A New Extension of the Exponential Distribution
|
|
|
- Deborah Davidson
- 10 years ago
- Views:
Transcription
1 Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 25 a 34 A New Extension of the Exponential Distribution Una nueva extensión de la distribución exponencial Yolanda M. Gómez 1,a, Heleno Bolfarine 1,b, Héctor W. Gómez 2,c 1 Instituto de Matematica e Estatística, Universidade de São Paulo, São Paulo, Brazil 2 Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile Abstract The present paper considers an extension of the exponential distribution based on mixtures of positive distributions. We study the main properties of this new distribution, with special emphasis on its moments, moment generator function and some characteristics related to reliability studies. We also discuss parameter estimation considering the maximum likelihood and moments approach. An application reveals that the model proposed can be very useful in fitting real data. A final discussion concludes the paper. Key words: Exponential distribution, Mixtures of distribution, Likelihood. Resumen En el presente paper se considera una extensión de la distribución exponencial basada en mezclas de distribuciones positivas. Estudiamos las principales propiedades de esta nueva distribución, con especial énfasis en sus momentos, función generadora de momentos, y algunas características relacionadas a estudios de confiabilidad. También se analiza la estimación de parámetros a través de los métodos de momentos y de máxima verosimilitud. Una aplicación muestra que el modelo propuesto puede ser muy útil para ajustar datos reales. Una discusión final concluye el artículo. Palabras clave: distribución exponencial, mezcla de distribuciones, verosimilitud. a Professor. [email protected] b Professor. [email protected] c Professor. [email protected] 25
2 26 Yolanda M. Gómez, Heleno Bolfarine & Héctor W. Gómez 1. Introduction In lifetime data analysis it is usually the case that models with monotone risk functions are preferred as is the case of the gamma distribution. For some models there are no closed form risk functions (such as the Gamma model) and numerical integration might be required for its computation. In recent statistical literature modified extensions of the exponential distributions have been proposed to contour such difficulties. For example, Gupta & Kundu (1999) and Gupta & Kundu (2001) introduced an extension of the exponential distribution typically called the generalized exponential (GE) distribution. Therefore, it is said that the random variable X follows the GE distribution if its density function is given by g 1 (x; α, β) = αβe αx (1 e αx ) β 1 where x > 0, α > 0 and β > 0. We use the notation X GE(α, β) for a random variable with such distribution. More recently, Nadarajah & Haghighi (2011) introduced another extension of the exponential model, so that a random variable X follows the Nadarajah and Haghighi s exponential distribution (N HE) if its density function is given by g 2 (x; α, β) = αβ(1 + αx) β 1 e {1 (1+αx)β } where x > 0, α > 0 and β > 0. We use the notation X NHE(α, β). Both distributions have the exponential distribution (E) with scale parameter α, as a special case when β = 1, that is, g 1 (x; α, β = 1) = g 2 (x; α, β = 1) = αe αx where x > 0, α > 0 with the notation X E(α). Other extensions of the exponential model in the survival analysis context are considered in the Marshall & Olkin s (2007) book. The main object of this paper is to present yet another extension for the exponential distribution that can be used as an alternative to the ones mentioned above. We discuss some properties for this new distribution like its moments and moment generating function which can be used for parameter estimation as starting values for computing maximum likelihood estimators. The paper is organized as follows. Section 2 delivers the density and distribution functions, moments, moment generating function, asymmetry and kurtosis coefficients and hazard function. Section 3 is devoted to parameter estimation based on maximum likelihood and moments approach. It is recommended that the moment estimators are used to initialize the maximum likelihood approach. In Section 4 an application to a real data set is presented and comparisons between the proposed model and other extensions of the exponential distribution are reported. The main conclusion is that the new model can perform well in applied situations.
