Public. Big Data in ASML. Durk van der Ploeg. ASML System Engineering Product Industrialization, October 7, 2014 SASG @ NTS Eindhoven



Similar documents
The Perfect Storm in IT

GMP-Z Annex 15: Kwalificatie en validatie

Examen Software Engineering /09/2011

Assuring the Cloud. Hans Bootsma Deloitte Risk Services +31 (0)

Relationele Databases 2002/2003

ASML reports Q3 results as guided and remains on track for record 2015 sales Two new lithography scanners launched

Specification by Example (methoden, technieken en tools) Remco Snelders Product owner & Business analyst

IJkdijk: June :33:06

Simple. STYLE control system. and quick programming. Machine builders since 1991 For single pieces and small series.

How To Make Money From Semiconductor Production

High tech spare parts management

Cisco Small Business Fast Track Pricing Initiative

Virtualisatie. voor desktop en beginners. Gert Schepens Slides & Notities op gertschepens.be

De rol van requirements bij global development

Inhoudsopgave. Vak: Web Analysis 1 Vak: Web Information 1 Vak: Web Science 2 Vak: Web Society 3 Vak: Web Technology 4

IP-NBM. Copyright Capgemini All Rights Reserved

Engineering Natural Lighting Experiences

Maximizer Synergy. BE Houwaartstraat 200/1 BE 3270 Scherpenheuvel. Tel: Fax:

QAFE. Oracle Gebruikersclub Holland Rokesh Jankie Qualogy. Friday, April 16, 2010

PROFIBUS & PROFINET Nederland PROFIBUS, PROFINET en IO-Link. Ede, 12 november 2009

The state of DIY. Mix Express DIY event Maarssen 14 mei 2014

A Comparative Case Study on the Relationship between EU Unity and its Effectiveness in Multilateral Negotiations

EUV lithography NXE platform performance overview

Making, Moving and Shaking a Community of Young Global Citizens Resultaten Nulmeting GET IT DONE

Research Report. Ingelien Poutsma Marnienke van der Maal Sabina Idler

CMMI version 1.3. How agile is CMMI?

Is het nodig risico s te beheersen op basis van een aanname..

Load Balancing Lync Jaap Wesselius

SharePoint. Microsoft Dynamics. SharePoint

CO-BRANDING RICHTLIJNEN

The information in this report is confidential. So keep this report in a safe place!

OGH: : 11g in de praktijk

Big Data.. Big Business?

Inhoud. Xclusief Verzekeringen 4. Xclusief Auto 7. Xclusief Wonen 8. Xclusief Jacht 11. Xclusief Evenementen 12. Contact 15

Content Management met Office SharePoint. Astrid van Raalte Solution Specialist Business Productivity

IC Rating NPSP Composieten BV. 9 juni 2010 Variopool

Cost overruns in Dutch transportation infrastructure projects

~ We are all goddesses, the only problem is that we forget that when we grow up ~

Netezza S's. Robert Hartevelt 31 October IBM Corporation IBM Corporation IBM Corporation

Self-test SQL Workshop

GMP-Z Hoofdstuk 4 Documentatie. Inleiding

Simulating Variable Message Signs Influencing dynamic route choice in microsimulation

HR Transformation and Future of HR Brussel, 25 april 2013 Material part 1/2

Shopper Marketing Model: case Chocomel Hot. Eric van Blanken 20th October 2009

Storage in Microsoft Azure Wat moet ik daarmee? Bert

12/17/2012. Business Information Systems. Portbase. Critical Factors for ICT Success. Master Business Information Systems (BIS)

The Art of Cooperation!

Streaming Smackdown Ruben Spruijt

Risk-Based Monitoring

Asking what. a person looks like some persons look like

Citrix Access Gateway: Implementing Enterprise Edition Feature 9.0

Maatschappelijke Innovatie

Kantoor of Koffiebar. Alain Swolfs Market Unit Leader Banking & Insurance alain.swolfs@capgemini.com

If farming becomes surviving! Ton Duffhues Specialist Agriculture and society ZLTO Director Atelier Waarden van het Land 4 juni 2014, Wageningen

NL VMUG UserCon March

Vibe OnPrem 3.x Makes the Business work!

