12.5: CHI-SQUARE GOODNESS OF FIT TESTS
|
|
|
- Buck Randall
- 9 years ago
- Views:
Transcription
1 125: Chi-Square Goodness of Fit Tests CD : CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability distribution In a test of goodness of fit, the actual frequencies in a category are compared to the frequencies that theoretically would be expected to occur if the data followed the specific probability distribution of interest Several steps are required to carry out a chi-square goodness of fit test First, determine the specific probability distribution to be fitted to the data Second, hypothesize or estimate the values of each parameter of the selected probability distribution (such as the mean) Next, determine the theoretical probability in each category using the selected probability distribution Finally, use the χ 2 test statistic, Equation (128), to test whether the selected distribution is a good fit to the data The Chi-Square Goodness of Fit Test for a Poisson Distribution Recall from Section 55 that the Poisson distribution was used to model the number of arrivals per minute at a bank located in the central business district of a city Suppose that the actual arrivals per minute were observed in 200 one-minute periods over the course of a week The results are summarized in Table 1212 TABLE 1212 Frequency distribution of arrivals per minute during a lunch period ARRIVALS To determine whether the number of arrivals per minute follows a Poisson distribution, the null and alternative hypotheses are as follows: H 0 : The number of arrivals per minute follows a Poisson distribution H 1 : The number of arrivals per minute does not follow a Poisson distribution Since the Poisson distribution has one parameter, its mean λ, either a specified value can be included as part of the null and alternative hypotheses, or the parameter can be estimated from the sample data In this example, to estimate the average number of arrivals, you need to refer back to Equation (315) on page 111 Using Equation (315) and the computations in Table 1213, X X c mf j j j = 1 = n 580 = =
2 CD12-2 CD MATERIAL TABLE 1213 Computation of the sample average number of arrivals from the frequency distribution of arrivals per minute ARRIVALS f j m j f j This value of the sample mean is used as the estimate of λ for the purposes of finding the probabilities from the tables of the Poisson distribution (Table E7) From Table E7, for λ = 29, the frequency of X successes (X = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or more) can be determined The theoretical frequency for each is obtained by multiplying the appropriate Poisson probability by the sample size n These results are summarized in Table 1214 TABLE 1214 Actual and theoretical frequencies of the arrivals per minute PROBABILITY, P (X ), FOR ACTUAL POISSON DISTRIBUTION THEORETICAL ARRIVALS f 0 WITH = 29 f e = n P (X ) or more Observe from Table 1214 that the theoretical frequency of 9 or more arrivals is less than 10 In order to have all categories contain a frequency of 10 or greater, the category 9 or more is combined with the category of 8 arrivals The chi-square test for determining whether the data follow a specific probability distribution is computed using Equation (128) 2 2 f fe χ k p = ( 0 ) 1 f k e (128) where f 0 = observed frequency f e = theoretical or expected frequency k = number of categories or classes remaining after combining classes p = number of parameters estimated from the data
3 125: Chi-Square Goodness of Fit Tests CD12-3 Returning to the example concerning the arrivals at the bank, nine categories remain (0, 1, 2, 3, 4, 5, 6, 7, 8 or more) Since the mean of the Poisson distribution has been estimated from the data, the number of degrees of freedom are k p 1 = = 7 degrees of freedom Using the 005 level of significance, from Table E4, the critical value of χ 2 with 7 degrees of freedom is The decision rule is Reject H 0 if χ 2 > 14067; otherwise do not reject H 0 From Table 1215, since χ 2 = < 14067, the decision is not to reject H 0 There is insufficient evidence to conclude that the arrivals per minute do not fit a Poisson distribution TABLE 1215 Computation of the chi-square test statistic for the arrivals per minute ARRIVALS f o f e (f o f e ) (f o f e ) 2 (f o f e ) 2 /f e or more The Chi-Square Goodness of Fit Test for a Normal Distribution In Chapters 8 through 11, when testing hypotheses about numerical variables, the assumption is made that the underlying population was normally distributed While graphical tools such as the box-and-whisker plot and the normal probability plot can be used to evaluate the validity of this assumption, an alternative that can be used with large sample sizes is the chi-square goodness-of-fit test for a normal distribution As an example of how the chi-square goodness-of-fit test for a normal distribution can be used, return to the 5-year annualized return rates achieved by the 158 growth funds summarized in Table 22 on page 45 Suppose you would like to test whether these returns follow a normal distribution The null and alternative hypotheses are as follows: H 0 : The 5-year annualized return rates follow a normal distribution H 1 : The 5-year annualized return rates do not follow a normal distribution In the case of the normal distribution, there are two parameters, the mean µ and the standard deviation σ, that can be estimated from the sample For these data, X = 10 and S = 4 Table 22 uses class interval widths of 5 with class boundaries beginning at 100 Since the normal distribution is continuous, the area in each class interval must be determined In addition, since a normally distributed variable theoretically ranges from to +, the area beyond the class interval must also be accounted for Thus, the area below 10 is the area below the Z value Z = = From Table E2, the area below Z = 422 is approximately To compute the area between 100 and 50, the area below 50 is computed as follows Z = = 317 4
