Risk Management : Using SAS to Model Portfolio Drawdown, Recovery, and Value at Risk Haftan Eckholdt, DayTrends, Brooklyn, New York
|
|
|
- Doris Webster
- 10 years ago
- Views:
Transcription
1 Paper Risk Management : Using SAS to Model Portfolio Drawdown, Recovery, and Value at Risk Haftan Eckholdt, DayTrends, Brooklyn, New York ABSTRACT Portfolio risk management is an art and a science that is critical to maintaining and understanding financial instruments. While drawdown, recovery, and value at risk (VAR) refer to standard monitoring devices in the industry, there is little clarity on the approaches used for each. Comparing established approaches like risk metrics that are based on historical correlations, with newer approaches using a layered boot strap of historical data can reveal discrepancies. INTRODUCTION What was the biggest loss? Drawdown is defined as the relative equity loss from the highest peak to the lowest valley of a price decline within a given window of observation. How long did it take to recover those losses? The time that it takes to recover from that drawdown is called a recovery. What might I typically lose tomorrow? Value at risk measures the maximum expected loss for a given portfolio in a given holding period at a given confidence level. What could I lose in a worse case scenario? A newer metric called a Crash Kappa can provide insights to this question. Using SAS (%MACRO, STAT, GRAPH), to model drawdown and recovery reveals discrepancies between the observed distribution and the normal distribution. This argues strongly that empirical distributions should be used for the drawdown measurements of the strategies. These discrepancies also suggest that empirical distributions are probably necessary for other measures of risk, like value at risk (VAR), and the crash Kappa. DRAWDOWN The SAS calculation of drawdown is relatively simple, although the %MACRO code doesn t suggest that. We calculated drawdown for 2 days, 5 days (1 week), 20 days (1 month), and 60 days (1 quarter), as held by the macro variable &W. %DO A = %EVAL((%SCAN(&W,&C)) %TO 1 %BY -1; %DO B = %EVAL(&A -1) %TO 1 %BY -1; A&A.B&B = (LAG&B(sp500) -LAG&A(sp500))/ LAG&A(sp500); DRAW = MIN(A%EVAL(%SCAN(&W,&C))B%EVAL((%SCAN(&W,&C)) -1) %DO A = %EVAL((%SCAN(&W,&C)) %TO 1 %BY -1; %DO B = %EVAL(&A -1) %TO 1 %BY -1;,A&A.B&B ); P0 = sp500; %DO A = 1 %TO %SCAN(&W,&C); P&A = LAG&A(DOLLAR%SCAN(&Y,&D)); PEAK = MAX(P0 %DO A = 1 %TO %SCAN(&W,&C);,P&A );. 1
2 .. %DO E = 300 %TO 1 %BY -1; IF LAG&E(DOLLAR%SCAN(&Y,&D)) GE PEAK THEN RECOVER = &E; Figure 1 shows both the daily close price as well as the maximum drawdown for the Index over the 21 year period. Note that the value axis ranges from $1 to $12 assuming that you invested just one dollar from the start. On the right hand axis, percent drawdown ranges from 34% to 2%. This figure is very informative in terms of the frequency and depth of drawdown that is likely to be experienced. proc gplot; TITLE1 "Max DrawDown and Recovery in %SCAN(&W,&C) Trading Days"; TITLE2 "Strategy: %SCAN(&V,&D) "; plot DRAW * DATE / haxis=axis1 vaxis=axis2 frame ; plot2 RECOVER * DATE / vaxis=axis3 ; Figure 1. S&P500 Index daily close price (blue), and percent maximum drawdown (red) in rolling quarters from 1980 to
3 Several observations can be made from the Index analysis alone. The percent drawdown has a clustering that looks a little Gaussian on the right hand side of the distribution in Figure 2. Table 1 describes the important moments in the distribution, which is definitely not normally distributed. Figure 2. Density function of percent maximum drawdown of S&P500 Index from 1990 to Table 1. Descriptive statistics of the maximum quarterly drawdown of the S&P500 Index from 1990 to N 5051 Mean Std Deviation Skewness Uncorrected SS Coeff Variation Sum Weights 5051 Sum Observations Variance Kurtosis Corrected SS Std Error Mean