3 A New Extension of the Exponential Distribution Density and Properties A random variable X is distributed according to the extended exponential distribution (EE) with parameters α and β if its density function is given by f(x; α, β) = α2 (1 + βx)e αx α + β (1) where x > 0, α > 0 and β 0. We use the notation X EE(α, β). Figures 1 and 2 depict the behavior of the distribution for some parameter values. Density Figure 1: Plots of the EE(1, 0.8) (solid line), EE(1, 0.5) (dashed line), EE(1, 0.1) (dotted line). x Density Figure 2: Plots of the EE(0.5, 3) (solid line), EE(1, 7) (dashed line), EE(1.5, 10) (dotted line). x
4 28 Yolanda M. Gómez, Heleno Bolfarine & Héctor W. Gómez 2.1. Properties Let X EE(α, β), Y E(α) and Z Gamma(2, α). Then, the distribution function for the random variable X is given by F X (x) = α + β (β + α + αβx)e αx α + β (2) The expectation and variance are given by E(X) = α + 2β α(α + β) V ar(x) = α3 + 5α 2 β + 6αβ 2 + 2β 3 α 5 + 3α 4 β + 3α 3 β 2 + α 2 β 3 The moment generation function can also be obtained in closed form and is given by M X (t) = α2 (α + β t) (α + β)(t α) 2 (3) It also follows that its density can be obtained as a mixture of two positive ones, namely, f X (x; α, β) = α α + β f Y (x; α) + β α + β f Z(x; α) (4) Using the representation as a mixture of two positive densities, we can provide a general representation for the distribution moments, namely, E(X r ) = α α + β E(Y r ) + β α + β E(Zr ) = where Γ( ) is the usual gamma function. rγ(r) α r [α + (1 + r)β], r = 1, 2,..., (5) (1 + β) Using the moments above for the EE model, we can compute asymmetry ( β 1 ) and kurtosis (β 2 ) coefficients, which are given by β1 = 2(α + 2β)3 12β 2 (α + β) (α 2 + 4αβ + 2β 2 ) 3/2 (6) β 2 = 3(α + 2β)2 (3α αβ + 8β 2 ) 72β 2 (α + β) 2 (α 2 + 4αβ + 2β 2 ) 2 (7) Lemma 1. Note that as β 0, then β 1 2 and β 2 9 which correspond to the asymmetry and kurtosis respectively for the exponential model. General coefficients of asymmetry and kurtosis are such that 2 < β 1 2 and 6 < β 2 9, respectively, as shown in Figures 3 and 4.
5 A New Extension of the Exponential Distribution Assymetry Alpha Beta Figure 3: Graphs for asymmetry coefficient for the EE model. 9 8 Kurtosis Alpha Beta Figure 4: Graphs for the kurtosis coefficient for the EE model. The hazard function for the random variable X EE(α, β) is given by h(x) = f(x; α, β) 1 F X (x) = α2 (1 + βx) β + α(1 + βx) i) If β = 0, then h(x) = α, is the hazard function for the exponential model x R. ii) β, h(x) is monotonically increasing with h(0) = iii) β, h(x) α, as x. α iv) h(x) is bounded, that is, 2 α+β < h(x) < α. α2 α+β.
6 30 Yolanda M. Gómez, Heleno Bolfarine & Héctor W. Gómez Hazard Rate Function Figure 5: Plots for the hazard function for α = 1 and β = 0.5 (solid line), β = 1 (dashed line), β = 2 (dotted line). x The Figure 5 illustrates the behavior of the hazard function for some parameter values. 3. Inferential Considerations In this section, we consider inference for the EE using moments and the maximum likelihood approach Method of Moments The moment estimators for the parameters α and β are obtained by solving α + 2β α(α + β) 2α + 6β α 2 (α + β) = x (8) = x 2 From the first equation we obtain the moment estimators for β( β) as a function of the moment estimator for α( α). ( α(1 αx) 1 β = αx 2, α x, 2 ) (9) x using (9) and the second equation for the system given in (8) we obtain the moment estimator for α. α = 2x ± 4x 2 2x 2 x 2 (10) Therefore, α from (10) replacing α in (9) we obtain β. These estimators will be used as initial parts to get the maximum likelihood estimation in the next section.