4 CD12-4 CD MATERIAL From Table E2, the area below Z = 317 is approximately Thus, the area between 50 and 100 is the difference in the area below 50 and the area below 100, which is = Continuing, to compute the area between 50 and 00, the area below 00 is computed as follows Z = = From Table E2, the area below Z = 213 is approximately Thus the area between 00 and 50 is the difference in the area below 00 and the area below 50, which is = In a similar manner, the area in each class interval can be computed The complete set of computations needed to find the area and expected frequency in each class is summarized in Table 1216 TABLE 1216 Computation of the area and expected frequencies in each class interval for the 5-year annualized returns CLASSES X X X Z AREA BELOW AREA IN CLASS f e = n P (X ) Below but < but < but < but < but < but < but < but < or more Observe from Table 1216 that the theoretical frequency of below 100, between 100 and 50, between 250 and 300, and 300 or more are all less than 10 In order to have all categories contain a frequency of 10 or greater, the categories below 100 and between 100 and 50 are combined with the category 50 to 00 and the categories between 250 and 300, and 300 or more are combined with the category 200 to 250 The chi-square test for determining whether the data follow a specific probability distribution is computed using Equation (128) on page CD12-2 In this example, after combining classes, 6 classes remain Since the population mean and standard deviation have been estimated from the sample data, the number of degrees of freedom is equal to k p 1 = = 3 Using a level of significance of 005, the critical value of chi-square with 3 degrees of freedom is 7815 Table 1217 summarizes the computations for the chi-square test TABLE 1217 Computation of the chi-square test statistic for the 5-year annualized returns CLASSES f o f e (f o f e ) (f o f e ) 2 (f o f e ) 2 /f e Below < but < but < but < but < and above From Table 1217, since χ 2 = < 7815, the decision is not to reject H 0 Thus there is insufficient evidence to conclude that the 5-year annualized return does not fit a normal distribution
5 125: Chi-Square Goodness of Fit Tests CD12-5 PROBLEMS FOR SECTION The manager of a computer network has collected data on the number of times that service has been interrupted on each day over the past days The results are as follows: INTERRUPTIONS PER DAY NUMBER OF DAYS Does the distribution of service interruptions follow a Poisson distribution? (Use the 001 level of significance) 1250 Referring to the data in problem 1249, at the 001 level of significance, does the distribution of service interruptions follow a Poisson distribution with a population mean of 15 interruptions per day? 1251 The manager of a commercial mortgage department of a large bank has collected data during the past two years concerning the number of commercial mortgages approved per week The results from these two years (104 weeks) indicated the following: NUMBER OF COMMERCIAL MORTGAGES APPROVED A random sample of car batteries revealed the following distribution of battery life (in years) LIFE (IN YEARS) 0 under under under under under under 6 8 For these data, X = 280 and S = 097 At the 005 level of significance, does battery life follow a normal distribution? 1253 A random sample of long distance telephone calls revealed the following distribution of call length (in minutes) LENGTH (IN MINUTES) 0 under under under under under under a Compute the mean and standard deviation of this frequency distribution b At the 005 level of significance, does call length follow a normal distribution? Does the distribution of commercial mortgages approved per week follow a Poisson distribution? (Use the 001 level of significance)
Comparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
The normal approximation to the binomial
The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There
Confidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
The normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
Confidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
Chapter 5 Discrete Probability Distribution. Learning objectives
Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
Math 108 Exam 3 Solutions Spring 00
Math 108 Exam 3 Solutions Spring 00 1. An ecologist studying acid rain takes measurements of the ph in 12 randomly selected Adirondack lakes. The results are as follows: 3.0 6.5 5.0 4.2 5.5 4.7 3.4 6.8
Questions and Answers
GNH7/GEOLGG9/GEOL2 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD TUTORIAL (6): EARTHQUAKE STATISTICS Question. Questions and Answers How many distinct 5-card hands can be dealt from a standard 52-card deck?