4 Table 2 describes the quantiles of the distribution. For monitoring purposes we will focus on the 1st and 99th quantiles which provide a 98% observation interval around the data (-0.012, -0.29). Table 2. Quantiles of the maximum quarterly drawdown of the S&P500 Index from 1980 to Quantile Estimate 100% Max % % % % Q % Median % Q % % % % Min Figure 3 shows the drawdown plotted against the time to recovery from the peak. Figure 3. S&P500 percent maximum drawdown (blue) and days to recovery 9red) in rolling quarters from 1980 to
5 The density function of the recovery period shows that there are plenty of drawdown events that require a year or more to recover. Figure 4 shows the temporal relationship between these events. It seems as if drawdown of 15% to 20% takes about a year to recover, except for the crash in 1997 which took little recovery time. Deeper drawdown, greater than 20%, which only occurred in 1987, required almost 2 years of recovery time. Figure 4. Density function of recovery time of S&P500 Index from 1980 to Table 3. Descriptive statistics of the recovery time of the S&P500 Index from 1980 to N 4908 Mean Std Deviation Skewness Coeff Variation Variance Kurtosis Std Error Mean
6 Table 4 provides the quantiles which have more positive and negative extremes. Overall, the maximum recovery time was 485 days or nearly two years. Table 4. Quantiles of the recovery of the Index from 1980 to Quantile Estimate 100% Max % % % % Q % Median % Q % 1.0 5% 1.0 1% 1.0 0% Min 1.0 Figure 5 cuts to the heart of the matter. While the two measures, drawdown and recovery are not well correlated, the greatest drawdowns are associated with some of the greatest recovery periods as pointed out by the arrows in the lower right hand portion of figure 5. Figure 5. Drawdown by recovery for the S&P500 index in rolling quarters from 1980 to 2000 (time is graded color) D R A W RECOVER 6
7 VALUE AT RISK (VAR) Value At Risk (VAR) is calculated in one of three ways: 1. Historical return & parametric inference 2. Historical correlations & parametric inference 3. Monte Carlo & parametric inference. The code that follows can be used to calculate VAR using the first two methods. PROC IML; USE MATRIXV; READ VAR _NUM_ INTO V; PRINT V; USE MATRIXC; READ ALL VAR _NUM_ INTO C; PRINT C; X = V*C; PRINT X; W=T(V); PRINT W; Y = X*W; PRINT Y; Z = SQRT(Y); PRINT Z; CREATE VARDIV FROM Z[COLNAME="VAR"]; APPEND FROM Z; Figure 6. Daily asset value with tomorrow s lower boundary 95% confidence interval of VAR($) estimated from the undiversified analysis (method I: red) and diversified analysis (method II: green). 7
8 Figure 7. Log(daily return) with the lower boundary 95% confidence interval of VAR(%) boundaries estimated from the undiversified analysis (method I: red) and diversified analysis (method II: green). Several conclusions can be made from figure 7. Mostly one notices that the undiversified asset approach leads to many exceptions, and this presentation will include discussion of the Kupiec test which quantifies the probability of exceptions. CRASH KAPPA Extreme markets require extreme calculations. In order to predict behavior during extreme market conditions, one needs to constrain the sample to extreme conditions. This can be done with the Crash Kappa, where the analytic sample is confined to those days of +/- 3% change. The code for such estimates will be described in detail during the presentation. REFERENCES Butler, C. (1999). Mastering Value at Risk. Pearson: London. Chiang, A. (1984). Fundamental Methods of Mathematical Economics. McGraw-Hill: New York. Dacorogna, M., Gencay, R., Muller, U., Olsen, R., Pectet. (2001). An Introduction to High-Frequency Finance. Academic: New York. Korajczyk, R. (1999). Asset Pricing and Portfolio Performance. Risk: London. Parker, Virginia. (2000). Managing Hedge Fund Risk. Risk: London. Wilmott, P. (2001). Quantitative Finance. John Wiley: London. CONTACT INFORMATION Your comments and questions are valued and encouraged. Contact the author at: 8
9 Haftan Eckholdt DayTrends 10 Jay Street Brooklyn, New York Work Phone: (718) Fax: (718) URL: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. indicates USA registration. Other brand and product names are trademarks of their respective companies. 9