7 A New Extension of the Exponential Distribution Maximum Likelihood Let x 1, x 2,..., x n a random sample from X EE(α, β), so that we obtain the log-likelihood function l(α, β) = 2n log(α) n log(α + β) α n x i + i=1 n log(1 + βx i ) (11) Differentiating the log-likelihood function with respect to α and β, the following equations follow: l α = 2n α n n α + β x i = 0 (12) l β i=1 i=1 = n n α + β + x i = 0 (13) 1 + βx i i=1 From (12) we obtain β = ( α(1 αx) 1 αx 2, α x, 2 ) x (14) and the maximum likelihood estimator for α is obtained by resolving numerically the following equation n i=1 x i 1 (1 x α)( αx i 1) = ṋ α (15) The estimator α is the solution to the equation (15), and replacing it in (14) we obtain β. This algorithm leads to the maximum likelihood estimators for α and β. 4. Real Data Illustration We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level until all had failed, so we have complete data with the exact times of failure. For previous studies with the data sets see Andrews & Herzberg (1985) and Barlow, Toland & Freeman (1984). These data are: ,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.6751, ,0.7696,0.8375,0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.0596, ,1.1733,1.2570,1.2766,1.2985,1.3211,1.3503,1.3551,1.4595,1.4880,1.5728,1.5733, ,1.7263,1.7460,1.7630,1.7746,1.8275,1.8375,1.8503,1.8808,1.8878,1.8881,1.9316, ,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.2460,2.2878,2.3203,2.3470,2.3513, ,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.9143,4.8073,5.4005, ,5.5295,6.5541,
8 32 Yolanda M. Gómez, Heleno Bolfarine & Héctor W. Gómez Using results from Section 3.1, moment estimators were computed leading to the following values: α = and β = 2.563, which were used as initial estimates for the maximum likelihood approach. Table 1 presents basic descriptive statistics for data set. We use the notation b1 and b 2 to represent sample asymmetry and kurtosis coefficients. Table 1: Descriptive statistics for rupture time. Data set n X S b1 b 2 Kevlar Table 2: Parameter estimates for GE, NHE and EE models for the stress-rupture life data set. Parameter estimates GE NHE EE α β AIC For comparing model fitting, Akaike (1974), namely AIC = 2 ˆl( ) + 2 k where k is the number of parameters in the model under consideration. The AIC specifies that the model that best fits the data is the one with the smallest AIC value. Table 2 shows parameter estimators for distributions GE, NHE and EE using maximum likelihood (MLE) approach and the corresponding Akaike information criterion (AIC). For these data, AIC shows a better fit for the EE model. Figure 6 reveals model fitting for the three models, and Figure 7 compares the distribution functions for the three models with the empirical distribution function. Density Figure 6: Models fitted by the maximum likelihood approach for the stress-rupture data set: EE(ˆα, ˆβ) (solid line), NHE(ˆα, ˆβ) (dashed line) and GE(ˆα, ˆβ) (dotted line) Kevlar
9 A New Extension of the Exponential Distribution Distribution Function Figure 7: Empirical c.d.f. with estimated EE c.d.f. (solid line), estimated NHE c.d.f. (dashed line) and estimated GE c.d.f. (dotted line). kevlar 5. Concluding Remarks This paper introduces a new model positive data. It is shown that the model can be represented as the mixture of two distributions. The scale-exponential distribution can be seen as a particular case of the new model. It is shown that the distribution function, hazard function and moment generating function can be obtained in closed form. Moment estimators are derived and maximum likelihood estimators can be computed using Newton-Raphson type algorithms. The moment estimators can be used as starting values for the maximum likelihood estimators. Asymmetry and kurtosis coefficients are derived and their ranges are plotted. It is illustrated the fact that the model proposed has more flexibility in terms of coefficients of asymmetry and kurtosis. A real data application has demonstrated that the model studied is quite useful for dealing with real data and behaves better in terms of fitting than other models proposed in the literature such as the GE and NHE models. Acknowledgments We acknowledge two referees for comments and suggestions that substantially improved the presentation. The research of Yolanda M. Gómez was supported by Becas-Chile of the Chilean government. The research of Heleno Bolfarine was supported by CNPq-Brasil. [ Recibido: enero de 2013 Aceptado: diciembre de 2013 ] References Akaike, H. (1974), A new look at statistical model identification, IEEE Transaction on Automatic Control AC-19(6),
