DOEHLG START DATE 01/01/2011 (3 Years) PROJECT OBJECTIVES Hydrographic

More information

MPA Baseline Program. Annual Progress Report. North Coast Region

MPA Baseline Program. Annual Progress Report. North Coast Region MPA Baseline Program Annual Progress Report Principal Investigators - please use this form to submit your MPA Baseline Program project annual report, including an update on activities completed over the

More information

ANATOMY OF A MUDSLIDE AND DAMAGE CAUSED BY HURRICANE IVAN

ANATOMY OF A MUDSLIDE AND DAMAGE CAUSED BY HURRICANE IVAN ANATOMY OF A MUDSLIDE AND DAMAGE CAUSED BY HURRICANE IVAN by Jim Hooper, Fugro-McClelland Marine Geosciences Presented at the Houston Marine Insurance Seminar Westin Galeria Hotel, Houston Texas September

More information

Shoreline Assessment Job Aid National Oceanic and Atmospheric Administration NOAA Ocean Service Office of Response and Restoration Emergency Response

Shoreline Assessment Job Aid National Oceanic and Atmospheric Administration NOAA Ocean Service Office of Response and Restoration Emergency Response Shoreline Assessment Job Aid National Oceanic and Atmospheric Administration NOAA Ocean Service Office of Response and Restoration Emergency Response Division This job aid was produced and published by

More information

Proven expertise and total reliability to support globally recognised oil and gas clients

Proven expertise and total reliability to support globally recognised oil and gas clients Oil & Gas Services B ibby HydroMap works closely with clients from the oil and gas industry to provide a variety of services relevant to all construction and monitoring phases. Our flexiblity and range

More information

TECTONICS ASSESSMENT

TECTONICS ASSESSMENT Tectonics Assessment / 1 TECTONICS ASSESSMENT 1. Movement along plate boundaries produces A. tides. B. fronts. C. hurricanes. D. earthquakes. 2. Which of the following is TRUE about the movement of continents?

More information

New Technologies and Airborne LiDAR Bathymetry survey Techniques in European Environmental Coastal Mapping Projects

New Technologies and Airborne LiDAR Bathymetry survey Techniques in European Environmental Coastal Mapping Projects New Technologies and Airborne LiDAR Bathymetry survey Techniques in European Environmental Coastal Mapping Projects Nigel Townsend, Fugro LADS Corporation SSSI, Spatial Information Day 03 August 2012 Adelaide,

More information

SAFARI An outcrop analogue database for reservoir modelling

SAFARI An outcrop analogue database for reservoir modelling SAFARI An outcrop analogue database for reservoir modelling Nicole Richter 1 John Howell 1,3, Kevin Keogh 2, Simon Buckley 1 and Kjell-Sigve Lervik 4 1 Centre for Integrated Petroleum Research (CIPR),

More information

Minnesota Department of Natural Resources \mn_dnr \mn_dnr\spatial \mn_dnr\tabular \mn_dnr\metadata

Minnesota Department of Natural Resources \mn_dnr \mn_dnr\spatial \mn_dnr\tabular \mn_dnr\metadata INDEX OF GIS SPATIAL DATA, TABULAR DATA, AND METADATA ASSOCIATED WITH REPORT 380, AGGREGATE RESOURCE POTENTIAL PARTS OF NORTHERN ST. LOUIS AND LAKE COUNTIES, MN. Project of the Minnesota Department of

More information

Regulation concerning the prevention of transfer of alien organisms via ballast water and sediments from ships (the Ballast Water Regulation)

Regulation concerning the prevention of transfer of alien organisms via ballast water and sediments from ships (the Ballast Water Regulation) Regulation concerning the prevention of transfer of alien organisms via ballast water and sediments from ships (the Ballast Water Regulation) Laid down by the Ministry of the Environment on 7 July 2009

More information

Plate Tectonics: Ridges, Transform Faults and Subduction Zones

Plate Tectonics: Ridges, Transform Faults and Subduction Zones Plate Tectonics: Ridges, Transform Faults and Subduction Zones Goals of this exercise: 1. review the major physiographic features of the ocean basins 2. investigate the creation of oceanic crust at mid-ocean

More information

MEMORANDUM. Further discussion regarding the Community s solid waste facility is described further in this memorandum.

