National Imaging Associates, Inc. Clinical guideline: NON SMALL CELL LUNG CANCER



Similar documents
Radiation Therapy in the Treatment of

Table of Contents. Data Supplement 1: Summary of ASTRO Guideline Statements. Data Supplement 2: Definition of Terms

Helical TomoTherapy for Lung Cancer Radiotherapy: Good Science Pays Clinical Dividends Peter Hoban, Ph.D., TomoTherapy Inc.

Clinical Commissioning Policy: Stereotactic Ablative Body Radiotherapy for Non- Small-Cell Lung Cancer (Adult) April 2013 Reference: NHSCB/B01/P/a

NCCN Non-Small Cell Lung Cancer V Update Meeting 07/09/10

How To Improve Lung Cancer Survival With Radiation Therapy

Radiation Therapy for Non-Small Cell Lung Cancer. Principles of Radiation Therapy for Non-small Cell Lung Cancer

Non-Small Cell Lung Cancer

Stage IIIB disease includes patients with T4 tumors,

Management of stage III A-B of NSCLC. Hamed ALHusaini Medical Oncologist

Lung Cancer Treatment Guidelines

Management of Stage III, N2 NSCLC: A Virtual Thoracic Oncology Tumor Board

Small Cell Lung Cancer

Radiotherapy in locally advanced & metastatic NSC lung cancer

SMALL CELL LUNG CANCER

Lung cancer forms in tissues of the lung, usually in the cells lining air passages.

Treatment Algorithms for the Management of Lung Cancer in NSW Guide for Clinicians

American College of Radiology ACR Appropriateness Criteria

Implementation Date: April 2015 Clinical Operations

Outcomes of Patients With Stage III Nonsmall Cell Lung Cancer Treated With Chemotherapy and Radiation With and Without Surgery

4.8 Lung cancer In the UK, three fractionation regimens are most commonly used:

Lung Cancer Treatment

5. Non small Cell Lung Cancer

Radiotherapy in Lung

GUIDELINES FOR THE MANAGEMENT OF LUNG CANCER

American College of Radiology ACR Appropriateness Criteria EARLY-STAGE NON SMALL-CELL LUNG CANCER

Adjuvant Therapy Non Small Cell Lung Cancer. Sunil Nagpal MD Director, Thoracic Oncology Jan 30, 2015

T reatment O utcomes of T hree-dimensional Conformal Radiotherapy for Stage III Non-Small Cell Lung Cancer

PET/CT in Lung Cancer

Epidemiology, Staging and Treatment of Lung Cancer. Mark A. Socinski, MD

Lung Cancer and Postoperative Radiotherapy

Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of the Chest

Alternatives to Surgical Resection for Early Stage Lung Cancer

Corso Integrato di Clinica Medica ONCOLOGIA MEDICA AA LUNG CANCER. VIII. THERAPY. V. SMALL CELL LUNG CANCER Prof.

Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate

American College of Radiology ACR Appropriateness Criteria POSTOPERATIVE ADJUVANT THERAPY IN NON-SMALL-CELL LUNG CANCER

Protein kinase C alpha expression and resistance to neo-adjuvant gemcitabine-containing chemotherapy in non-small cell lung cancer

Stomach (Gastric) Cancer. Prof. M K Mahajan ACDT & RC Bathinda

ACR Appropriateness Criteria on Nonsurgical Treatment for Non Small-Cell Lung Cancer: Poor Performance Status or Palliative Intent

Temporal Trends in Demographics and Overall Survival of Non Small-Cell Lung Cancer Patients at Moffitt Cancer Center From 1986 to 2008

B. Dingle MD, FRCPC, Brian Yaremko MD,FRCPC, R. Ash, MD, FRCPC, P. Truong, MD, FRCPC

EVIDENCE TABLE. Study Objective. (Purpose of Study)

Is an evidence-based approach realistic in non-small cell lung cancer (NSCLC)?

Non-Small Cell Lung Cancer Treatment Comparison to NCCN Guidelines

American College of Radiology ACR Appropriateness Criteria

CANCER PULMON: ESTADIOS INICIALES POSTMUNDIAL PULMON DENVER Manuel Cobo Dols S. Oncología Médica HU Málaga Regional y VV

POLICY A. INDICATIONS

ORIGINAL ARTICLE THORACIC ONCOLOGY

Survival analysis of 220 patients with completely resected stage II non small cell lung cancer

The Role of IMRT in Lung Cancer

Principles of Radiation Therapy A Bapsi Chakravarthy, MD Associate e P rofessor Professor Radiation Oncology

Loco-regional Recurrence

Prostate IMRT: Promises and Problems Chandra Burman, Ph.D. Memorial Sloan-Kettering Cancer Center, New York, NY 10021

Who may benefit from prophylactic cranial irradiation amongst stage III non-small cell lung cancer patients?

California Technology Assessment Forum

LUNG CANCER INTRODUCTION

TITLE: Comparison of the dosimetric planning of partial breast irradiation with and without the aid of 3D virtual reality simulation (VRS) software.

REPORT ASCO 1998 LOS ANGELES : LUNG CANCER Johan F. Vansteenkiste, MD, PhD, Univ. Hospital and Leuven Lung Cancer Group

Lung Cancer. Public Outcomes Report. Submitted by Omar A. Majid, MD

Particle Therapy for Lung Cancer. Bradford Hoppe MD, MPH Assistant Professor University of Florida

Radiotherapy for Non-Small Cell Lung Cancer. Standard Treatment Options Radiotherapy Planning

ACR Appropriateness Criteria Nonsurgical Treatment for Non-Small-Cell Lung Cancer: Good Performance Status/Definitive Intent

Outcomes of Stereotactic Ablative Radiotherapy in Patients With Potentially Operable Stage I Non-Small Cell Lung Cancer

Mesothelioma. Malignant Pleural Mesothelioma

The expanding role of systemic treatment in non-small cell lung cancer neo-adjuvant therapy

Malignant Pleural Mesothelioma in Singapore

The Need for Accurate Lung Cancer Staging

Guidelines for the treatment of breast cancer with radiotherapy

Jedi Wisdom for Lung Cancer Radiotherapy: May the Force Be With You

Survey on the treatment of non-small cell lung cancer (NSCLC) in England and Wales

Treatment of Small Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians (ACCP) Guideline

Accelerated hemithoracic radiation followed by extrapleural pneumonectomy for malignant pleural mesothelioma

馬 偕 紀 念 醫 院 新 竹 分 院 前 列 腺 癌 放 射 治 療 指 引

Post-recurrence survival in completely resected stage I non-small cell lung cancer with local recurrence

7. Prostate cancer in PSA relapse

Tricia Cox on 7/18/2012 at Oncology Center. Sarah Randolf. Female

NON-SMALL CELL LUNG CANCER STAGE III

The lungs What is lung cancer? How common is it? Risks & symptoms Diagnosis & treatment options

Adjuvant cisplatin-based chemotherapy in non-small-cell lung cancer: new insights into

Probe: Could you tell me about when?

Pulmonary function. Is patient potentially operable? Yes. tests 3. Yes. Pulmonary function. tests 3, if clinically indicated. Yes

Treatment of Stage III Non-small Cell Lung Cancer

Lung Cancer and Mesothelioma

Stage I Non-Small Cell Lung Cancer: Recurrence Patterns, Prognostic Factors and Survival

Non-Small Cell Lung Cancer Therapies

Definitive Treatment of Poor-Risk Patients with Stage I Lung Cancer. A Single Institution Experience

Cesare Gridelli 1, Francesca Casaluce 2, Assunta Sgambato 2, Fabio Monaco 3, Cesare Guida 4

Small Cell Lung Cancer

LUNG CANCER POPULATION STATUS & TREATMENT OPTIONS. By: Sweety Narang, RTT & Gurpreet Sandhu, RTT

