Modular microfluidics platform for POC system prototyping and cell culturing Martin Dufva DTU Nanotech Technical University of Denmark martin.dufva@nanotech.dtu.dk
Do you have this in your lab? 3
Inspirations for platform design Standardized interface Modular Highly integrated 4
PoC prototyping Materials Ability to use materials similar to those in final PoC device Performance Ability to drive 1 (simulating final PoC device) or up to 32 parallel assays (used in assay development) Usability Systems should be compatible with natural workflows Efficacy Minimize system/application specific development 5
Connect hard chips to microfluidic ribbons Si/polymer hybrids 6 Silicon Polymer
Micropump performance Channel-to-channel (% CV): 6% Durability: >33 ml per channel Two-directional A few nl-80 microl/min Pulsating flow No practical consequence for mixing and liquid switching operations on chip as compared with syringe pumps. 1SKAFTE-PEDERSEN, APPLICATIONS 7 P.*, SABOURIN, D.*, ET AL., MULTI-CHANNEL PERISTALTIC FEATURING MONOLITHIC PDMS INLAY, LAB CHIP, VOL. 9, 2009. PUMP FOR MICROFLUIDIC
Valve 8
Valve in action
Reagent vials integration 10
Compatible with work flow and equipment 11
Measurements of dopamine release in living neurones using a highly integrated system 400 350 300 ) 250 A p( t 200 ne rr 150 u C100 PC12 cells 50 0-50 -100 0 Electrochemical sensing integration: Prof Jenny Emneus, DTU Nanotech 12 Clean electrode 20 Time (sec) 40 60
Microarray based genotyping 13
Automated in situ hybridization Controller HistoFlex Tubing Connector Merging Chip Valve Motor Micro pump Waste Vial Rack Motor 10 cm Together with Kim Holmstrøm, Bioneer A/S 14 7-6-2011
Online monitoring of pesticides Measure pesticides using an immunoassay with electrochemical detection Small enough to be put into a well (for onsite simulation) Responsible: Associate Professor Mogens Havsteen DTU Nanotech 15
System stress test (cell culturing) MainSTREAM 1.0 Setup Time (h) 16 Sites (No.) Chip and Syringe pump Culture Failures Bubbles Days (%) (%) Parts (No.) 7-6-2011
MainSTREAM develoment MainSTREAM 1.0 8-channel pumps PDMS Micromilling Few tubings and rapid assembly MainSTREAM 2.0 16-channel pumps PDMS Free J Casting processes (speed and materials ) Lots of tubings MainSTREAM 3.0 beta 16-channel pumps 16-wells of reagents PDMS Free 3D printing of systems Challenge: reduce tubings 17
Acknowledgements MainSTREAM core components and systems design David Sabourin Peder Skafte-Pedersen Massimo Alberti Alvaro José Conde Maciek Skolimowski Stem cell biology Mette Hemmingsen Philippe Collas (Uni Oslo) Alberto Martínez-Serrano (Uni Madrid) DNA microarrays David Sabourin Sun Yi, Anders Wolff Jesper Pedersen (Uni Copenhagen) In situ hybridization Martin J Søe (Bioneer A/S) Kim Holmstrøm (Bioneer A/S) Electrochemistry on cells Arto Heiskanen, Vasile Coman Jenny Emneus, EU FP7 consortia Tissue slices cultures Arto Heiskanen, Jenny Emneus Indumathi Vedarethinam Merab Kokaia (Lund University) Biocompatibility Joanna Lopacinska Theory and simulation Peder Skafte-Pedersen Søren Vedel, Henrik Bruus Circle to circle amplification Monica Brivio, Annika Alhford Mats Nilsson Water quality control Mogens Havsteen Jacobsen Basil Uthuppu 18 Dufva LOECEC 2011
Literature David Sabourin, Peder Skafte-Pedersen, Martin Jensen Søe, Mette Hemmingsen, Massimo Alberti, Vasile Coman, Jesper Petersen, Jenny Emnéus, Jörg P. Kutter, Detlef Snakenborg, Flemming Jørgensen, Christian Clausen, Kim Holmstrøm, and Martin Dufva. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design. Journal of Laboratory 2012 as doi:10.1177/2211068212461445. Vergani, M, Carminati, M, Ferrari, G, Landini, E, Caviglia, C, Heiskanen, A, Zor, K, Sabourin, D, Dufva, M, Raiteri, R, Emnéus, J and Sampietro, M. Multichannel Bipotentiostat Integrated with a Microfluidic Platform for Electrochemical Real-Time Monitoring of Cell Cultures. 2012 accepted, IEEE Transactions on Biomedical Circuits and Systems journal. Skafte-Pedersen P, Hemmingsen M, Sabourin D, Blaga F, Bruus H, Dufva M. A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomedical microdevices (2012), 14(2), 385-399. Søe M, Sabourin D, Alberti M, Holmstrøm K, Dufva M. HistoFlex a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations. Lab on a chip journal 2011. Sabourin D, Petersen J, Dufva M. 2010. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilisation and bonding activation by brief UV exposure. Biomed Microdevices. 2010 Aug;12(4): 673-81. Sabourin D, Snakenborg, D and Dufva M. 2010, Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices, Microfluidics and Nanofluidics. 9(1):87-93 D Sabourin, M Dufva, T Jensen, J Kutter and D Snakenborg. et al. 2010, One-step fabrication of microfluidic chips with in-plane, adhesive-free interconnections. J. Micromech. Microeng. 20 (3): 037001. Sabourin D, Snakenborg D, Dufva M. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. Journal of micromechanics and microengineering. 2009;19:035021. Skafte-Pedersen, P., D. Sabourin, M. Dufva, and D. Snakenborg. 2009. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay. Lab on a chip 9:3003-3006.. 19
PoC prototyping Usability, interference Instrumentation development Input to hardware development Test bed Input to assay design Assay development POC device User experience Clinical tests 2