VIDEO CREATIVE IN A DIGITAL WORLD Digital analytics afternoon. Hugo.schurink@millwardbrown.com emmy.brand@millwardbrown.com

Language mediation in psychiatry

COOLS COOLS. Cools is nominated for the Brains Award! Coen Danckmer Voordouw

RIPE NCC Update. Axel Pawlik. APNIC 16, 22 August, Seoul.

Magic Software Enterprises. Composite Application Development Suite

Hoorcollege marketing 5 de uitgebreide marketingmix. Sunday, December 9, 12

IT-waardeketen management op basis van eeuwenoude supply chain kennis

Copyright 2015 VMdamentals.com. All rights reserved.

ISACA Roundtable. Cobit and 7 september 2015

Sum of all paintings opening slide Introduce myself. Nlwp, Commons, Wikidata, GLAMwiki, bots, Wiki Loves Monuments, uploads, Based on Wikimania 2015

The Semiconductor Industry: Out in Front, but Lagging Behind Tom Mariano Published September, 2014

What happens when Big Data and Master Data come together?

employager 1.0 design challenge

Handleiding Process Portal

Big data, the future of statistics

Sample test Secretaries/administrative. Secretarial Staff Administrative Staff

Dutch Mortgage Market Pricing On the NMa report. Marco Haan University of Groningen November 18, 2011

Corporate Security & Identity

Organisaties groot en klein, beginnen zich meer en meer te realiseren dat inzicht in (real-time) data helpt

SALES KIT. Richtlijnen verkooptools en accreditatieproces Voyages-sncf.eu. Vertrouwelijk document. Eigendom van de VSC Groep

SmartStruxure Solution. Powered by StruxureWare Building Operation v1.3

Proprietary Kroll Ontrack. Data recovery Data management Electronic Evidence

PlantPAx op weg naar Connected Enterprise.

- Use of vocabulary and grammar in small conversation.

Network Assessment Client Risk Report Demo

Surface Cleanliness Martin Derks

The future of Big Data A United Hitachi View

HIPPO STUDY DG Education And Culture Study On The Cooperation Between HEIs And Public And Private Organisations In Europe. Valorisatie 9/26/2013

Advanced Metering Infrastructure

TELECOM SOCIETY 2 JULI Over de moeizame verhouding tussen de privacywet en big data. En wat we daaraan kunnen doen. prof mr.

Hot Topics Treasury Seminar

Transcription:

Big Data in ASML Durk van der Ploeg ASML System Engineering Product Industrialization, October 7, 2014 SASG @ NTS Eindhoven

Slide 2 ASML Company (BIG) Machine Data in ASML Management and infrastructure for big data Exploit the big data value Conclusion

ASML Company Slide 3

It s hard to imagine a world without chips Slide 4

ASML makes the machines for making those chips Slide 5 Lithography is the critical tool for producing chips All of the world s top chip makers are our customers 2013 sales: 5.2 bln Payroll: ~13,600 FTEs

ASML makes the machines for making those chips Slide 6

Moore s Law means doing more with less Slide 7 Cray 1: The first supercomputer 8 megabytes of memory Weight of an elephant (5.5 tons) 150 kilowatt power supply (enough for 50 households) Freon cooling system $8.8 million ($30 million in today s dollars) 1976

Moore s Law means doing more with less Slide 8 The supercomputer in your pocket: a fraction of the materials, price, power consumption 1976 2014

High R&D spending to sustain technology leadership Slide 9 1980s: 1990s: 2000s: 2010s: PAS 2000/5000 PAS 5500 TWINSCAN NXE EUV R&D: 50 mln R&D: 400 mln R&D: 1500 mln R&D: 2000 mln Increasing Complexity, Number Sensors / Actuators Increasing machine data volumes

The future of lithography: EUV Large vacuum chamber Slide 10 New light source Mirror optics

Maintaining a clean vacuum Slide 11 We need to maintain a clean vacuum, but every time we expose a wafer, the photoresist releases trillions of particles