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
Binomial random variables
Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Chi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
Goodness of Fit. Proportional Model. Probability Models & Frequency Data
Probability Models & Frequency Data Goodness of Fit Proportional Model Chi-square Statistic Example R Distribution Assumptions Example R 1 Goodness of Fit Goodness of fit tests are used to compare any
Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%.
Chapter 7-8 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. Please indicate which program
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Lecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test
Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution
Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.
Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal
Exact Confidence Intervals
Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
Hypothesis Testing --- One Mean
Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
Binomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
Confidence Intervals for Cpk
Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process
Descriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
Confidence Intervals for Exponential Reliability
Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
EMPIRICAL FREQUENCY DISTRIBUTION
INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates
Chapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
Non-Parametric Tests (I)
Lecture 5: Non-Parametric Tests (I) KimHuat LIM [email protected] http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22
Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability
The Chi-Square Test. STAT E-50 Introduction to Statistics
STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010
Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
START Selected Topics in Assurance
START Selected Topics in Assurance Related Technologies Table of Contents Introduction Some Statistical Background Fitting a Normal Using the Anderson Darling GoF Test Fitting a Weibull Using the Anderson
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Normal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College
Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission
AP STATISTICS (Warm-Up Exercises)
AP STATISTICS (Warm-Up Exercises) 1. Describe the distribution of ages in a city: 2. Graph a box plot on your calculator for the following test scores: {90, 80, 96, 54, 80, 95, 100, 75, 87, 62, 65, 85,
Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/
Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Mark Scheme 4767 June 2005 GENERAL INSTRUCTIONS Marks in the mark scheme are explicitly designated as M, A, B, E or G. M marks ("method") are for an attempt to use a correct method (not merely for stating
Non-Inferiority Tests for Two Means using Differences
Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous
Stats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
Chapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
Introduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
Inference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Chi-square test Fisher s Exact test
Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions
Topic 8. Chi Square Tests
BE540W Chi Square Tests Page 1 of 5 Topic 8 Chi Square Tests Topics 1. Introduction to Contingency Tables. Introduction to the Contingency Table Hypothesis Test of No Association.. 3. The Chi Square Test
Continuous Random Variables
Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous
DATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
How To Test For Significance On A Data Set
Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures
First-year Statistics for Psychology Students Through Worked Examples
First-year Statistics for Psychology Students Through Worked Examples 1. THE CHI-SQUARE TEST A test of association between categorical variables by Charles McCreery, D.Phil Formerly Lecturer in Experimental
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170
Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
November 08, 2010. 155S8.6_3 Testing a Claim About a Standard Deviation or Variance
Chapter 8 Hypothesis Testing 8 1 Review and Preview 8 2 Basics of Hypothesis Testing 8 3 Testing a Claim about a Proportion 8 4 Testing a Claim About a Mean: σ Known 8 5 Testing a Claim About a Mean: σ
Two Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
statistics Chi-square tests and nonparametric Summary sheet from last time: Hypothesis testing Summary sheet from last time: Confidence intervals
Summary sheet from last time: Confidence intervals Confidence intervals take on the usual form: parameter = statistic ± t crit SE(statistic) parameter SE a s e sqrt(1/n + m x 2 /ss xx ) b s e /sqrt(ss
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
UNIT 2 QUEUING THEORY
UNIT 2 QUEUING THEORY LESSON 24 Learning Objective: Apply formulae to find solution that will predict the behaviour of the single server model II. Apply formulae to find solution that will predict the
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic
A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic Report prepared for Brandon Slama Department of Health Management and Informatics University of Missouri, Columbia
Elements of statistics (MATH0487-1)
Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -
