Australian Soil Resources Information System (ASRIS)



Similar documents
How To Understand The Geology Of An Australian Soil

How To Predict Soil Carbon Stock

Multi-scale upscaling approaches of soil properties from soil monitoring data

NRI Soil Monitoring Network

Dyna ISSN: Universidad Nacional de Colombia Colombia

Routine estimation of the Organic Matter content of soils by Loss on Ignition

Ranking de Universidades de Grupo of Eight (Go8)

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

PHOSPHORUS, POTASSIUM, AND MINOR ELEMENT FERTILIZATION

Improving the Thermal Efficiency of Coal-Fired Power Plants: A Data Mining Approach

Avocados Australia, PO Box 8005 Woolloongabba Queensland 4102 Australia

Council of Ambulance Authorities

Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink

INTELIGENCIA DE NEGOCIO CON SQL SERVER

APPENDIX B CHARACTERIZATION OF SOILS AT TEST SITES

5C R I M I N A L J U S T I C E R E S O U R C E S

AUSTRALIA AWARDS CARIBBEAN LIST OF POSSIBLE COURSES

Create Your Own Soil Profile Ac5vity

Ecosystem-land-surface-BL-cloud coupling as climate changes

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

REDUCING THE PAYROLL TAX BURDEN STEVEN MARSHALL MP, STATE LIBERAL LEADER IAIN EVANS MP, SHADOW TREASURER

Nationwide House Energy Rating Scheme (NatHERS)

Water IBITEL CATALOGUE IBITEL WATER

COMMINSURE HOME INSURANCE PREMIUM, EXCESS AND DISCOUNT GUIDE.

( ) = ( ) = {,,, } β ( ), < 1 ( ) + ( ) = ( ) + ( )

PARTICIPATORY ECOLOGICAL RESTORATION IN THE RIO BLANCO WATERSHED: ECOSYSTEM BASED ADAPTATION ACTIONS TO ADDRESS CLIMATE CHANGE IMPACTS IN THE

Black Tern Distribution Modeling

MONITORING ELECTRICITY, WATER, SOLAR AND GAS

Factors Affecting Precipitation of Calcium Carbonate

Online EFFECTIVE AS OF JANUARY 2013

Vip PORCELÁNICO FULL BODY

Name: PLSOIL 105 & 106 First Hour Exam February 27, Part A. Place answers on bubble sheet. 2 pts. each.

Monitoreo de Bases de Datos

Sales Management Main Features

Numerical Weather Prediction Services > Wind Forecast

Climate Change on the Prairie:

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Organizational agility through project portfolio management. Dr Catherine P Killen University of Technology, Sydney (UTS)

The Development of Soil Survey and Soil Mapping in China

Field assessment of avocado rootstock selections for resistance to Phytophthora root rot

NC STATE UNIVERSITY Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids

Propiedades del esquema del Documento XML de envío:

Statistical appendix. A.1 Introduction

Council of Ambulance Authorities

ph is an expression of the concentration of hydrogen ions in solution

The Year of Living Dangerously

PROCEDIMIENTOPARALAGENERACIÓNDEMODELOS3DPARAMÉTRICOSA PARTIRDEMALLASOBTENIDASPORRELEVAMIENTOCONLÁSERESCÁNER

Expert Knowledge. New. ArcGIS 10. Incorporating. fuzzy logic tools. By Gary L. Raines, Don L. Sawatzky, and Graeme F.

Introduction to Imagery and Raster Data in ArcGIS

Resolutions of Remote Sensing

National Environment Protection (Ambient Air Quality) Measure

Lake Monitoring in Wisconsin using Satellite Remote Sensing

Explorando Oportunidades Juntos Juntos

Manejo Basico del Servidor de Aplicaciones WebSphere Application Server 6.0

Guidelines for Designing Web Maps - An Academic Experience

Integrating Airborne Hyperspectral Sensor Data with GIS for Hail Storm Post-Disaster Management.