Adiuwantowe i neoadiuwantowe leczenie chorych na zaawansowanego raka żołądka

Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials

Management of Postmenopausal Women with T1 ER+ Tumors: Options and Tradeoffs. Case Study. Surgery. Lumpectomy and Radiation

PII S (99) CLINICAL INVESTIGATION

Treatment of Mesothelioma with Radiotherapy

Non-Small Cell Lung Cancer

Concurrent Chemotherapy and Radiotherapy for Head and Neck Cancer

Clinical Education A comprehensive and specific training program. carry out effective treatments from day one

National Clinical Trials Network Groups Update Fall 2014

CLINICAL POLICY Department: Medical Management Document Name: Opdivo Reference Number: CP.PHAR.121 Effective Date: 07/15

Radio(chemo)therapy in locally advanced nonsmall cell lung cancer

Transcription:

National Imaging Associates, Inc. Clinical guideline: NON SMALL CELL LUNG CANCER Original Date: March 2011 Page 1 of 10 Radiation Oncology Last Review Date: June 2012 Guideline Number: NIA_CG_122 Last Revised Date: June 2012 Responsible Department: Clinical Operations INTRODUCTION: Implementation Date : September 2012 Lung cancer is the leading cause of cancer-related deaths of both men and women in the United States. The World Health Organization divides lung cancer into two types: non-small cell lung cancer (NSCLC) as discussed in this guideline and small cell lung cancer (SCLC). The most common lung cancer, NSCLC, includes various histologies: squamous carcinoma, adenocarcinoma, and large cell carcinoma. These are grouped together for purposes of diagnosis, staging, prognosis, and treatment. In general, tissue diagnosis is used to classify patients into one of three groups reflecting the extent of the disease and the treatment approach: surgically resectable disease, locally and/or regionally advanced disease, and metastatic disease. Surgery alone has been the standard treatment for patients with resectable NSCLC for many years. However, patients with completely resected disease have disappointing survival rates. In some cases, relapse occurs at distant sites which suggest that NSCLC may be a systemic disease when diagnosed. Chemotherapy and radiation therapy are now treatment considerations in both the preoperative and postoperative settings. Prognosis and treatment of NSCLC are based on the staging of the cancer which documents the extent of cancer growth and spread. The initial goal of staging is to determine if the tumor is surgically resectable. Some patients with resectable disease may be cured by surgery while others, due to contraindications to surgery, may be candidates for radiation therapy for curative intent or for local control. GOAL OF THE GUIDELINE: This guideline outlines several methods suitable for the delivery of radiation therapy to treat lung cancer. These include the use of external beam radiation therapy such as; three-dimensional conformal radiation therapy (3D-CRT), endobronchial brachytherapy, postoperative radiation therapy (PORT) and stereotactic body radiation (SBRT). Endobronchial brachytherapy and SBRT are aggressive approaches justified, in part, for non-resectable tumors. While these advances in treatment offer a range of regimens, the goal of this guideline is to guide diagnosis and treatment to the most efficient, comparatively effective, diagnostic and treatment pathway. With the exception of medically inoperable tumors and extreme palliative circumstances, radiation treatment is performed, in most cases, in conjunction with surgical intervention. Non Small Cell Lung 9/2012 Proprietary Page 1 of 10