10 34 Yolanda M. Gómez, Heleno Bolfarine & Héctor W. Gómez Andrews, D. F. & Herzberg, A. M. (1985), Data: A Collection of Problems from Many Fields for the Student and Research Worker, Springer Series in Statistics, New York. Barlow, R. E., Toland, R. H. & Freeman, T. (1984), A Bayesian analysis of stressrupture life of kevlar 49/epoxy spherical pressure vessels, in Proc. Conference on Applications of Statistics, Marcel Dekker, New York. Gupta, R. D. & Kundu, D. (1999), Generalized exponential distributions, Australian and New Zealand Journal of Statistics 41(2), Gupta, R. D. & Kundu, D. (2001), Exponentiated exponential family: An alternative to Gamma and Weibull distribution, Biometrical Journal 43(1), Marshall, A. W. & Olkin, I. (2007), Life Distributions: Structure of Nonparametric, Semiparametric and Parametric Families. Nadarajah, S. & Haghighi, F. (2011), An extension of the exponential distribution, Statistics: A Journal of Theoretical and Applied Statistics 45(6),
Goodness of Fit Tests for the Gumbel Distribution with Type II right Censored data
Revista Colombiana de Estadística Diciembre 2012, volumen 35, no. 3, pp. 409 a 424 Goodness of Fit Tests for the Gumbel Distribution with Type II right Censored data Pruebas de bondad de ajuste para la
Link, W. A., 2004. Individual heterogeneity and identifiability in capture recapture models. Animal Biodiversity and Conservation, 27.1: 87 91.
Animal Biodiversity and Conservation 27.1 (2004) 87 Individual heterogeneity and identifiability in capture recapture models W. A. Link Link, W. A., 2004. Individual heterogeneity and identifiability in
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
A simple application of the implicit function theorem
Boletín de la Asociación Matemática Venezolana, Vol. XIX, No. 1 (2012) 71 DIVULGACIÓN MATEMÁTICA A simple application of the implicit function theorem Germán Lozada-Cruz Abstract. In this note we show
Powers of Two in Generalized Fibonacci Sequences
Revista Colombiana de Matemáticas Volumen 462012)1, páginas 67-79 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian
Susana Sanduvete-Chaves, Salvador Chacón-Moscoso, Milagrosa Sánchez- Martín y José Antonio Pérez-Gil ( )
ACCIÓN PSICOLÓGICA, junio 2014, vol. 10, n. o 2, 3-20. ISSN: 1578-908X 19 THE REVISED OSTERLIND INDEX. A COMPARATIVE ANALYSIS IN CONTENT VALIDITY STUDIES 1 EL ÍNDICE DE OSTERLIND REVISADO. UN ANÁLISIS
DIFFERENTIATIONS OF OBJECTS IN DIFFUSE DATABASES DIFERENCIACIONES DE OBJETOS EN BASES DE DATOS DIFUSAS
Recibido: 01 de agosto de 2012 Aceptado: 23 de octubre de 2012 DIFFERENTIATIONS OF OBJECTS IN DIFFUSE DATABASES DIFERENCIACIONES DE OBJETOS EN BASES DE DATOS DIFUSAS PhD. Amaury Caballero*; PhD. Gabriel
Inference on the parameters of the Weibull distribution using records
Statistics & Operations Research Transactions SORT 39 (1) January-June 2015, 3-18 ISSN: 1696-2281 eissn: 2013-8830 www.idescat.cat/sort/ Statistics & Operations Research c Institut d Estadstica de Catalunya
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania
Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania Oriana Zacaj Department of Mathematics, Polytechnic University, Faculty of Mathematics and Physics Engineering
Implementation of Statistics in Business and Industry
Revista Colombiana de Estadística Volumen 30 No. 1. pp. 1 a 11. Junio 2007 Implementation of Statistics in Business and Industry Implementación de la estadística en los negocios y la industria Bovas Abraham
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach
Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach Refik Soyer * Department of Management Science The George Washington University M. Murat Tarimcilar Department of Management Science
Properties of Future Lifetime Distributions and Estimation
Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.
INSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
Estimation of the Population Total using the Generalized Difference Estimator and Wilcoxon Ranks
Revista Colombiana de Estadística Junio 2009, volumen 32, no. 1, pp. 123 a 143 Estimation of the Population Total using the Generalized Difference Estimator and Wilcoxon Ranks Estimación del total poblacional
SUMAN DUVVURU STAT 567 PROJECT REPORT
SUMAN DUVVURU STAT 567 PROJECT REPORT SURVIVAL ANALYSIS OF HEROIN ADDICTS Background and introduction: Current illicit drug use among teens is continuing to increase in many countries around the world.
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
PS 271B: Quantitative Methods II. Lecture Notes
PS 271B: Quantitative Methods II Lecture Notes Langche Zeng [email protected] The Empirical Research Process; Fundamental Methodological Issues 2 Theory; Data; Models/model selection; Estimation; Inference.
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
The Stekloff Problem for Rotationally Invariant Metrics on the Ball
Revista Colombiana de Matemáticas Volumen 47(2032, páginas 8-90 The Steklo Problem or Rotationally Invariant Metrics on the Ball El problema de Steklo para métricas rotacionalmente invariantes en la bola
Is a Brownian motion skew?
Is a Brownian motion skew? Ernesto Mordecki Sesión en honor a Mario Wschebor Universidad de la República, Montevideo, Uruguay XI CLAPEM - November 2009 - Venezuela 1 1 Joint work with Antoine Lejay and
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma
Interpreting Kullback-Leibler Divergence with the Neyman-Pearson Lemma Shinto Eguchi a, and John Copas b a Institute of Statistical Mathematics and Graduate University of Advanced Studies, Minami-azabu
Test effort: A pre-conceptual-schema-based representation
Test effort: A pre-conceptual-schema-based representation Carlos Mario Zapata-Jaramillo a & Diana María Torres-Ricaurte b a Facultad de Minas, Universidad Nacional de Colombia, Colombia. [email protected]
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Extracting the roots of septics by polynomial decomposition
Lecturas Matemáticas Volumen 29 (2008), páginas 5 12 ISSN 0120 1980 Extracting the roots of septics by polynomial decomposition Raghavendra G. Kulkarni HMC Division, Bharat Electronics Ltd., Bangalore,
the multiplicative products between the distribution (P ± i0) λ and the operators L r {δ} and K r {δ}
Revista de Matemática: Teoría y Aplicaciones 31: 1 6 1996 the multiplicative products between the distribution P ± i0 λ and the operators L r {δ} and K r {δ} Manuel A. Aguirre 1 Abstract In this note we
ACTUARIAL MODELING FOR INSURANCE CLAIM SEVERITY IN MOTOR COMPREHENSIVE POLICY USING INDUSTRIAL STATISTICAL DISTRIBUTIONS
i ACTUARIAL MODELING FOR INSURANCE CLAIM SEVERITY IN MOTOR COMPREHENSIVE POLICY USING INDUSTRIAL STATISTICAL DISTRIBUTIONS OYUGI MARGARET ACHIENG BOSOM INSURANCE BROKERS LTD P.O.BOX 74547-00200 NAIROBI,
A comparative study of two models for the seismic analysis of buildings
INGENIERÍA E INVESTIGACIÓN VOL. No., DECEMBER 0 (-) A comparative study of two models for the seismic analysis of buildings Estudio comparativo de dos modelos para análisis sísmico de edificios A. Luévanos
LEVERRIER-FADEEV ALGORITHM AND CLASSICAL ORTHOGONAL POLYNOMIALS
This is a reprint from Revista de la Academia Colombiana de Ciencias Vol 8 (106 (004, 39-47 LEVERRIER-FADEEV ALGORITHM AND CLASSICAL ORTHOGONAL POLYNOMIALS by J Hernández, F Marcellán & C Rodríguez LEVERRIER-FADEEV
On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems
RACSAM Rev. R. Acad. Cien. Serie A. Mat. VOL. 97 (3), 2003, pp. 461 466 Matemática Aplicada / Applied Mathematics Comunicación Preliminar / Preliminary Communication On the existence of multiple principal
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
Local classification and local likelihoods
Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor
MATHEMATICS KNOWLEDGE FOR TEACHING WITHIN A FUNCTIONAL PERSPECTIVE OF PRESERVICE TEACHER TRAINING
MATHEMATICS KNOWLEDGE FOR TEACHING WITHIN A FUNCTIONAL PERSPECTIVE OF PRESERVICE TEACHER TRAINING Pedro Gómez Universidad de Granada C/. Alisios 17, Albolote 18820, Spain Phone/Fax: (34)958537304 [email protected]
The use of the Premium calculation principles in actuarial pricing based scenario in a coherent risk measure
The use of the Premium calculation principles in actuarial pricing based scenario in a coherent risk measure Hernández Solís MONTSERRAT PhD, University Assistant, Faculty of Economics, Universidad Nacional
Javier Santibáñez*, Leire Alcañiz* y Fernando Gómez-Bezares*
6 Javier Santibáñez*, Leire Alcañiz* y Fernando Gómez-Bezares* Cost of funds on the basis of Modigliani and Miller and CAPM propositions: a revision Coste de los fondos bajo las hipótesis de Modiagliani
Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012]
Survival Analysis of Left Truncated Income Protection Insurance Data [March 29, 2012] 1 Qing Liu 2 David Pitt 3 Yan Wang 4 Xueyuan Wu Abstract One of the main characteristics of Income Protection Insurance
CINTIA MONICA MARTINEZ
CINTIA MONICA MARTINEZ Age: 46. Citizenship: Argentine and Italian. Address: Rojas 1539 8 B. C1416CPK - Buenos Aires, Argentina. Telephone:+54 11 4586 1577 (Cell.) +54 11 15 6132 2091 E-mail: [email protected]
Efficiency of a Curzon and Ahlborn engine with Dulong-Petit heat transfer law
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 48 (6) 86 90 DICIEMBRE 00 Efficiency of a Curzon and Ahlborn engine with Dulong-Petit heat transfer law D. Ladino-Luna Depto. de ICE, ESIME-IPN, U.P. Zacatenco, Edif.
INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS
INTRODUCING THE NORMAL DISTRIBUTION IN A DATA ANALYSIS COURSE: SPECIFIC MEANING CONTRIBUTED BY THE USE OF COMPUTERS Liliana Tauber Universidad Nacional del Litoral Argentina Victoria Sánchez Universidad
**BEGINNING OF EXAMINATION** The annual number of claims for an insured has probability function: , 0 < q < 1.
**BEGINNING OF EXAMINATION** 1. You are given: (i) The annual number of claims for an insured has probability function: 3 p x q q x x ( ) = ( 1 ) 3 x, x = 0,1,, 3 (ii) The prior density is π ( q) = q,
Implementation of kalman filter for the indoor location system of a lego nxt mobile robot. Abstract
Implementation of kalman filter for the indoor location system of a lego nxt mobile robot Leidy López Osorio * Giovanni Bermúdez Bohórquez ** Miguel Pérez Pereira *** submitted date: March 2013 received
Operational Risk Modeling Analytics
Operational Risk Modeling Analytics 01 NOV 2011 by Dinesh Chaudhary Pristine (www.edupristine.com) and Bionic Turtle have entered into a partnership to promote practical applications of the concepts related
Algoritmo de PRIM para la implementación de laberintos aleatorios en videojuegos
Revista de la Facultad de Ingeniería Industrial 15(2): 80-89 (2012) UNMSM ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico) Algortimo de prim para la implementación de laberintos aleatorios en
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
Documento de Trabajo. Trade Liberalization and Wage Inequality. Time Series Evidence from Chile.
