Control de calidad. Felipe de Mendiburu. Second sample Calibration data in D[trial] New data in D[!trial] First samples UCL. Group summary statistics



Similar documents
qcc: An R package for quality control charting and statistical process control

THE OPEN SOURCE SOFTWARE R IN THE STATISTICAL QUALITY CONTROL

SPC Demonstration Tips

Capability Analysis Using Statgraphics Centurion

Statistical Process Control (SPC) Training Guide

Chapter 6 Variables Control Charts. Statistical Quality Control (D. C. Montgomery)

Control Charts for Variables. Control Chart for X and R

SPC Response Variable

Process Capability Analysis Using MINITAB (I)

THE PROCESS CAPABILITY ANALYSIS - A TOOL FOR PROCESS PERFORMANCE MEASURES AND METRICS - A CASE STUDY

Instruction Manual for SPC for MS Excel V3.0

I/A Series Information Suite AIM*SPC Statistical Process Control

Software Quality. Unit 2. Advanced techniques

Statistical Process Control OPRE

Java Modules for Time Series Analysis

Moving from Quality Control to Quality Assurance (Proactive Compliance!)

Dongfeng Li. Autumn 2010

Confidence Intervals for Cpk

THE INTERNATIONAL JOURNAL OF BUSINESS & MANAGEMENT

2. Filling Data Gaps, Data validation & Descriptive Statistics

3. Deployment CHAMPION (CENTER MANAGER) Master Black Belt. Black Belt (GE-TS group) Black Belt (AUTOMATION group) Black Belt (GE-PS group)

Exploratory Data Analysis

Statistical Quality Control

I/A Series Software FoxDPM.com Dynamic Performance Monitor.com

Six Sigma Project Charter

Body of Knowledge for Six Sigma Green Belt

Strategies to Reduce Defects in Floor and Wall Tiles; Application of Continuous Improvement Processes

EE 1130 Freshman Eng. Design for Electrical and Computer Eng.

Six Sigma Acronyms. 2-1 Do Not Reprint without permission of

INFLUENCE OF MEASUREMENT SYSTEM QUALITY ON THE EVALUATION OF PROCESS CAPABILITY INDICES

Chapter 7 Section 1 Homework Set A

Pr(X = x) = f(x) = λe λx

Individual Moving Range (I-MR) Charts. The Swiss Army Knife of Process Charts

Geostatistics Exploratory Analysis


WW OPS-05 Improve Production Execution Visibility, Agility & Performance with Wonderware MES

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Why Is EngineRoom the Right Choice? 1. Cuts the Cost of Calculation

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Control Charts - SigmaXL Version 6.1

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS

Confidence Intervals for Cp

CAPABILITY PROCESS ASSESSMENT IN SIX SIGMA APPROACH

Statistical Process Control Basics. 70 GLEN ROAD, CRANSTON, RI T: F:

Modifying Integrated Model for Manufacturing Process Improvement

Comparison of EngineRoom (6.0) with Minitab (16) and Quality Companion (3)

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

Normality Testing in Excel

Chapter 1 Exploratory data analysis

Statistics 104: Section 6!

4 Other useful features on the course web page. 5 Accessing SAS

Modeling Individual Claims for Motor Third Party Liability of Insurance Companies in Albania

Application of JM-SPC program for statistical control of foundry production processes

THE KRUSKAL WALLLIS TEST

Multiplexer Software. Multiplexer Software. Dataputer DATA-XL Software

Interaction effects between continuous variables (Optional)

Test effort: A pre-conceptual-schema-based representation

Titulación Grado en Administración y Dirección de Empresas, Mención Creación y Dirección de Empresas, Itinerario Emprendedores.

New Metal Bridge Clip-ons ENJOY SUN

SimWare Pro User s Manual

QUIZ MODULE 1: BASIC CONCEPTS IN QUALITY AND TQM

Computation of the Aggregate Claim Amount Distribution Using R and actuar. Vincent Goulet, Ph.D.