SAS Portfolio Analysis - Serving the Kitchen Sink Haftan Eckholdt, DayTrends, Brooklyn, NY
SAS Portfolio Analysis - Serving the Kitchen Sink Haftan Eckholdt, DayTrends, Brooklyn, NY ABSTRACT Portfolio management has surpassed the capabilities of financial software platforms both in terms of
SAS Rule-Based Codebook Generation for Exploratory Data Analysis Ross Bettinger, Senior Analytical Consultant, Seattle, WA
SAS Rule-Based Codebook Generation for Exploratory Data Analysis Ross Bettinger, Senior Analytical Consultant, Seattle, WA ABSTRACT A codebook is a summary of a collection of data that reports significant
4 Other useful features on the course web page. 5 Accessing SAS
1 Using SAS outside of ITCs Statistical Methods and Computing, 22S:30/105 Instructor: Cowles Lab 1 Jan 31, 2014 You can access SAS from off campus by using the ITC Virtual Desktop Go to https://virtualdesktopuiowaedu
Contents. List of Figures. List of Tables. List of Examples. Preface to Volume IV
Contents List of Figures List of Tables List of Examples Foreword Preface to Volume IV xiii xvi xxi xxv xxix IV.1 Value at Risk and Other Risk Metrics 1 IV.1.1 Introduction 1 IV.1.2 An Overview of Market
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
Dr Christine Brown University of Melbourne
Enhancing Risk Management and Governance in the Region s Banking System to Implement Basel II and to Meet Contemporary Risks and Challenges Arising from the Global Banking System Training Program ~ 8 12
An introduction to Value-at-Risk Learning Curve September 2003
An introduction to Value-at-Risk Learning Curve September 2003 Value-at-Risk The introduction of Value-at-Risk (VaR) as an accepted methodology for quantifying market risk is part of the evolution of risk
Diversifying with Negatively Correlated Investments. Monterosso Investment Management Company, LLC Q1 2011
Diversifying with Negatively Correlated Investments Monterosso Investment Management Company, LLC Q1 2011 Presentation Outline I. Five Things You Should Know About Managed Futures II. Diversification and
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP
Improving the Performance of Data Mining Models with Data Preparation Using SAS Enterprise Miner Ricardo Galante, SAS Institute Brasil, São Paulo, SP ABSTRACT In data mining modelling, data preparation
Foundation of Quantitative Data Analysis
Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
A constant volatility framework for managing tail risk
A constant volatility framework for managing tail risk Alexandre Hocquard, Sunny Ng and Nicolas Papageorgiou 1 Brockhouse Cooper and HEC Montreal September 2010 1 Alexandre Hocquard is Portfolio Manager,
Analyzing Portfolio Expected Loss
Analyzing Portfolio Expected Loss In this white paper we discuss the methodologies that Visible Equity employs in the calculation of portfolio expected loss. Portfolio expected loss calculations combine
2. Filling Data Gaps, Data validation & Descriptive Statistics
2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)
Interpreting Data in Normal Distributions
Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,
JOURNAL OF INVESTMENT MANAGEMENT, Vol. 1, No. 2, (2003), pp. 30 43 SHORT VOLATILITY STRATEGIES: IDENTIFICATION, MEASUREMENT, AND RISK MANAGEMENT 1
JOURNAL OF INVESTMENT MANAGEMENT, Vol. 1, No. 2, (2003), pp. 30 43 JOIM JOIM 2003 www.joim.com SHORT VOLATILITY STRATEGIES: IDENTIFICATION, MEASUREMENT, AND RISK MANAGEMENT 1 Mark Anson a, and Ho Ho a
Java Modules for Time Series Analysis
Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series
Risk Budgeting: Concept, Interpretation and Applications
Risk Budgeting: Concept, Interpretation and Applications Northfield Research Conference 005 Eddie Qian, PhD, CFA Senior Portfolio Manager 60 Franklin Street Boston, MA 00 (67) 439-637 7538 8//005 The Concept
USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY
Paper PO10 USE OF ARIMA TIME SERIES AND REGRESSORS TO FORECAST THE SALE OF ELECTRICITY Beatrice Ugiliweneza, University of Louisville, Louisville, KY ABSTRACT Objectives: To forecast the sales made by
Statistics, Data Analysis & Econometrics