Piping Plover Distribution Modeling

Chemical Equations and Chemical Reactions. Chapter 8.1

Inovagri: International Workshop on Technology Innovations in Irrigation Theme 2, Round Table 4: Engineering of Land Drainage

A SOIL TESTING SERVICE FOR FARMERS IN THAILAND, USING MOBILE LABORATORIES

Project AGUA Survey Results

Use of numerical weather forecast predictions in soil moisture modelling

WERRIS CREEK COAL PRP U1: MONITORING RESULTS WHEEL GENERATED DUST

HPN Product Tools. Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

A New Extension of the Exponential Distribution

Buses híbridos en SERIE actualizables a 100% eléctricos con propulsión Siemens Presentación Bus HIGER con componentes SIEMENS Cartagena / Barranquilla

Gas emission measurements with a FTIR gas analyzer - verification of the analysis method Kari Pieniniemi 1 * and Ulla Lassi 1, 2

THE KILL DATE AS A MANAGEMENT TOOL TO INCREASE COVER CROPS BENEFITS IN WATER QUALITY & NITROGEN RECYCLING

Soil Test Interpretation Guide

50399AE Diseño de soluciones Business Intelligence con Microsoft SQL Server 2008

2. Molecular stucture/basic

EAST NEW YORK COMMUNITY PLAN ZONING PROPOSAL

Advancing online delivery of Australian soil data and information

Australian Personal Property Securities Reform

Application of Numerical Weather Prediction Models for Drought Monitoring. Gregor Gregorič Jožef Roškar Environmental Agency of Slovenia

Indian Research Journal of Extension Education Special Issue (Volume I), January,

Spanish GCSE Student Guide

Future drivers and trends in dairy and food markets

EE 1130 Freshman Eng. Design for Electrical and Computer Eng.

TERRA TEK LIMITED GUIDE TO SAMPLE HANDLING. Version 1.06

Geoscience for Population Health Risk Assessment

Australian Housing Outlook By Robert Mellor, Managing Director BIS Shrapnel Pty Ltd October 2014

WHAT IS IN FERTILIZER OTHER THAN NUTRIENTS?

Tier-1 and Tier-2A Scenario Parameterisation and Example Calculations 1

NAMS.PLUS Asset Management Tools for Practitioners

How To Know If An Ipod Is Compatible With An Ipo Or Ipo (Sanyo)

Transcription:

Australian Soil Resources Information System (ASRIS)

2001 ASRIS Collated CSIRO and State soils data into a single nation-wide Oracle database Collated digital soil, land systems, and lithology maps Produced models to predict spatial distribution of soil properties (ph, %SOC, total N and P, texture class, % clay ) from point data for 2 layers Binary decision tree (Cubist and C5.0) modelling for most, regression for % N Mapped the model rules

What does this illustrate? Inductive reasoning approach Legacy data: positional accuracy, methods of laboratory analysis How many points do you need to build a model? How can you evaluate model results?

Total 135 000 points

Topsoil ph: 24 319 points Henderson, B.L., Bui, E.N., Moran, C.J., Simon, D.A.P., 2005. Australiawide predictions of soil properties using decision trees. Geoderma 124:383-398.

ph data No. of horizons with laboratory measurement Method code Method description 72152 4A1 ph of 1:5 soil/water suspension 231 4A_C_1 ph of soil - ph of 1:1 soil/water suspension 3664 4A_C_2.5 ph of soil - ph of 1:2.5 soil/water suspension 38268 4B1 ph of 1:5 soil/0.01m calcium chloride extract - direct 3747 4B2 ph of 1:5 soil/0.01m calcium chloride extract - following Method 4A1 505 4B_C_2.5 ph of soil - ph of 1:2.5 Soil/0.1M CaCl2 suspension 892 4C1 ph of 1:5 soil/1m potassium chloride extract - direct 231 4C_C_1 ph of 1:1 soil/1m potassium chloride suspension 284 4E1 ph of hydrogen peroxide extract 237 4G1 Total potential acidity 31599 4_NR ph of soil - Not recorded