MEMORANDUM. Further discussion regarding the Community s solid waste facility is described further in this memorandum. MEMORANDUM File: Sanikiluaq Improvement of the Existing Wastewater Treatment Facility To: Government of Nunavut Department of Community and Government Services Attention: Mr. Grigor Hope,, Project Officer

More information

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B?

WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST. Which graph best shows the relative stream velocities across the stream from A to B? NAME DATE WEATHERING, EROSION, AND DEPOSITION PRACTICE TEST 1. The diagram below shows a meandering stream. Measurements of stream velocity were taken along straight line AB. Which graph best shows the

More information

Plotting Earthquake Epicenters an activity for seismic discovery

Plotting Earthquake Epicenters an activity for seismic discovery Plotting Earthquake Epicenters an activity for seismic discovery Tammy K Bravo Anne M Ortiz Plotting Activity adapted from: Larry Braile and Sheryl Braile Department of Earth and Atmospheric Sciences Purdue

More information

HYDROGRAPHIC & GEOPHYSICAL SURVEYS ON A REEF SITE

HYDROGRAPHIC & GEOPHYSICAL SURVEYS ON A REEF SITE HYDROGRAPHIC & GEOPHYSICAL SURVEYS ON A REEF SITE Planning a Kelp Mitigation Artificial Reef Offshore of San Clemente, California Neil Marshall & Tim Norall EcoSystems Management Associates, Inc. Robert

More information

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10

WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 WILLOCHRA BASIN GROUNDWATER STATUS REPORT 2009-10 SUMMARY 2009-10 The Willochra Basin is situated in the southern Flinders Ranges in the Mid-North of South Australia, approximately 50 km east of Port Augusta

More information

A METHOD FOR COMPARING BATHYMETRIC SURVEY DATA TO DETERMINE CHANGES IN SEDIMENT ELEVATION

A METHOD FOR COMPARING BATHYMETRIC SURVEY DATA TO DETERMINE CHANGES IN SEDIMENT ELEVATION page 3 A METHOD FOR COMPARING BATHYMETRIC SURVEY DATA TO DETERMINE CHANGES IN SEDIMENT ELEVATION J Herzog, Floyd Snider, Seattle, USA and A S Bradshaw, Department of Ocean Engineering, University of Rhode

More information

Satellite Derived Bathymetry

Satellite Derived Bathymetry 11 th CSPWG MEETING 28 April, 2015 CSPCWG10-08.7A Submitted by: Executive Summary: Related Documents: Related Projects: Paper for Consideration by CSPCWG Satellite Derived Bathymetry UK CSPCWG is invited

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

1. The diagram below shows a cross section of sedimentary rock layers.

1. The diagram below shows a cross section of sedimentary rock layers. 1. The diagram below shows a cross section of sedimentary rock layers. Which statement about the deposition of the sediments best explains why these layers have the curved shape shown? 1) Sediments were

More information

UiT-NPI: DOKIPY meta data elements

UiT-NPI: DOKIPY meta data elements UiT-NPI: DOKIPY meta data elements Data set title: JM07 - WP - 183 MC Education/Outreach > Exhibit Materials > Science Center Exhibits Multi core JM07 - WP - 183 MC (two sections (MC A, MC B)), (78 13.837'

More information

Recent ostracods from the Azores archipelago

Recent ostracods from the Azores archipelago Joannea Geol. Paläont. 11: 132-136 (2011) Recent ostracods from the Azores archipelago Ricardo P. MEIRELES, Antonio FRIAS MARTINS & Sérgio ÁVILA The Azores is an archipelago in the Atlantic Ocean between

More information

ICES WGMHM REPORT 2014. Report of the Working Group on Marine Habitat Mapping (WGMHM) 19-23 May 2014. San Sebastian, Spain

ICES WGMHM REPORT 2014. Report of the Working Group on Marine Habitat Mapping (WGMHM) 19-23 May 2014. San Sebastian, Spain ICES WGMHM REPORT 2014 SCICOM STEERING GROUP ON SUSTAINABLE USE OF ECOSYSTEMS ICES CM 2014/SSGSUE:07 REF. SCICOM, ACOM Report of the Working Group on Marine Habitat Mapping (WGMHM) 19-23 May 2014 San Sebastian,

More information

Why Submarine Cables?

