arxiv:hep-th/0605275v1 29 May 2006



Similar documents
Future Trends in Airline Pricing, Yield. March 13, 2013

Vehicle Identification Numbering System 00.03

Acceptance Page 2. Revision History 3. Introduction 14. Control Categories 15. Scope 15. General Requirements 15

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

1 Symmetries of regular polyhedra

State of Stress at Point

DHL EXPRESS CANADA E-BILL STANDARD SPECIFICATIONS

Elements of Abstract Group Theory

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Special Theory of Relativity

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The consensus of the Pharmacy Practice Model Summit Am J Health-Syst Pharm. 2011; 68: This list of the Pharmacy Practice

CARTAN S GENERALIZATION OF LIE S THIRD THEOREM

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Second Rank Tensor Field Theory

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses

3 3RG78 45 program overview

The Einstein field equations

College and Career Readiness Standards / Texas Essential Knowledge and Skills Alignment. Cross Disciplinary

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, :30 to 11:30 a.m.

GROUP ALGEBRAS. ANDREI YAFAEV

Introduction to Matrices for Engineers

9 MATRICES AND TRANSFORMATIONS

Algebra 1 Course Information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Euclidean quantum gravity revisited

Service Instruction. 1.0 SUBJECT: ECi Accessory Cases for Lycoming 4-Cylinder engines with single magneto configurations and TITAN 361 Engines

NEOSHO COUNTY COMMUNITY COLLEGE MASTER COURSE SYLLABUS. Medical Administrative Aspects

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics / 30

Pattern Co. Monkey Trouble Wall Quilt. Size: 48" x 58"

Gauge theories and the standard model of elementary particle physics

LECTURE III. Bi-Hamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland

Attachment "A" - List of HP Inkjet Printers

Generally Covariant Quantum Mechanics

DATING YOUR GUILD

The Essence of Gravitational Waves and Energy

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, :30 to 11:30 a.m., only.

Geometry Handout 2 ~ Page 1

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY

1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.


Concept of a Technology Classification for Country

Structure formation in modified gravity models

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

The Characteristic Polynomial

Visa Smart Debit/Credit Certificate Authority Public Keys

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces

Exercise Set 3. Similar triangles. Parallel lines

Mathematical Physics, Lecture 9

Algebraic Properties and Proofs

arxiv:gr-qc/ v2 15 Aug 2006

3-rd lecture: Modified gravity and local gravity constraints

Manpower Codes Lookup

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Ernst Binz and Peter ojners Universität Mannheirh Lehrstuhl Mathematik I, SeminJrgebäude Mannheim

How To Understand The Kroncker Product

THREE DIMENSIONAL GEOMETRY

Extrinsic geometric flows

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

How To Understand The Dynamics Of A Multibody System

Dynamic Eigenvalues for Scalar Linear Time-Varying Systems


How To Understand The Theory Of Differential Geometry

G = G 0 > G 1 > > G k = {e}

Community College of Philadelphia Calling Code 218 Employer Scan Client Approved: November 17, 2005 Region (CIRCLE) City MSA

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents

DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY

F Matrix Calculus F 1

Elasticity Theory Basics

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

Continuous Groups, Lie Groups, and Lie Algebras

Quadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

CUSCINETTI MONTANTE MAST ROLLERS

2 Polynomials over a field

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

Math 312 Homework 1 Solutions

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, :15 a.m. to 12:15 p.m.

Orthogonal Diagonalization of Symmetric Matrices

Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir

Quantum Mechanics and Representation Theory

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

15 Limit sets. Lyapunov functions

Unification - The Standard Model

1 Sets and Set Notation.

Transcription:

Second Order Noncommutative Corrections to Gravity Xavier Calmet 1 and Archil Kobahidze 2 1 Univeité Libre de Bruxelles arxiv:hep-th/0605275v1 29 May 2006 Service de Physique Théorique, CP225 Boulevard du Triomphe (Campus plaine) B-1050 Brussels, Belgium 2 Department of Physics and Astronomy Univeity of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA May, 2006 Abstract In this wor, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. Fit order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed. xcalmet@ulb.ac.be obahid@physics.unc.edu 1