Using the LOGISTIC Procedure to Model Responses to Financial Services Direct Marketing David Marsh, Senior Credit Risk Modeler, Canadian Tire Financial Services, Welland, Ontario ABSTRACT It is more important
Practical Calculation of Expected and Unexpected Losses in Operational Risk by Simulation Methods
Practical Calculation of Expected and Unexpected Losses in Operational Risk by Simulation Methods Enrique Navarrete 1 Abstract: This paper surveys the main difficulties involved with the quantitative measurement
Data exploration with Microsoft Excel: analysing more than one variable
Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical
Profit Forecast Model Using Monte Carlo Simulation in Excel
Profit Forecast Model Using Monte Carlo Simulation in Excel Petru BALOGH Pompiliu GOLEA Valentin INCEU Dimitrie Cantemir Christian University Abstract Profit forecast is very important for any company.
Chapter 6 The Tradeoff Between Risk and Return
Chapter 6 The Tradeoff Between Risk and Return MULTIPLE CHOICE 1. Which of the following is an example of systematic risk? a. IBM posts lower than expected earnings. b. Intel announces record earnings.
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Risk Analysis and Quantification
Risk Analysis and Quantification 1 What is Risk Analysis? 2. Risk Analysis Methods 3. The Monte Carlo Method 4. Risk Model 5. What steps must be taken for the development of a Risk Model? 1.What is Risk
Choosing a classification method
Chapter 6 Symbolizing your data 103 Choosing a classification method ArcView offers five classification methods for making a graduated color or graduated symbol map: Natural breaks Quantile Equal area
Paper 208-28. KEYWORDS PROC TRANSPOSE, PROC CORR, PROC MEANS, PROC GPLOT, Macro Language, Mean, Standard Deviation, Vertical Reference.
Paper 208-28 Analysis of Method Comparison Studies Using SAS Mohamed Shoukri, King Faisal Specialist Hospital & Research Center, Riyadh, KSA and Department of Epidemiology and Biostatistics, University
Introducing the Loan Pool Specific Factor in CreditManager
Technical Note Introducing the Loan Pool Specific Factor in CreditManager A New Tool for Decorrelating Loan Pools Driven by the Same Market Factor Attila Agod, András Bohák, Tamás Mátrai Attila.Agod@ Andras.Bohak@
Evaluating the results of a car crash study using Statistical Analysis System. Kennesaw State University
Running head: EVALUATING THE RESULTS OF A CAR CRASH STUDY USING SAS 1 Evaluating the results of a car crash study using Statistical Analysis System Kennesaw State University 2 Abstract Part 1. The study
Descriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
EXPLORATORY DATA ANALYSIS: GETTING TO KNOW YOUR DATA
EXPLORATORY DATA ANALYSIS: GETTING TO KNOW YOUR DATA Michael A. Walega Covance, Inc. INTRODUCTION In broad terms, Exploratory Data Analysis (EDA) can be defined as the numerical and graphical examination
Financial Time Series Analysis (FTSA) Lecture 1: Introduction
Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often
The Best of Both Worlds:
The Best of Both Worlds: A Hybrid Approach to Calculating Value at Risk Jacob Boudoukh 1, Matthew Richardson and Robert F. Whitelaw Stern School of Business, NYU The hybrid approach combines the two most
Financial Assets Behaving Badly The Case of High Yield Bonds. Chris Kantos Newport Seminar June 2013
Financial Assets Behaving Badly The Case of High Yield Bonds Chris Kantos Newport Seminar June 2013 Main Concepts for Today The most common metric of financial asset risk is the volatility or standard
Experimental Design for Influential Factors of Rates on Massive Open Online Courses
Experimental Design for Influential Factors of Rates on Massive Open Online Courses December 12, 2014 Ning Li [email protected] Qing Wei [email protected] Yating Lan [email protected] Yilin Wei [email protected]
Make Better Decisions with Optimization
ABSTRACT Paper SAS1785-2015 Make Better Decisions with Optimization David R. Duling, SAS Institute Inc. Automated decision making systems are now found everywhere, from your bank to your government to