Documento de Trabajo Trade Liberalization and Wage Inequality. Time Series Evidence from Chile. Rodrigo Navia Carvallo 1997 El autor es Ph.D in Economics, Tulane University, EEUU. Máster of Arts in Economics,
A FIRST COURSE IN SOFTWARE ENGINEERING METHODS AND THEORY UN CURSO INICIAL SOBRE TEORÍA Y MÉTODOS DE LA INGENIERÍA DE SOFTWARE
INVITED ARTICLE A FIRST COURSE IN SOFTWARE ENGINEERING METHODS AND THEORY UN CURSO INICIAL SOBRE TEORÍA Y MÉTODOS DE LA INGENIERÍA DE SOFTWARE CARLOS ZAPATA Ph.D., Profesor Asociado, Facultad de Minas,
Adaptive fusion of ETM+ Landsat imagery in the Fourier domain
Revista de Teledetección. 2003. 20: 59-63. Adaptive fusion of ETM+ Landsat imagery in the Fourier domain M. Lillo-Saavedra, C. Gonzalo, A. Arquero y E. Martinez Correo electrónico: [email protected] Facultad
Reject Inference in Credit Scoring. Jie-Men Mok
Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business
Satistical modelling of clinical trials
Sept. 21st, 2012 1/13 Patients recruitment in a multicentric clinical trial : Recruit N f patients via C centres. Typically, N f 300 and C 50. Trial can be very long (several years) and very expensive
Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia
Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia VELÁSQUEZ HENAO, JUAN DAVID; RUEDA MEJIA, VIVIANA MARIA; FRANCO CARDONA, CARLOS JAIME ELECTRICITY DEMAND FORECASTING USING
FITTING INSURANCE CLAIMS TO SKEWED DISTRIBUTIONS: ARE
FITTING INSURANCE CLAIMS TO SKEWED DISTRIBUTIONS: ARE THE SKEW-NORMAL AND SKEW-STUDENT GOOD MODELS? MARTIN ELING WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 98 EDITED BY HATO SCHMEISER CHAIR FOR
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
CURRICULUM VITAE. 1 April 2015
CURRICULUM VITAE 1 April 2015 PERSONAL DETAILS Full name: María Dolores Martínez-Miranda Date of birth: 17 November 1971 Postal address: Departamento de Estadística e Investigación Operativa. Facultad
Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models
Modeling the Claim Duration of Income Protection Insurance Policyholders Using Parametric Mixture Models Abstract This paper considers the modeling of claim durations for existing claimants under income
CFD simulation of mixing process in a large crude oil storage tank with side-entry impellers
CFD simulation of mixing process in a large crude oil storage tank with side-entry impellers Simulación en CFD del proceso de mezcla en un tanque de almacenamiento de crudo de gran escala con agitadores
Detection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink
Práctica 1: PL 1a: Entorno de programación MathWorks: Simulink 1 Objetivo... 3 Introducción Simulink... 3 Open the Simulink Library Browser... 3 Create a New Simulink Model... 4 Simulink Examples... 4
Reliability estimators for the components of series and parallel systems: The Weibull model
Reliability estimators for the components of series and parallel systems: The Weibull model Felipe L. Bhering 1, Carlos Alberto de Bragança Pereira 1, Adriano Polpo 2 1 Department of Statistics, University
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
Optimal reinsurance with ruin probability target
Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1 Ruin, solvency
El modelo estratégico de los canales de. contacto con el cliente dentro de los objetivos. de calidad y rentabilidad
El modelo estratégico de los canales de Click to edit Master text styles contacto con el cliente dentro de los objetivos Second level de calidad y rentabilidad Third level Fourth level Fifth level presentado
NEW TOOLS FOR THE SELECTION OF TECHNOLOGIES; APPLICATION TO SHEET METAL FORMING
XI CONGRESO INTERNACIONAL DE INGENIERIA DE PROYECTOS LUGO, 26-28 Septiembre, 2007 NEW TOOLS FOR THE SELECTION OF TECHNOLOGIES; APPLICATION TO SHEET METAL FORMING Abstract David. Cortés Saenz (p), Carles.