It is a difficult to formulate General Relativity on noncommutative spaces and there are thus different approaches in the literature. In [1] for example a deformation of Einstein s gravity was studied using a construction based on gauging the noncommutative SO(4,1) de Sitter group and the Seiberg-Witten map with subsequent contraction to ISO(3,1). Most recently constructions of a noncommutative gravitational theory [2, 3] were proposed based on a twisted Poincaré algebra [4, 5]. The main problem in formulating a theory of gravity on noncommutative manifolds is that it is difficult to implement symmetries such as general coordinate covariance and local Lorentz invariance and to define derivatives which are toion-free and satisfy the metricity condition. Another approach has been proposed based on true physical symmetries [6, 7]. In that approach one restricts the noncommutative action to symmetries of the noncommutative algebra: [ˆx µ, ˆx ν ] = iθ µν. (1) (see also [8] where this idea was applied to Lorentz symmetry). Obviously, the commutator (1) explicitly violates general coordinate covariance since θ µν is constant in all reference frames. However, we can identify a subclass of general coordinate transformations, ˆx µ = ˆx µ + ˆξ µ (ˆx), (2) which are compatible with the algebra given by (1). The hat on the function ˆξ(ˆx) indicates that it is in the enveloping algebra. Under the change of coordinates (2) the commutator (1) transforms as: [ˆx µ, ˆx ν ] = ˆx µ ˆx ν ˆx ν ˆx µ = iθ µν + [ˆx µ, ˆξ ν ] + [ˆξ µ, ˆx ν ] + O(ˆξ 2 ) (3) Requiring that θ µν remains constant yields the following partial differential equations: θ µα ˆ αˆξν (ˆx) = θ νβ ˆ β ˆξµ (ˆx). (4) A nontrivial solution to this condition can be easily found: ˆξ µ (ˆx) = θ µν ˆ ν ˆf(ˆx), (5) where ˆf(ˆx) is an arbitrary field. This noncommutative general coordinate transformation corresponds to the following transformation: ˆξ µ (x) = θ µν ν ˆf(x). The Jacobian of this restricted coordinate transformations is equal to 1, meaning that the volume element is invariant: d 4 x = d 4 x. The veion of General Relativity based on volume-preserving diffeomorphism is nown as the unimodular theory of gravitation [11]. Thus we came to the conclusion that symmetries of canonical noncommutative spacetime naturally lead to the noncommutative 2

veion of unimodular gravity. We obtain the noncommutative field-strength of the SO(3,1) gauge symmetry: with ˆR = R + R (1) + R(2) + O(θ3 ), (6) R (1) = 1 2 θcd {R ac, R bd } 1 4 θcd {ω c, ( d + D d )R }. (7) The noncommutative Riemann tensor is then given by ˆR (ˆx) = 1 2 and the leading order correction in θ is found explicitly to be: ˆR cd (ˆx)Σ cd, (8) ˆR (1)cd (x) = 1 2 θcd Rac ij Rbd l d pq ijl 1 4 θcd wc ij ( d + D d )R l d (2)pq ijl (9) the coefficient d (2)pq ijl is defined by d (1)pq ijl = Tr ({Σ ij, Σ l }Σ pg ), (10) where trace goes over the matrix indices of the SO(3,1) generato Σ ij. The group-theoretic coefficients of eq. (10) are all vanishing by virtue of antisymmetricity of the SO(3,1) generato, Σij T = Σ ij and cyclic properties of the trace [12]. This can be explicitly demonstated for an arbitrary representation for the generato, e.g. Σ = i [γ 4 a, γ b ] The new result of this wor is the second order correction in θ which is given by (2) mn R = 1 32 θij θ l (2wi 2 l i R 4w ef +iw i 2iw iw +2 i (w w cd j l (R ri j w cd j w cd R ef R cd ri R cd R ef il R cd 2iwi R cd +R r R cd is w ef lr ef cdef Rsj cd ) l R ef sj r w ef j cdef + 2iw cdef 4i iw d (5)mn cdefgh ir l d (5)mn cdefgh 2R i + iw l w cd i j d (6)mn cdefgh + 2 iw ) j w ef l d (7)mn cdef + 2 irr R gh sl d (3)mn ghcdef R ef jl +2w l (wi cd j R ef iw ir cd efcd + 4i irr cdef w ef j l d (5)mn + iw w cd j R ef l R ef j d (3)mn cdefgh j l R cd d (4)mn cd i wj cd R ef 2R r R cd w ef i jr cd w cd j R cd i w ef l R ef sl l d (5)mn cdefgh j R ef jrsl cd d (4)mn cd w cd i cdefgh w j R ef wcd i R ef cdef (11) j l d (6)mn cdefgh sl cdef cdef efcd l d (5)mn cdefgh j w pq l d (8)mn cdefghpq ) 3