Conversion ph CaCl2 2 4 6 8 10 ph CaCl2 4 6 8 10 additive model cubic Ahern et al. (1995): cubic Little (1992): cubic Ahern et al. (1995): linear 2 4 6 8 10 ph water 4 6 8 10 ph water

Topsoil SOC: 11 483 points

SOC: Pooled 11483 analyses by Walkley-Black (6A1), Heanes wet oxidation (6B1), combustion (6B2, 6B3)

Environmental Modelling Cubist to build binary decision trees using environmental predictors 19 climate surfaces (MAT, mean diurnal range, isothermality, temperature seasonality, max T of warmest month, min T coolest month, annual T range, MAP, precipitation of wettest and driest months, precipitation seasonality, annual mean radiation, highest and lowest monthly radiation, radiation seasonality, AMMI, highest and lowest month moisture index, and moisture index seasonality) Landsat MSS (4 bands) Lithology, land use, ASC (all categorical) 9 DEM & terrain attributes (e.g., slope, distances to ridges/rivers, relief )

Climatic variables

Example Rule 1: If ammi <=5542 mmi seasonality > 38200 DEM <= 226 Lith {6,14,19} Then %SOC = 5.7 + 0.006 clim1 + 0.005 clim12 0.001 clim28 0.005 clim5-0.007 clim22

Topsoil organic C

% total N in A-horizon ln (%TN) = -2.6589 + 0.8761 ln (%SOC)

Topsoil ph <3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.5 5.5 6.0 6.0 6.5 6.5 7.0 7.0 7.5 7.5 8.0 > 8.0

Model evaluation statistics Property N Performance on test data set (30% withheld) Model unit (total) R 2 RMSE ave. err rel. err corr. rules ph (topsoil) ph (subsoil) SOC (topsoil) SOC (subsoil) total N (topsoil) total P (topsoil) Cubist 24319 0.67 0.77 0.56 0.51 0.82 27 Cubist 12193 0.54 0.96 0.72 0.59 0.74 27 Cubist log 11483 0.41 0.57 0.40 0.68 0.64 29 Cubist log 5100 0.24 0.77 0.59 0.84 0.50 19 regression log 4746 0.75 0.42 Cubist log 7377 0.62 0.92 0.68 0.54 0.79 18

ph data by State 4 6 8 10 4 6 8 10 NSW QLD SA TAS 1500 1000 500 Count 1500 VIC WA CSIRO 0 1000 500 0 4 6 8 10 4 6 8 10 ph in layer 1

Topsoil ph model fit 4 5 6 7 8 9 4 5 6 7 8 9 NSW QLD SA TAS 8 Observed ph layer 1 8 VIC WA CSIRO 6 4 6 4 4 5 6 7 8 9 Predicted ph layer 1 4 5 6 7 8 9

Topsoil ph model fit (overall)

Spatial structure of residuals NSW QLD SA TAS gamma 0.0 0.2 0.4 0.6 gamma 0.0 0.2 0.4 gamma 0.0 0.4 0.8 1.2 gamma 0.0 0.2 0.4 0.0 0.05 0.15 distance (degrees) 0.0 0.05 0.15 distance (degrees) 0.0 0.05 0.15 distance (degrees) 0.0 0.05 0.15 distance (degrees) VIC WA CSIRO gamma 0.0 0.2 0.4 gamma 0.0 0.10 0.20 gamma 0.0 0.2 0.4 0.0 0.05 0.15 distance (degrees) 0.0 0.05 0.15 distance (degrees) 0.0 0.05 0.15 distance (degrees)

Wynn et al. (2006) sites Auxiliary material from Wynn et al. 2006. Global Biogeochemical Cycles, vol. 20, GB1007

8 7 6 5 4 3 2 2 3 4 5 6 7 8 ph est. in CaCl2 (0-30 cm) near trees in grass ASRIS predicted topsoil ph in CaCl2