Mirrors: Polished to sub-nanometer accuracy EUV mirrors are polished to an accuracy of ~50 picometers less than the diameter of a silicon atom. Blown up to the size of the Netherlands, the biggest difference in height would be less than a millimeter. Slide 12

Firing a laser on a tin droplet 40,000 times a second Slide 13 Laser-Produced Plasma (LPP) source CO2 drive laser Tin droplets plasma Collector

(BIG) Machine Data in ASML Slide 14

What is Big Data? Not something ASML is involved with. A general accepted definition: Big Data is typically a large set of unstructured data from various sources, combined and analyzed using mathematics in order to reveal statistical relevant relations. Dear Customer, if you buy this book there is a big change you will like this one as well. Slide 15 Following this definition ASML has no developments ongoing on Big Data. ASML systems generate a lot of data, a subset is centrally stored for analysis and reporting. These data volumes are growing rapidly, posing the next challenge on data management and offering new possibilities That s Big Data for ASML (for now )

Who is using data from ASM s systems for what? Customers Production and Process Control Process Optimization - Yield Control Data of large amount of wafers combined over all equipment in a fab This is real Big Data: customers use it ASML systems deliver data, data contains customer IP, ASML has no access ASML Equipment and Process Maintenance Regular Maintenance and Maintenance Escalations Product Development Business Reporting Focus of this ppt Slide 16

Data Challenge in Maintenance and Product Development Data volumes are rapidly growing: Daily collected data for one EUV source is more then the amount of daily data collected for all NXT systems. Caused by early shipment and few test systems available at ASML Slide 17 <Date> Challenges involved: Managing, accessing and using this data volume Exploit the potential value of this data to improve equipment maintenance

Management and Infrastructure for Big Data volumes Slide 18

Data Management Reference Architecture Most data will never leave the fab due to Customer IP restrictions Litho Engineer Fab CS ABS CS Local Office CS(ABS) ASML Veldhoven Slide 19 OVL/Focus/CDU Fab automation WFA CSA TWINSCAN YieldStar Customer Infrastructure/Bandwidth N per Fab LCP 1/Fab EPS 1/Fab ILS ServiceNet Central Storage All Fabs connected ASML IP CustL IP WFA: Wafer fab Applications CSA: Customer Support Applications LCP: Litho Computing Platform EPS: Equipment Performance Server CS: Customer Support CS-ABS: Application Business Support Customer Data Equipment Data CS Content Data

Data Management Reference Architecture Main business processes in- and outside the customer fab Fab Product Litho CS ABS Optimization CS Engineer Process Optimization OVL/Focus/CDU Fab automation Production Control Process Control WFA CSA Eqp/Proc Maintenance Local Office CS(ABS) ASML Maintenance Escalation Veldhoven Business Reporting Product Development Slide 20 TWINSCAN YieldStar Customer Infrastructure/Bandwidth N per Fab LCP 1/Fab EPS 1/Fab ILS ServiceNet Central Storage All Fabs connected Customer Process ASML Process ASML IP CustL IP WFA: Wafer fab Applications CSA: Customer Support Applications LCP: Litho Computing Platform EPS: Equipment Performance Server CS: Customer Support CS-ABS: Application Business Support Customer Data Equipment Data CS Content Data

ASML Data Classification As base for data management Regular Data for Equipment Maintenance Limited, controlled and structured set of data, for use in FabTeam tools Regular data, available for standard maintenance process Ad-Hoc Data for Maintenance Escalations Unstructured and uncontrolled, variable subset of all available data Ad-hoc data, file-based, required for machine under maintenance, for use by D&E On-Demand Data for Product Development Unstructured and uncontrolled, variable subset all available data Machine can generate too much data to handle, a selection needs to be made On-demand data, file based, required for set of machines for longer period, for use by D&E. Slide 21

Data Infrastructure All available machine data (sensor, actuator, metrology) need to made easily available for DE on-demand usage Slide 22 Internal machine software facilities and external facilities to support this The set of on-demand data is volatile, storage technology needs to support this. Distributed infrastructure to support in- and out-fab data Storage of data at best location. Tools located at data. Tool access via web / network technology Best location depends on data value, transport cost and IP-restrictions Paradigm shift: tools at data iso. data copied towards tools

Data Management Management process to control the size of ad-hoc and on-demand data Slide 23 On-demand data either results in lessons learned by DE, resulting in aggregate regular data (eg. high level KPIs calculated on the machine) or is not generated/collected anymore. On-demand data only available on specific request for limited period which will only be extended of the data is actively used in a DE study and a plan is available for follow-up Ad-hoc data should be collected only once All ad-hoc data requests are handled centrally and only executed if the data is not available yet as regular or on-demand data.