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Risk Management : Using SAS to Model Portfolio Drawdown, Recovery, and Value at Risk Haftan Eckholdt, DayTrends, Brooklyn, New York

MIXED MODEL ANALYSIS USING R

PA (Process. Areas) Ex - KPAs

Cause and Effect Matrix. SixSigmaTV.Net

Mean = (sum of the values / the number of the value) if probabilities are equal

Six Sigma Applications in Healthcare. Muder Alkrisat PhD, MSN, RN, CSSBB, CSHA, HACP Director of Clinical Process Improvement

INCREASING TOP ROLL SHAFTS RELIABILITY. J.J. Coronado*, S.A. Rodriguez*, A.L. Gómez*, J.S. Rivas*, C.A. Velez**

RISC Processor Simulator (SRC) INEL 4215: Computer Architecture and Organization September 22, 2004

HACCP. What is HACCP? What is HACCP? Sometimes referred to as. Hazard Analysis and Critical Control Point system

Statistical process control analysis based on software Q-das

Seis Sigma con R. Emilio L. Cano. December 5, E.T.S. Ingenieros Industriales Universidad de Castilla-La Mancha

Copyright PEOPLECERT Int. Ltd and IASSC

Simulation and Lean Six Sigma

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Common Tools for Displaying and Communicating Data for Process Improvement

Data Preparation and Statistical Displays

Control CHAPTER OUTLINE LEARNING OBJECTIVES

PROCESS VARIABILITY REDUCTION THROUGH STATISTICAL PROCESS CONTROL FOR QUALITY IMPROVEMENT. 1.3 Process Capability. 1.

Sample Size Calculation for Longitudinal Studies

Selecting SPC Software for Batch and Specialty Chemicals Processing

Six Sigma Workshop Fallstudie och praktisk övning

Certified Quality Engineer

Measurement Systems Correlation MSC for Suppliers

THE USE OF STATISTICAL PROCESS CONTROL IN PHARMACEUTICALS INDUSTRY

LITERACY Classroom Arrangement. Bilingual/ESL Program. Pilar Moreno-Recio

HPN Product Tools. Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Basic Probability and Statistics Review. Six Sigma Black Belt Primer

Data Analysis Methodology 1

Transcription:

Control de calidad con First samples Second sample Calibration data in D[trial] New data in D[!trial] summary statistics 0.0 0.1 0.2 0.3 0.4 0.5 Felipe de Mendiburu 1 4 7 11 15 19 23 27 31 39 47 55 63 71 79 87

cause.and.effect( cause=list( Materiales=c("Materia prima defectuosa", "Defectos de armado", "Material escalibrado"), Mano.Obra=c("Falta de capacitacion", "Falta de compromiso"),metodos=c("inspeccion deficiente", "Falta de instruccion", "Diseño indadecuado"),maquinas=c("soldador inadecuado", "Patron desequilibrado")), effect="falla el termostado", title= " Diagrama de Causa - Efecto", cex = c(1.5, 0.9, 1.5), font = c(4,1,4)) Diagrama de Causa - Efecto Materiales Mano.Obra Materia prima defectuosa Falta de capacitacion Defectos de armado Falta de compromiso Material descalibrado Falla el termostado Diseño indadecuado Falta de instruccion Patron desequilibrado Inspeccion deficiente Soldador inadecuado Metodos Maquinas

Argumentos de la funcion qqc()

x <- c(33.75, 33.05, 34, 33.8,.) qcc(x, type="xbar.one") xbar.one Chart for x summary statistics 32.5 33.0 33.5 34.0 34.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of groups = 15 Center = 33.52333 StdDev = 0.4261651 = 32.24484 = 34.80183 Number beyond limits = 0 Number violating runs = 0

Excel: pistones.xls Text: pistones.txt Copy Paste En R: > pistones <- read.table( pistones.txt,header=t)

> qcc(diameter, type="xbar") xbar Chart for diameter summary statistics 73.990 73.995 74.000 74.005 74.010 74.015 74.020 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Number of groups = 40 Center = 74.0036 StdDev = 0.009992449 = 73.9902 = 74.01701 Number beyond limits = 2 Number violating runs = 3