Why Submarine Cables? Nalaka Siriwardena Engineer/SEA-ME-WE 4 Project Engineer/Projects Why Submarine Cables? Cost effective on large routes High bandwidth due to the evolution of technology such as DWDM High Quality with low

More information

Establishing large-scale trans-boundaries MPA networks: the OSPAR example in North-East Atlantic

Establishing large-scale trans-boundaries MPA networks: the OSPAR example in North-East Atlantic Establishing large-scale trans-boundaries MPA networks: the OSPAR example in North-East Atlantic Introduction A pledge to establish a representative network of marine and coastal protected areas by 2012

More information

Norwegian Hydrographic Service. and. [Contractor] APPENDIX B. Technical Specifications. MAREANO Programme. [Date]

Norwegian Hydrographic Service. and. [Contractor] APPENDIX B. Technical Specifications. MAREANO Programme. [Date] Norwegian Hydrographic Service and [Contractor] APPENDIX B Technical Specifications MAREANO Programme [Date] Page 1 of 17 Technical Specifications Table of content: 1 Overview... 3 2 Terms and Definitions...

More information

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia.

7) A clastic sedimentary rock composed of rounded to subrounded gravel is called a A) coal. B) shale. C) breccia. Please read chapters 10 and 5 CHAPTER 5 Sedimentary Rocks 1) Sedimentary rocks A) form by compaction and cementation of loose sediment. B) are widespread on the continents and ocean floor. C) are common

More information

Reef Explorer User Guide

Reef Explorer User Guide Reef Explorer User Guide Contents USER INTERFACE...2 DATA CONTENT...3 BASEMAPS...4 ESRI BASEMAPS...4 National Geographic World Map...4 Light Gray Canvas Map...4 Ocean Basemap...4 World Terrain Base...4

More information

Milestone Report CG1-03 for the Coastal Geomorphology and Classification Subproject. Sydney Harbour Sediment Sampling Results

Milestone Report CG1-03 for the Coastal Geomorphology and Classification Subproject. Sydney Harbour Sediment Sampling Results Cooperative Research Centre for Coastal Zone, Estuary and Waterway Management (Coastal CRC) - Coastal Water Habitat Mapping Project Milestone Report CG1-03 for the Coastal Geomorphology and Classification

More information

5th International Symposium on Ecohydraulics 2004 Aquatic Habitats: Analysis & Restoration th September, Madrid, Spain

5th International Symposium on Ecohydraulics 2004 Aquatic Habitats: Analysis & Restoration th September, Madrid, Spain Aquatic Habitat Monitoring and Mapping: Digital Hydroacoustics as a Paramount Tool for Assessing Fish, Plankton, Submersed Aquatic Vegetation, and Classification of Bottom Substrata Patrick Schneider,

More information

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate

Rocks & Minerals. 10. Which rock type is most likely to be monomineralic? 1) rock salt 3) basalt 2) rhyolite 4) conglomerate 1. Of the Earth's more than 2,000 identified minerals, only a small number are commonly found in rocks. This fact indicates that most 1) minerals weather before they can be identified 2) minerals have

More information

Diver Impacts on coral reefs at Kealakekua Bay, Hawai i

Diver Impacts on coral reefs at Kealakekua Bay, Hawai i Diver Impacts on coral reefs at Kealakekua Bay, Hawai i by Brian N. Tissot, Ph.D. Program in Environmental Science and Regional Planning Washington State University Vancouver, WA 98686 & Leon E. Hallacher,