Slide 24 Exploit the big data value Proactive Maintenance

Pro-Active Maintenance Using On-Demand data (big data in the central storage) to construct models to predict equipment failure. Slide 25 Complex models predicting large complicated assembly failure Using various data source and multiple data sets No predictive value for specific machine with sufficient confidence Eg. Dear Customer, We think that one of your machine may fail soon ASML s decentralized machine data architecture and management (data definition / collection / correlation / enrichment / storage and data source knowledge sharing) restricts the possibilities, effectiveness and efficiency of complex pro-active model development. Simple models based on single parameter monitoring Showed to have predictive value with high confidence levels

Lessons learned on complex models No predictive value, difficult and expensive Complex models are complex Requires a integral combination of Statistical modeling expertise ASML technical domain & expert knowledge ASML data source insight and data quality & availability Integrating all this in one team was not successful Mental adjustments required as the data-mind of (external) model experts and physics-mind of ASML experts showed little overlap ASML data source insight, data quality and availability has proven to be the real challenge Slide 26

ASML data source insight, data quality and availability Definition of the events should be stable along the time and unambiguous Data sources are ambiguous and human interpretation and interaction impact the interpretation Slide 27 Required parameters should be stored continuously and with the right detailed level Important parameters are stored only when the control threshold is passed, reducing visibility of condition evolution Historical data horizon should be sufficient and aligned Each database has different historical ranges, the shortest ranges determines the model development and validation horizon Data set should include all data on actions that influence the event being monitored

Conclusion Slide 28

Conclusion New competences in DE needed, data analysts with machine knowledge Comparable with embedded software engineers: computer specialists with machine knowledge Slide 29 Just collecting data does not do the trick New big data volume require new data collection, storage and data access approach: keep data where it is used and keep tools at data Data management process needed to control amount of data Data quality is key Value of real big data infra structure unclear and needs to be evaluated Mindset change required: DE community used to working with files, not with data queries etc..

Big Data Uit Wikipedia, de vrije encyclopedie Men spreekt van big data wanneer men werkt met een of meer datasets die te groot zijn om met reguliere databasemanagementsystemen onderhouden te worden. De definitie van big data is niet altijd duidelijk. Volgens Gartner gaat het in elk geval om drie factoren: de hoeveelheid data, de snelheid waarmee de data binnenkomen en opgevraagd worden, en de diversiteit van de data. Daarnaast speelt ook de mogelijkheid tot statistische analyse een belangrijke rol. Slide 31 Toepassingen[bewerken] De Large Hadron Collider heeft 150 miljoen sensoren, die samen zo'n 40 miljoen metingen per seconde doen. Het verwerken van deze grote hoeveelheid metingen en het trekken van conclusies daaruit vereisen veel rekenkracht. Het Amerikaanse bedrijf Walmart verwerkt meer dan een miljoen transacties per uur, die op een slimme manier in databases opgeslagen moeten worden. Uit deze grote berg gegevens kunnen verbanden tussen verschillende producten gedestilleerd worden (bijvoorbeeld hamburgers en broodjes, maar vaak zijn de verbanden minder voor de hand liggend). Ook kunnen op basis van aankoopgedrag klanten ingedeeld worden op basis van diverse kenmerken. Door geavanceerde statistische analyses uit te voeren kan Walmart niet alleen vrij nauwkeurig inschatten wat het geslacht, inkomen, de sociale klasse en de gezinssituatie van een klant is maar kunnen ook levensgebeurtenissen zoals huwelijk, geboorte, echtscheiding en overlijden met vrij grote precisie gedetecteerd worden aan de hand van veranderingen in aankoopgedrag.