using the result obtained for a generic noncommutative gauge theory in [10] and where the coefficients d (i) are defined by: cdef = Tr ({{Σ, Σ cd }, Σ ef }Σ mn ), (12) d (3)mn cdefgh = Tr ({Σ, {[Σ cd, Σ ef ], Σ gh }}Σ mn ), (13) d (4)mn cd = Tr ([Σ, Σ cd ]Σ mn ), (14) d (5)mn cdefgh = Tr ({[{Σ, Σ cd }, Σ ef ], Σ gh }Σ mn ), (15) d (6)mn cdefgh = Tr ({[Σ, Σ cd ], {Σ ef, Σ gh }}Σ mn ), (16) d (7)mn cdef = Tr ([[Σ, Σ cd ], Σ ef ]Σ mn ), (17) d (8)mn cdefghpq = Tr ({[Σ, {[Σ cd, Σ ef ], Σ gh }], Σ pq }Σ mn ). (18) This coefficients are easily calculle using a specific representation, e.g. spinorial representation, for the matrices Σ and a computer algebra program such as Mathematica with the routine TRACER [9]. We give explicit expressions for these traces in the appendix. The noncommutative action is then given by S = d 4 x 1 2κ ˆR(ˆx) = 2 d 4 x 1 2κ 2 ( R(x) + R (2) (x) ) + O(θ 3 ). (19) This equation is an action for the noncommutative veion of the unimodular theory of gravitation. The unimodular theory is nown [11] to be classically equivalent to Einstein s General Relativity with a cosmological constant and it can be put in the form S NC = 1 16πG d 4 x gr(g µν ) + O(θ), (20) where R(g µν ) is the usual Ricci scalar and g is the determinant of the metric. If we restrict ouelves to the transformations (5), the determinant of the metric is always equal to minus one, the term g in the action is thus trivial. However, as mentioned previously, we recover full general coordinate invariance in the limit θ µν to zero and it is thus important to write this term explicitly to study the symmetries of the action. In order to obtain the equations of motion corresponding to this action, we need to consider variations of (20) that preserve g = detg µν = 1, i.e. not all the components of g µν are independent. One thus introduces a new varile g µν = g 1 4g µν, which has explicitly a determinant equal to one. The field equations are then R µν 1 4 gµν R + O(θ) = 0. (21) As done in e.g. [11] we can use the Bianchi identities for R and find: R ;µ = 0 (22) 4

which can be integrated easily and give R = Λ, where Λ is an integration constant. It can then be shown that the differential equations (21) imply R µν 1 2 gµν R Λg µν + O(θ) = 0, (23) i.e. Einstein s equations of General Relativity with a cosmological constant Λ that appea as an integration constant. Because any solution of Einstein s equations with a cosmological constant can, at least over any topologically R 4 open subset of spacetime, be written in a coordinate system with g = 1, the physical content of unimodular gravity is identical at the classical level to that of Einstein s gravity with some cosmological constant [11]. The form of the O(θ 2 ) corrections in eq. (11) suggests that in the linearized approximation, gravity is not affected by spacetime noncommutativity. Note also that in the full gravity-matter action the dominant O(θ) will generally be present in the matter Lagrangian, that in turn could affect the solutions for the metric in this order. It would be very interesting to study cosmological perturbations in the ove setting. Acnowledgments The wor of X.C. was supported in part by the IISN and the Belgian science policy office (IAP V/27). References [1] A. H. Chamseddine, Phys. Lett. B 504, 33 (2001) [arxiv:hep-th/0009153]. [2] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp and J. Wess, Class. Quant. Grav. 22, 3511 (2005) [arxiv:hep-th/0504183]; P. Aschieri, M. Dimitrijevic, F. Meyer and J. Wess, Class. Quant. Grav. 23, 1883 (2006) [arxiv:hep-th/0510059]. [3] A. Kobahidze, arxiv:hep-th/0603132. [4] J. Wess, Deformed coordinate spaces: Derivatives, in Lectures given at BW2003 Wohop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Pepectives of Balans Colloration, Vrnjaca Banja, Serbia, 29 Aug - 2 Sep 2003, arxiv:hep-th/0408080. [5] M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu, Phys. Lett. B 604, 98 (2004) [arxiv:hep-th/0408069]. [6] X. Calmet and A. Kobahidze, Phys. Rev. D 72, 045010 (2005) [arxiv:hep-th/0506157]. [7] X. Calmet, arxiv:hep-th/0510165. 5