More information

Sedimentary Rocks, Depositional Environments and Stratigraphy

Sedimentary Rocks, Depositional Environments and Stratigraphy Sedimentary Rocks, Depositional Environments and Stratigraphy The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks (detrital or clastic) Chemical precipitates Organic

More information

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS STATEMENT OF QUALIFICATIONS SeaSpatial Consulting 849 Almar Ave., Ste. C-151 Santa Cruz, California 95060 Phone: +1 831 515 8188 info@seaspatial.com Company Profile SeaSpatial Consulting (SeaSpatial) was

More information

Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map

Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map Remote Sensing, GPS and GIS Technique to Produce a Bathymetric Map Mark Schnur EES 5053 Remote Sensing Fall 2007 University of Texas at San Antonio, Department of Earth and Environmental Science, San Antonio,

More information

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological

More information

How To Create A 3D Model Of The Phanerozoic Succession In Southern Manitoba

How To Create A 3D Model Of The Phanerozoic Succession In Southern Manitoba 3D GEOLOGICAL MAPPING IN MANITOBA MOVING FORWARD Greg Keller (greg.keller@gov.mb.ca), Gaywood Matile, Manitoba Geological Survey (RET), Canada Harvey Thorleifson, Minnesota Geological Survey, United States

More information

SOUTH GEORGIA AND SOUTH SANDWICH ISLANDS MARINE PROTECTED AREAS: EXISTING PROTECTION AND PROPOSALS FOR FURTHER PROTECTION

SOUTH GEORGIA AND SOUTH SANDWICH ISLANDS MARINE PROTECTED AREAS: EXISTING PROTECTION AND PROPOSALS FOR FURTHER PROTECTION SOUTH GEORGIA AND SOUTH SANDWICH ISLANDS MARINE PROTECTED AREAS: EXISTING PROTECTION AND PROPOSALS FOR FURTHER PROTECTION CONSULTATION DOCUMENT OCTOBER 2012 1 1. Background 1.1 What is a marine protected

More information

CPT interpretation in marine soils less than 5m depth examples from the North Sea

CPT interpretation in marine soils less than 5m depth examples from the North Sea CPT interpretation in marine soils less than 5m depth examples from the North Sea R. Mitchell SEtech (Geotechnical Engineers) Limited, Great Yarmouth, England S. Wootton & R. Comrie SEtech (Geotechnical

More information

Chapter 7. Aggregates evaluation

Chapter 7. Aggregates evaluation Chapter 7. Aggregates evaluation 7.1. Introduction As already discussed in the previous chapters, the offshore deposits of sand and gravel in the Faial shelf appear to result essentially from marine erosion

More information

Would You Like a Sample?

Would You Like a Sample? Arctic Ocean Exploration Would You Like a Sample? FOCUS Submarine Brine channels GRADE LEVEL 7-8 FOCUS QUESTION How well do biological samples represent the actual biological communities from which they

More information

Harmonizing Survey Deliverables Emerging Standards and Smart Data Exchange

Harmonizing Survey Deliverables Emerging Standards and Smart Data Exchange Harmonizing Survey Deliverables Emerging Standards and Smart Data Exchange Andy Hoggarth and Karen Cove, CARIS, Fredericton, Canada Introduction When a survey company plans a project the deliverables are

More information

MULTIBEAM COURSE CO-HOSTED BY THE NORWEGIAN HYDROGRAPHIC SERVICE

MULTIBEAM COURSE CO-HOSTED BY THE NORWEGIAN HYDROGRAPHIC SERVICE IHB File No. TA-6-1 CIRCULAR LETTER 87/2008 07 November 2008 MULTIBEAM COURSE CO-HOSTED BY THE NORWEGIAN HYDROGRAPHIC SERVICE Dear Hydrographer, 1 The IHB is pleased to inform you that the Norwegian Hydrographic

More information

SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN

SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN SITE INVESTIGATIONS OF THE BEACH EROSION PROBLEM AT MAHO BEACH, ST. MAARTEN Performed February 2003 Performed by: Dr. Lee E. Harris, Ph.D., P.E. Associate Professor of Ocean Engineering & Oceanography

More information