GENERAL CONSIDERATIONS: Surgical resection is the preferred treatment for early stage NSCLC. Assessment of the patient s overall medical condition, including pulmonary reserve, is important in considering the potential benefits of surgery, especially since an immediate postoperative mortality rate of 3% to 5% can be expected. Radiation therapy with curative intent is an acceptable alternative to surgery for patients presenting with inoperable stage I and II disease. These patients may either be unable to tolerate a surgical resection or they may refuse surgery based on risk considerations. Patients with stage IIIA disease are a relatively heterogeneous group. Some patients present with resectable tumors and microscopic metastases to lymph nodes, while others present with bulky, unresectable local-regional disease. Therapeutic approaches require consideration of the extent of disease; radiation, surgery and chemotherapy in various combinations are considered for treatment. Subsets of patients have been reported with 5-year survivals of up to 25% Reported studies suggest that postoperative radiation therapy (PORT) may be associated with an increase in survival in patients with N2 nodal disease but not in patients with N0 and N1 nodal disease. Patients with locally advanced, unresectable stage III disease may benefit from radiation therapy administered sequentially with chemotherapy. However, the combination of thoracic radiotherapy delivered concurrently with cisplatin-based chemotherapy has been shown to provide the greatest survival benefit. Patients with stage II and stage III disease may present with Pancoast tumors that form at the extreme apex, in the superior sulcus of the lung. The tumors may invade pleura, chest wall, brachial plexus, subclavian vessels, and vertebral bodies. Treatment options for these patients include aggressive treatment for cure with a combination of preoperative radiation and surgical resection. MEDICALLY NECESSARY INDICATIONS FOR RADIATION THERAPY AND TREATMENT OPTIONS: Post Operative o T1-2,N0 with margins positive 3D-CRT +/- chemotherapy o T1-2,N1 or T3,N0 3D-CRT + chemotherapy o T1-3,N2 or T3,N1 3D-CRT + chemotherapy Non Small Cell Lung 9/2012 Proprietary Page 2 of 10

Pre Operative o T3-4, N0-N1 or Superior Sulcus Tumors Preoperative 3D-CRT + concurrent chemotherapy o Stage IIIA (T4,N0,M0 or T3-4N1,M0 or T1-3N2,M0) 3D-CRT + concurrent chemotherapy followed by resection Inoperable Definitive o Stage I disease (T1-2a,N0,M0) 3D-CRT/chemoradiation Stereotactic body radiation therapy (SBRT) is an option for inoperable Stage I disease located in the peripheral lung. Typical dose fractionation schemes: 30-34 Gy x 1 (< 2 cm tumor, > 1 cm from chest wall) 15-20 Gy x 3 (< 5 cm tumor, > 1cm from chest wall) 12-12.5 Gy x 4-5 (< 5 cm tumor, < 1 cm from chest wall,< 2 cm from central structures) 10-12 Gy x 5 (< 5 cm tumor, < 1 cm from chest wall, < 2cm from proximal bronchial tree) o Stage II and Stage III disease (T2b-T4,N0,M0 or T1-4,N1-3,M0 3D-CRT/chemoradiation o Stage IIIA -locally advanced (T4,N0,M0 or T3-4,N1,M0 or T1-3,N2,M0) 3D-CRT + concurrent chemotherapy Palliative Radiation Therapy o Stage IV 3D External radiation as palliative therapy to relieve pain, airway or endobronchial obstruction, and other symptoms. --------------------------- o Post Operative Radiation Dose Guidelines (based on margin status) Negative margins: 50-54 Gy Gross positive margin: 60-70 Gy Microscopic positive margin/extracapsular nodal extension: 54-60 Gy o Pre Operative Radiation Therapy Dosage Guidelines 45-50 Gy o Definitive Radiation Therapy Guidelines 60-74 Gy ---------------------- Unless otherwise indicated standard radiation fractionation consists of 1.8 Gy to 2.0 Gy per day Non Small Cell Lung 9/2012 Proprietary Page 3 of 10