14 R 2 bet. ASRIS predicted and %SOC_30_T = 0.85 R 2 bet. ASRIS predicted and %SOC_30_G = 0.78 12 10 %SOC (predicted) 8 6 4 2 0 0 1 2 3 4 5 6 7 %SOC (meas. by Wynn et al. 2006) SOC_30_T SOC_30_G

0.7 R 2 bet. ASRIS predicted and %N_30_T = 0.64 R 2 bet. ASRIS predicted and %N_30_G = 0.67 ASRIS overestimates %N 0.6 0.5 % N (predicted) 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 0.2 0.25 % N meas. by Wynn et al. (2006) %N_30_T %N_30_G

0.45 0.4 abs. error in N = predicted - measured 0.35 0.3 0.25 0.2 0.15 0.1 y = 0.0191e 0.0543x y = 0.0261e 0.0388x 0.05 0 0 10 20 30 40 50 60 C:N (meas. by Wynn et al. 2006) %N_30_T Expon. (%N_30_T) %N_30_G Expon. (%N_30_G)

On a linear scale % SOC 20 18 16 14 12 10 8 6 4 2 C:N ~ 25 C:N ~ 12 0 0 0.2 0.4 0.6 0.8 1 1.2 % N

Summary Testing with withheld data subset is good for development of a parsimonious model but is inadequate for model evaluation Independent ground-truth is necessary for accuracy assessment Cubist SOC model is better than it appears from statistical model testing because the input data contain much noise Cubist algorithm is able to identify valid structure in the data (and generate knowledge)

Vis-NIR análisis para aumentar la base de datos Raphael Viscarra Rossel CSIRO Land and Water

The Australian vis NIR library National soil archive 16,000 Some analytical data WA Agriculture 232 Qld PI & Fisheries 1,578 Other 737 Largely with analytical data NGSA 2,244 0-20 and 50-80 cm no analytical data

Incomplete analytical data Using the spectra for samples with analytical data we can populate our databases with new spectroscopic estimates N = 22000 TOC phw Clay CEC BD Minerals n 8479 16,570 13,499 3530 1232 8

Spectroscopic modelling by DWT-ANN n vis-nir spectra X k Modelling statistics for cross validation and independent test set validation Wavelet coeffs. DWT Daubechies 4 k Soil attribute n train /n test R 2 xval RMSE xval R 2 test RMSE test nrmse test X TOC 5619/ 2809 0.78 0.26 0.76 0.28 0.08 n Select coefficients ph w 11045/ 5523 0.79 0.53 0.77 0.56 0.09 X y Model with ANN Clay 9000/ 4499 CEC 2335/ 1166 BD 823/ 409 0.82 6.3 0.82 7.1 0.08 0.85 0.21 0.83 0.22 0.08 0.69 0.18 0.67 0.21 0.11 nrmse = 1 N N i=1 ( ) ˆ y i y i Viscarra Rossel & Lark 2009 EJSS y max y min

Por ejemplo, los datos 0 20 cm Total 4606 surface (0 20 cm) samples CSIRO s National Soil Archive (NSA) National Geochemical Survey of Australia (NGSA) WA Agriculture Queensland Primary Industries & Fisheries (QPIF) Other sources

Mapas del color de suelos 0 20 cm Simulationes geoestadisticas de R,G,B (i) RGB composite

Distribucion de oxidos de hierro 0 20 cm Simulaciones indicadoras del normalised iron oxide difference index (NIODI) Ix; ( z k )= ( ) < z k 1, if zx 0, otherwise = D 920 D 880 D 880 + D 920 Viscarra Rossel et al. (201x) submitted

Arcilla y ph 0 20 cm

Carbon organico total 0 20 cm

Conclusiones Es posible crear modelos para asignar las propiedades del suelo con los datos en los puntos con variables ambientales utilizando árboles de regresión híbridos o ANN; o con geoestadisticas Análisis de espectros vis-nir engendra datos utiles para aumentar una base de datos medidos en el laboratorio Preparar la base de datos es lo que toma lo mas tiempo!