Statistics. Measurement. Scales of Measurement 7/18/2012
Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does
The Benefits of Portfolio Diversification
Frontier Investment Management LLP Research The Benefits of Portfolio Diversification The second half of 2007 has been a period of heightened volatility in financial markets. Without passing judgment on
How To Write A Data Analysis
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
Investment Statistics: Definitions & Formulas
Investment Statistics: Definitions & Formulas The following are brief descriptions and formulas for the various statistics and calculations available within the ease Analytics system. Unless stated otherwise,
Pristine s Day Trading Journal...with Strategy Tester and Curve Generator
Pristine s Day Trading Journal...with Strategy Tester and Curve Generator User Guide Important Note: Pristine s Day Trading Journal uses macros in an excel file. Macros are an embedded computer code within
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
Projects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
Information Technology Services will be updating the mark sense test scoring hardware and software on Monday, May 18, 2015. We will continue to score
Information Technology Services will be updating the mark sense test scoring hardware and software on Monday, May 18, 2015. We will continue to score all Spring term exams utilizing the current hardware
Descriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
Alex Vidras, David Tysinger. Merkle Inc.
Using PROC LOGISTIC, SAS MACROS and ODS Output to evaluate the consistency of independent variables during the development of logistic regression models. An example from the retail banking industry ABSTRACT
A comparison between different volatility models. Daniel Amsköld
A comparison between different volatility models Daniel Amsköld 211 6 14 I II Abstract The main purpose of this master thesis is to evaluate and compare different volatility models. The evaluation is based
Calculating VaR. Capital Market Risk Advisors CMRA
Calculating VaR Capital Market Risk Advisors How is VAR Calculated? Sensitivity Estimate Models - use sensitivity factors such as duration to estimate the change in value of the portfolio to changes in
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
EXPLORING SPATIAL PATTERNS IN YOUR DATA
EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze
Algorithmic Trading Session 1 Introduction. Oliver Steinki, CFA, FRM
Algorithmic Trading Session 1 Introduction Oliver Steinki, CFA, FRM Outline An Introduction to Algorithmic Trading Definition, Research Areas, Relevance and Applications General Trading Overview Goals
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
Getting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
Histogram of Numeric Data Distribution from the UNIVARIATE Procedure
Histogram of Numeric Data Distribution from the UNIVARIATE Procedure Chauthi Nguyen, GlaxoSmithKline, King of Prussia, PA ABSTRACT The UNIVARIATE procedure from the Base SAS Software has been widely used
Module 4: Data Exploration
Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive
Portfolio Construction with OPTMODEL
ABSTRACT Paper 3225-2015 Portfolio Construction with OPTMODEL Robert Spatz, University of Chicago; Taras Zlupko, University of Chicago Investment portfolios and investable indexes determine their holdings
Chapter 11 Introduction to Survey Sampling and Analysis Procedures
Chapter 11 Introduction to Survey Sampling and Analysis Procedures Chapter Table of Contents OVERVIEW...149 SurveySampling...150 SurveyDataAnalysis...151 DESIGN INFORMATION FOR SURVEY PROCEDURES...152
Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
The imprecision of volatility indexes
The imprecision of volatility indexes Rohini Grover Ajay Shah IGIDR Finance Research Group May 17, 2014 Volatility indexes The volatility index (VIX) is an implied volatility estimate that measures the
Risk and return (1) Class 9 Financial Management, 15.414