Endobronchial Brachytherapy o Patients with primary tumors who are not otherwise candidates for surgical resection or external-beam radiation therapy due to comorbidities or location of the tumor o Palliative therapy for airway obstruction or severe hemoptysis in patients with primary, metastatic, or recurrent tumors. TREATMENT OPTIONS REQUIRING ADDITIONAL CLINICAL REVIEW: Intensity Modulated Radiation Therapy (IMRT) IMRT is not indicated as a standard treatment option and should not be used routinely for the delivery of radiation therapy for non small cell lung cancer. IMRT may be appropriate for limited circumstances in which radiation therapy is indicated and 3D conformal radiation therapy (3D-CRT) techniques cannot adequately deliver the radiation prescription without exceeding normal tissue radiation tolerance, the delivery is anticipated to contribute to potential late toxicity or tumor volume dose heterogeneity is such that unacceptable hot or cold spots are created. If IMRT is utilized, techniques to account for respiratory motion should be performed. Clinical rationale and documentation for performing IMRT rather than 2D or 3D-CRT treatment planning and delivery will need to: Demonstrate how 3D-CRT isodose planning cannot produce a satisfactory treatment plan (as stated above) via the use of a patient specific dose volume histograms and isodose plans. Provide tissue constraints for both the target and affected critical structures. Proton Beam Radiation Therapy Proton beam is not an approved treatment option for lung cancer. There are limited clinical studies comparing proton beam therapy to 3-D conformal radiation. Overall, studies have not shown clinical outcomes to be superior to conventional radiation therapy. Stereotactic Body Radiation Therapy Stereotactic Body Radiation Therapy (SBRT) is not considered a standard form of treatment for NSCLC except for inoperable Stage I disease. Other requests for SBRT will require a peer review to make a medical necessity determination. Documentation from the radiation oncologist must include the clinical rationale for performing SBRT rather than 3-D conformal treatment. Non Small Cell Lung 9/2012 Proprietary Page 4 of 10

REFERENCES: Albain KS, Rusch VW, Crowley JJ, et al. Concurrent cisplatin/etoposide plus chest radiotherapy followed by surgery for stages IIIA (N2) and IIIB non-small-cell lung cancer: mature results of Southwest Oncology Group Phase II Study 8805.J Clin Oncol 1995;13(8):1880-92. Albain KS, Swann RS, Rusch VR, et al. Phase III study of concurrent chemotherapy and radiotherapy (CT/RT) vs CT/RT followed by surgical resection for stage IIIA (pn2) non-small cell lung cancer (NSCLC): Outcomes update of North American Intergroup 0139 (RTOG 9309). J Clin Oncol (Annual Meeting Proceedings) 2005; 23(16S):7014. American Cancer Society: Cancer facts and figures. Atlanta, GA: American Cancer Society 2009. Retrieved November 1, 2009 from http://www.cancer.org/downloads/stt/500809web.pdf. Baumann P, Nyman J, Hoyer M, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009; 27:3290-3296. Belderbos JS, Kepka L, Spring Kong FM, Martel MK, Videtic GM, Jeremic B. Report from the International Atomic Energy Agency (IAEA) consultants' meeting on elective nodal irradiation in lung cancer: non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 2008; 72:335-342. Bradley J, Graham MV, Winter K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three dimensional conformal radiotherapy in patients with inoperable non-small cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005; 61:318-328. Bradley JD, Graham M, Suzanne S, et al. Phase I results of RTOG L-0117; a phase I/II dose intensification study using 3DCRT and concurrent chemotherapy for patients with Inoperable NSCLC. J Clin Oncol (Meeting Abstracts) 2005; 23:7063. Bradley JD, Paulus R, Graham MV, et al. Phase II trial of postoperative adjuvant paclitaxel/ carboplatin and thoracic radiotherapy in resected stage II and IIIA nonsmall-cell lung cancer: promising long-term results of the Radiation Therapy Oncology Group--RTOG 9705. J Clin Oncol 2005; 23:3480-3487. Cerfolio RJ, Bryant AS, Jones VL, Cerfolio RM. Pulmonary resection after concurrent chemotherapy and high dose (60Gy) radiation for non-small cell lung cancer is safe and may provide increased survival. Eur J Cardiothorac Surg 2009; 35:718-723. Non Small Cell Lung 9/2012 Proprietary Page 5 of 10