On some Formulae for Ramanujan s tau Function
Revista Colombiana de Matemáticas Volumen 44(2010)2, páginas 103-112 On some Formulae for Ramanujan s tau Function Sobre algunas fórmulas para la función tau de Ramanujan Luis H. Gallardo University of
LA HOMOLOGACIÓN DE ESTUDIOS EN LA COMUNIDAD EUROPEA: PERSPECTIVAS DESDE EL PUNTO DE VISTA DEL TRABAJO SOCIAL
THE HISTORY OF SOCIAL WORK EDUCATION IN SPAIN: DOES HARMONISATION MAKE SENSE? LA HOMOLOGACIÓN DE ESTUDIOS EN LA COMUNIDAD EUROPEA: PERSPECTIVAS DESDE EL PUNTO DE VISTA DEL TRABAJO SOCIAL PAZ MÉNDEZ-BONITO
Equity and Fixed Income
Equity and Fixed Income MÁSTER UNIVERSITARIO EN BANCA Y FINANZAS (Finance & Banking) Universidad de Alcalá Curso Académico 2015/16 GUÍA DOCENTE Nombre de la asignatura: Equity and Fixed Income Código:
Didactic training using a CNC lathe designed in a virtual environment
Didactic training using a CNC lathe designed in a virtual environment Mi g u e l A. Hi d a l g o* Je s ú s D. Ca r d o n a** Fa b i o A. Ro j a s*** Resumen El presente artículo presenta una investigación
PREDICTING THE INTENTION OF USING A TECHNOLOGY PRODUCT OR SERVICE THROUGH A FUZZY CONTROLLER
PREDICTING THE INTENTION OF USING A TECHNOLOGY PRODUCT OR SERVICE THROUGH A FUZZY CONTROLLER Libertad Caicedo Acosta (District University Francisco José de Caldas, Bogotá, Colombia) licedoa@correo,udistrital.edu.co
On Spectral Compactness of Von Neumann Regular Rings
Revista Colombiana de Matemáticas Volumen 4620121, páginas 81-95 On Spectral Compactness of Von Neumann Regular Rings Sobre la compacidad espectral de los anillos regulares de von Neumann Ibeth Marcela
CURRICULUM VITAE 27 October 2015
CURRICULUM VITAE 27 October 2015 PERSONAL DETAILS Full name: María Dolores Martínez-Miranda Date of birth: 17 November 1971 Address: Departamento de Estadística e Investigación Operativa Facultad de Ciencias,
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Sales Management Main Features
Sales Management Main Features Optional Subject (4 th Businesss Administration) Second Semester 4,5 ECTS Language: English Professor: Noelia Sánchez Casado e-mail: [email protected] Objectives Description
Referencias. Vol. 5 Nº 1
149 2012 Vol. 5 Nº 1 OPINION / OPINIÓN Los emigrantes colombianos como herramienta para apalancar el desarrollo nacional Sandra Milena SANTAMARÍA ÁLVAREZ ISSN: 2027 2340 Las empresas privadas también podrían
Lecture 8: More Continuous Random Variables
Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian
Logistic Regression (1/24/13)
STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
The Psychotherapeutic Professions in Chile. Laura Moncada. Department of Psychology, Universidad de Chile
The Psychotherapeutic Professions in Chile Laura Moncada Department of Psychology, Universidad de Chile I. The Current Situation of Psychotherapeutic Professions 1. Identity of the psychotherapeutic professions.
GLM, insurance pricing & big data: paying attention to convergence issues.
GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - [email protected] Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.
Statistical Analysis of Life Insurance Policy Termination and Survivorship
Statistical Analysis of Life Insurance Policy Termination and Survivorship Emiliano A. Valdez, PhD, FSA Michigan State University joint work with J. Vadiveloo and U. Dias Session ES82 (Statistics in Actuarial