Risk and return (1) Class 9 Financial Management, 15.414 Today Risk and return Statistics review Introduction to stock price behavior Reading Brealey and Myers, Chapter 7, p. 153 165 Road map Part 1. Valuation
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Market Risk Analysis and Portfolio Management
Market Risk Analysis and Portfolio Management [email protected] www.risk-o.com CVaR Expert 2.0 System overview CVX Connectivity Capture market and portfolio data from multiple sources simultaneously (Oracle,
Dollar-cost averaging just means taking risk later
Dollar-cost averaging just means taking risk later Vanguard research July 2012 Executive summary. If a foundation receives a $20 million cash gift, what are the tradeoffs to consider between investing
Investing In Volatility
Investing In Volatility By: Anish Parvataneni, CFA Portfolio Manager LJM Partners Ltd. LJM Partners, Ltd. is issuing a series a white papers on the subject of investing in volatility as an asset class.
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR
VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 [email protected] Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.
( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net E-mail: [email protected] Posted September 21,
Big data in Finance. Finance Research Group, IGIDR. July 25, 2014
Big data in Finance Finance Research Group, IGIDR July 25, 2014 Introduction Who we are? A research group working in: Securities markets Corporate governance Household finance We try to answer policy questions
Data exploration with Microsoft Excel: univariate analysis
Data exploration with Microsoft Excel: univariate analysis Contents 1 Introduction... 1 2 Exploring a variable s frequency distribution... 2 3 Calculating measures of central tendency... 16 4 Calculating
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]
Parametric Value at Risk
April 2013 by Stef Dekker Abstract With Value at Risk modelling growing ever more complex we look back at the basics: parametric value at risk. By means of simulation we show that the parametric framework
A Simple Guide to Churn Analysis
A Simple Guide to Churn Analysis A Publication by Evergage Introduction Thank you for downloading A Simple Guide to Churn Analysis. The goal of this guide is to make analyzing churn easy, meaning you wont
Data Preparation and Statistical Displays
Reservoir Modeling with GSLIB Data Preparation and Statistical Displays Data Cleaning / Quality Control Statistics as Parameters for Random Function Models Univariate Statistics Histograms and Probability
Practice#1(chapter1,2) Name
Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics
Evaluating Trading Systems By John Ehlers and Ric Way
Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system
THE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON
Exploratory Data Analysis. Psychology 3256
Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find
Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank
Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through
Risk Profile Questionnaire
Risk Profile Questionnaire Names: lient 1 lient 2 Date of ompletion: dviser: Important notice to clients: orporations law requires that in order to make an investment or insurance recommendation, the adviser
Tax Cognizant Portfolio Analysis: A Methodology for Maximizing After Tax Wealth
Tax Cognizant Portfolio Analysis: A Methodology for Maximizing After Tax Wealth Kenneth A. Blay Director of Research 1st Global, Inc. Dr. Harry M. Markowitz Harry Markowitz Company CFA Society of Austin
by Maria Heiden, Berenberg Bank
Dynamic hedging of equity price risk with an equity protect overlay: reduce losses and exploit opportunities by Maria Heiden, Berenberg Bank As part of the distortions on the international stock markets
FINANCIAL ECONOMICS OPTION PRICING
OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.
High Frequency Equity Pairs Trading: Transaction Costs, Speed of Execution and Patterns in Returns
High Frequency Equity Pairs Trading: Transaction Costs, Speed of Execution and Patterns in Returns David Bowen a Centre for Investment Research, UCC Mark C. Hutchinson b Department of Accounting, Finance