Chang JY, Balter PA, Dong L, et al. Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008; 72:967-971. Chang JY, Zhang X, Wang X, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006; 65:1087-1096. Curran WJ, Scott CB, Langer CJ, et al. Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemo-radiation for patients with unresected stage III nsclc: RTOG 9410. [Abstract] Proceedings of the American Society of Clinical Oncology 2003; 22: A-2499. Douillard JY, Rosell R, De Lena M, Riggi M, Hurteloup P, Mahe MA. Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. Int J Radiat Oncol Biol Phys 2008; 72:695-701. Dosoretz DE, Katin MJ, Blitzer PH, et al. Radiation therapy in the management of medically inoperable carcinoma of the lung: results and implications for future treatment strategies. Int J Radiat Oncol Biol Phys 1992; 24 (1): 3-9. Effects of postoperative mediastinal radiation on completely resected stage II and stage III epidermoid cancer of the lung. The Lung Cancer Study Group. N Engl J Med 1986;315:1377-1381. Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 2009; 75(3):677-82. Feigenberg SJ, Hanlon AL, Langer C, et al. A phase II study of concurrent carboplatin and paclitaxel and thoracic radiotherapy for completely resected stage II and IIIA nonsmall cell lung cancer. J Thorac Oncol 2007; 2:287-292. Gauden S, Ramsay J, Tripcony L. The curative treatment by radiotherapy alone of stage I non-small cell carcinoma of the lung. Chest 1995; 108 (5): 1278-82. Ginsberg RJ, Hill LD, Eagan RT, et al. Modern thirty-day operative mortality for surgical resections in lung cancer. J Thorac Cardiovasc Surg 1983; 86(5):654-8. Non Small Cell Lung 9/2012 Proprietary Page 6 of 10

Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999; 45:323-329. Guckenberger M, Wulf J, Mueller G, et al. Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 2009; 74:47-54. Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and neck cancer. Int J Radiat Oncol Biol Phys 2008; 72:1362-1367. Hernando ML, Marks LB, Bentel GC, et al. Radiation-induced pulmonary toxicity: a dosevolume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001; 51:650-659. Jin JY, Kong FM, Chetty IJ, et al. Impact of Fraction Size on Lung Radiation Toxicity: Hypofractionation May Be Beneficial in Dose Escalation of Radiotherapy for Lung Cancers. Int J Radiat Oncol Biol Phys 2010; 76(3):782-8. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33:3874-3900. Keller SM, Adak S, Wagner H, et al. A randomized trial of postoperative adjuvant therapy in patients with completely resected stage II or IIIA non-small-cell lung cancer. Eastern Cooperative Oncology Group. N Engl J Med 2000; 343:1217-1222. Kelsey CR, Light KL, Marks LB. Patterns of failure after resection of non-small-cell lung cancer: implications for postoperative radiation therapy volumes. Int J Radiat Oncol Biol Phys 2006; 65:1097-1105. Kim TH, Cho KH, Pyo HR, et al. Dose-volumetric parameters for predicting severe radiation pneumonitis after three-dimensional conformal radiation therapy for lung cancer. Radiology 2005; 235:208-215. Komaki R, Cox JD, Hartz AJ, et al. Characteristics of long-term survivors after treatment for inoperable carcinoma of the lung. Am J Clin Oncol 1985; 8(5):362-70. Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 2006; 65:1075-1086. Non Small Cell Lung 9/2012 Proprietary Page 7 of 10

Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 2007; 17:108-120. Kong FM, Ten Haken RK, Schipper MJ, et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 2005; 63:324-333. Lagerwaard FJ, Haasbeek CJ, Smit EF, et al. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2008; 70:685-692. Lally BE, Zelterman D, Colasanto JM, et al. Postoperative radiotherapy for stage II or III non-small-cell lung cancer using the surveillance, epidemiology, and end results database. J Clin Oncol 2006: 24 (19): 2998-3006. Liao ZX, Komaki RR, Thames HD, Jr., et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 2009; 76(3):775-81. MacManus M, Nestle U, Rosenzweig KE, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol 2009; 91:85-94. Mantz CA, Dosoretz DE, Rubenstein JH, et al. Endobronchial brachytherapy and optimization of local disease control in medically inoperable non-small cell lung carcinoma: a matched-pair analysis. Brachytherapy 2004; 3 (4): 183-90. Noordijk EM, Poest CE, Hermans J, et al. Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiother Oncol 1988; 13(2):83-9. Onishi H, Araki T, Shirato H, et al. Stereotactic hypofractionated high-dose irradiation for stage I non-small cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multi-institutional study. Cancer 2004; 101:1623-1631. Onishi H, Shirato H, Nagata Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2007; 2:S94-100. Pisters KMW, Evans WK, Azzoli CG. Cancer care Ontario and American society of clinical oncology adjuvant chemotherapy and adjuvant radiation therapy for stages I-IIIA respectable non-small cell lung cancer guideline. Journal of Clinical Oncology 2007; 25(34). Non Small Cell Lung 9/2012 Proprietary Page 8 of 10

PORT Meta-analysis Trialists Group. Postoperative radiotherapy for non-small cell lung cancer. Cochrane Database of Systematic Reviews 2009; 1: CD002142. Rose J, Rodrigues G, Yaremko B, Lock M, D'Souza D. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy. Radiother Oncol 2009; 91:282-287. Rosenzweig KE, Sura S, Jackson A, Yorke E. Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol 2007; 25:5557-5561. Roy AEF, Wells P. Volume definition in radiotherapy planning for lung cancer: how the radiologist can help. Cancer Imaging 2006; 6:116-123. Salazar OM, Sandhu TS, Lattin PB, et al. Once-weekly, high dose stereotactic body radiotherapy for lung cancer: 6-year analysis of 60 early-stage, 42 locally advanced, and 7 metastatic lung cancers. Int J Radiat Oncol Biol Phys 2008; 72:707-715. Sanuki-Fujimoto N, Sumi M, Ito Y, et al. Relation between elective nodal failure and irradiated volume in non-small-cell lung cancer (NSCLC) treated with radiotherapy using conventional fields and doses. Radiother Oncol 2009; 91:433-437. Schild SE, McGinnis WL, Graham D, et al. Results of a Phase I trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2006; 65:1106-1111. Socinski MA, Rosenman JG, Halle J, et al. Dose-escalating conformal thoracic radiation therapy with induction and concurrent carboplatin/paclitaxel in unresectable stage IIIA/B non-small cell lung carcinoma: a modified phase I/II trial. Cancer 2001; 92:1213-1223. Sonett JR, Suntharalingam M, Edelman MJ, et al. Pulmonary resection after curative intent radiotherapy (>59 Gy) and concurrent chemotherapy in non-small-cell lung cancer. Ann Thorac Surg 2004; 78:1200-1205; discussion 1206. Stephans KL, Djemil T, Reddy CA, et al. A comparison of two stereotactic body radiation fractionation schedules for medically inoperable stage I non-small cell lung cancer: the Cleveland Clinic experience. J Thorac Oncol 2009; 4:976-982. Sulman EP, Komaki R, Klopp AH, Cox JD, Chang JY. Exclusion of elective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer. Radiat Oncol 2009; 4:5. Takeda A, Sanuki N, Kunieda E, et al. Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning Non Small Cell Lung 9/2012 Proprietary Page 9 of 10

target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys 2009; 73:442-448. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 2006; 24:4833-4839. Wang L, Correa CR, Zhao L, et al. The effect of radiation dose and chemotherapy on overall survival in 237 patients with Stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2009; 73:1383-1390. Wang S, Liao Z, Wei X, et al. Analysis of clinical and dosimetric factors associated with treatment-related pneumonitis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 2006; 66: 1399-1407. Wisnivesky JP, Bonomi M, Henschke C, Iannuzzi M, McGinn T. Radiation therapy for the treatment of unresected stage I-II non-small cell lung cancer. Chest 2005; 128:1461-1467. Yuan S, Sun X, Li M, et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III non-small cell lung cancer. Am J Clin Oncol 2007; 30: 239-244. Zhao L, West BT, Hayman JA, Lyons S, Cease K, Kong FM. High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2007; 68:103-110. Non Small Cell Lung 9/2012 Proprietary Page 10 of 10