> qcc(diameter, type="xbar") Call: qcc(data = diameter, type = "xbar") xbar chart for diameter Summary of group statistics: Min. 1st Qu. Median Mean 3rd Qu. Max. 73.99 74.00 74.00 74.00 74.01 74.02 sample size: 5 Number of groups: 40 Center of group statistics: 74.0036 Standard deviation: 0.00999245 Control limits: 73.9902 74.01701

Eliminando algunas observaciones para tener muestras con diferentes tamaños: > salen <- c(9, 10, 30, 35, 45, 64, 65, 74, 75, 85, 99, 100)

Ordenes para hacer las cartas: > salen <- c(9, 10, 30, 35, 45, 64, 65, 74, 75, 85, 99, 100) > diameter <- qcc.groups(pistones$diameter[-salen], sample[- salen]) > qcc(diameter[1:25,], type="xbar") > qcc(diameter[1:25,], type="r") > qcc(diameter[1:25,], type="s") > qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,]) > qcc(diameter[1:25,], type="r", newdata=diameter[26:40,]) > qcc(diameter[1:25,], type="s", newdata=diameter[26:40,]) Otras ordenes: > qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,], nsigmas=2) > qcc(diameter[1:25,], type="xbar", newdata=diameter[26:40,], confidence.level=0.99)

xbar Chart for diameter[1:25, ] summary statistics 73.985 73.995 74.005 74.015 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 Number of groups = 25 Center = 74.00075 StdDev = 0.01013948 is variable is variable Number beyond limits = 0 Number violating runs = 0

R Chart for diameter[1:25, ] summary statistics 0.00 0.01 0.02 0.03 0.04 0.05 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 Number of groups = 25 Center = 0.02230088 StdDev = 0.01013948 = 0 is variable Number beyond limits = 0 Number violating runs = 2

S Chart for diameter[1:25, ] summary statistics 0.000 0.005 0.010 0.015 0.020 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 Number of groups = 25 Center = 0.00938731 StdDev = 0.01013948 = 0 is variable Number beyond limits = 0 Number violating runs = 1

xbar Chart for diameter[1:25, ] and diameter[26:40, ] Calibration data in diameter[1:25, ] New data in diameter[26:40, ] summary statistics 73.99 74.00 74.01 74.02 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Number of groups = 40 Center = 74.00075 StdDev = 0.01013948 is variable is variable Number beyond limits = 3 Number violating runs = 1

summary statistics 0.00 0.01 0.02 0.03 0.04 0.05 R Chart for diameter[1:25, ] and diameter[26:40, ] Calibration data in diameter[1:25, ] New data in diameter[26:40, ] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Number of groups = 40 Center = 0.02230088 StdDev = 0.01013948 = 0 is variable Number beyond limits = 0 Number violating runs = 2

S Chart for diameter[1:25, ] and diameter[26:40, ] Calibration data in diameter[1:25, ] New data in diameter[26:40, ] summary statistics 0.000 0.005 0.010 0.015 0.020 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 Number of groups = 40 Center = 0.00938731 StdDev = 0.01013948 = 0 is variable Number beyond limits = 0 Number violating runs = 1

ATRIBUTOS

p Chart for D[trial] summary statistics 0.1 0.2 0.3 0.4 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Number of groups = 30 Center = 0.2313333 StdDev = 0.421685 = 0.05242755 = 0.4102391 Number beyond limits = 2 Number violating runs = 0

p Chart for D[inc] summary statistics 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 Number of groups = 28 Center = 0.215 StdDev = 0.4108223 = 0.04070284 = 0.3892972 Number beyond limits = 1 Number violating runs = 1

summary statistics 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 Calibration data in D[inc] p Chart for D[inc] and D[!trial] New data in D[!trial] 1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 Number of groups = 52 Center = 0.215 StdDev = 0.4108223 = 0.04070284 = 0.3892972 Number beyond limits = 2 Number violating runs = 2

> q1 <- qcc(d[inc], sizes=size[inc], type="c") > c Chart for D[inc] summary statistics 0 2 4 6 8 10 12 31 33 35 37 39 41 43 46 48 50 52 55 57 59 Number of groups = 28 Center = 5.714286 StdDev = 2.390457 = 0 = 12.88566 Number beyond limits = 0 Number violating runs = 0

Carta U Datos de clase

> attach(datos) > qcc(defectos,unidades, type="u") u Chart for Defectos summary statistics 0.0 0.5 1.0 1.5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Number of groups = 30 Center = 0.4235925 StdDev = 2.594075 is variable is variable Number beyond limits = 1 Number violating runs = 1

OC curves for xbar chart Prob. type II error 0.0 0.2 0.4 0.6 0.8 1.0 n = 5 n = 1 n = 10 n = 15 n = 20 0 1 2 3 4 5 Process shift (std.dev)

contact num. price code supplier code part num. schedule date Pareto Chart for defect Error frequency 0 50 100 150 200 250 300 0% 25% 50% 75% 100% Cumulative Percentage

q <- qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=false) process.capability(q, spec.limits=c(73.95,74.05)) Process Capability Analysis for diameter[1:25, ] LSL Target USL 73.94 73.96 73.98 74.00 74.02 74.04 74.06 Number of obs = 125Target = 74 Center = 74.00305 LSL = 73.95 StdDev = 0.01171394USL = 74.05 Cp = 1.42 Cp_l = 1.51 Cp_u = 1.34 Cp_k = 1.34 Cpm = 1.38 Exp<LSL 0% Exp>USL 0% Obs<LSL 0% Obs>USL 0%

> q <- qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=false) > process.capability.sixpack(q, spec.limits=c(73.95,74.05)) summary statistics 73.990 74.010 xbar Chart for diameter[1:25, ] 1 3 5 7 9 11 14 17 20 23 Process Capability Analysis for diameter[1:25, ] LSL Target USL 73.94 74.00 74.06 summary statistics 0.00 0.03 R Chart for diameter[1:25, ] 1 3 5 7 9 11 14 17 20 23 Sample Quantiles 73.99 74.02 Normal Q-Q Plot -2 0 1 2 Theoretical Quantiles diameter[1:25, ] 73.99 74.02 Run chart Capability plot Center = 74.00282 StdDev = 0.01142625 Target = 74 Process tolerance Cp = 1.46 Cp_k = 1.38 Specification limits Cpm = 1.42 5 10 15 20 25 73.85 73.95 74.05

> q <- qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=false) > cusum(q) Cusum Chart for diameter[1:25, ] Cumulative Sum Below Target Above Target -5-4 -3-2 -1 0 1 2 3 4 5 UDB LDB 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 Number of groups = 25 Target = 74.00282 StdDev = 0.01142625 Decision boundaries (std. err.) = 5 Shift detection (std. err.) = 1 No. of points beyond boundaries = 0

> q <- qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=false) > process.capability.sixpack(q, spec.limits=c(73.95,74.05)) summary statistics 73.990 74.010 xbar Chart for diameter[1:25, ] 1 3 5 7 9 11 14 17 20 23 Process Capability Analysis for diameter[1:25, ] LSL Target USL 73.94 74.00 74.06 summary statistics 0.00 0.03 R Chart for diameter[1:25, ] 1 3 5 7 9 11 14 17 20 23 Sample Quantiles 73.99 74.02 Normal Q-Q Plot -2 0 1 2 Theoretical Quantiles diameter[1:25, ] 73.99 74.02 Run chart Capability plot Center = 74.00282 StdDev = 0.01142625 Target = 74 Process tolerance Cp = 1.46 Cp_k = 1.38 Specification limits Cpm = 1.42 5 10 15 20 25 73.85 73.95 74.05

> q <- qcc(diameter[1:25,], type="xbar", nsigmas=3, plot=false) > ewma(q, lambda=0.2) EWMA Chart for diameter[1:25, ] Summary Statistics 73.995 74.000 74.005 74.010 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 Number of groups = 25 Target = 74.00282 StdDev = 0.01142625 Smoothing parameter = 0.2 Control limits at 3*sigma