[8] X. Calmet, Phys. Rev. D 71, 085012 (2005) [arxiv:hep-th/0411147] and arxiv:hep-th/0605033, to appear in the proceedings of 41st Rencontres de Moriond on Electrowea Interactions and Unified Theories, La Thuile, Aosta Valley, Italy, 11-18 Mar 2006. [9] M. Jamin and M. E. Lautenbacher, Comput. Phys. Commun. 74 (1993) 265. [10] L. Moller, JHEP 0410, 063 (2004) [arxiv:hep-th/0409085]. [11] The equations of motion corresponding to this theory have fit been written down by A. Einstein in: A. Einstein, Siz. Preuss. Acad. Scis., (1919); Do Gravitational Fields Play an essential Role in the Structure of Elementary Particle of Matter, by A. Einstein et al (Dover, New Yor, 1952)[Eng. translation]. The theory has been rediscovered in J. J. van der Bij, H. van Dam and Y. J. Ng, Physica 116A, 307 (1982), and further developed by a number of autho, see e.g., F. Wilcze, Phys. Rept. 104, 143 (1984); W. Buchmuller and N. Dragon, Phys. Lett. B 207, 292 (1988); M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195 (1989); W. G. Unruh, Phys. Rev. D 40, 1048 (1989). [12] P. Muherjee, private communication. Appendix d (2) cdefmn = (η af η bn η cm η de η af η bm η cn η de η ae η bn η cm η df + η ae η bm η cn η df (24) η af η bn η ce η dm + η ae η bn η cf η dm + η af η be η cn η dm η ae η bf η cn η dm + η an (η bm (η cf η de η ce η df ) + η bf (η ce η dm η cm η de ) + η be (η cm η df η cf η dm )) +η af η bm η ce η dn η ae η bm η cf η dn η af η be η cm η dn + η ae η bf η cm η dn + η am (η bn (η ce η df η cf η de ) +η bf (η cn η de η ce η dn ) + η be (η cf η dn η cn η df )) + η ad η bc η en η fm η ac η bd η en η fm η ad η bc η em η fn + η ac η bd η em η fn ) d (3) cdefghmn = i(η ah η bg η cn η df η em η ag η bh η cn η df η em η ah η bg η cf η dn η em + (25) η ag η bh η cf η dn η em + η ah η bd η cf η gn η em η ad η bh η cf η gn η em η ah η bc η df η gn η em + η ac η bh η df η gn η em η ah η bg η cm η df η en + η ag η bh η cm η df η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en + η an η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) +η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + η am η bn (η cf (η dh η eg η dg η eh ) +η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) η ah η bg η cn η de η fm + η ag η bh η cn η de η fm +η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm + η ah η bg η cm η de η fn η ag η bh η cm η de η fn η ah η bg η ce η dm η fn + η ag η bh η ce η dm η fn + η ah η bf η cn η de η gm η af η bh η cn η de η gm η ah η be η cn η df η gm + η ae η bh η cn η df η gm η ah η bf η ce η dn η gm + η af η bh η ce η dn η gm 6

+η ah η be η cf η dn η gm η ae η bh η cf η dn η gm η ah η bd η cf η en η gm + η ad η bh η cf η en η gm +η ah η bc η df η en η gm η ac η bh η df η en η gm + η ah η bd η ce η fn η gm η ad η bh η ce η fn η gm η ah η bc η de η fn η gm + η ac η bh η de η fn η gm η ah η bf η cm η de η gn +η af η bh η cm η de η gn + η ah η be η cm η df η gn η ae η bh η cm η df η gn + η ah η bf η ce η dm η gn η af η bh η ce η dm η gn η ah η be η cf η dm η gn + η ae η bh η cf η dm η gn η ah η bd η ce η fm η gn + η ad η bh η ce η fm η gn + η ah η bc η de η fm η gn η ac η bh η de η fm η gn η ag η bf η cn η de η hm + η af η bg η cn η de η hm + η ag η be η cn η df η hm η ae η bg η cn η df η hm + η ag η bf η ce η dn η hm η af η bg η ce η dn η hm η ag η be η cf η dn η hm + η ae η bg η cf η dn η hm + η ag η bd η cf η en η hm η ad η bg η cf η en η hm η ag η bc η df η en η hm + η ac η bg η df η en η hm η ag η bd η ce η fn η hm + η ad η bg η ce η fn η hm + η ag η bc η de η fn η hm η ac η bg η de η fn η hm + η af η bd η ce η gn η hm η ad η bf η ce η gn η hm η ae η bd η cf η gn η hm + η ad η be η cf η gn η hm η af η bc η de η gn η hm + η ac η bf η de η gn η hm + η ae η bc η df η gn η hm η ac η be η df η gn η hm + ( η bg (η af (η cm η de η ce η dm ) + η ae (η cf η dm η cm η df ) (η ad η cf η ac η df )η em + (η ad η ce η ac η de )η fm ) + η ag (η bf (η cm η de η ce η dm ) + η be (η cf η dm η cm η df ) (η bd η cf η bc η df )η em + (η bd η ce η bc η de )η fm ) (η ad (η be η cf η bf η ce ) + η af (η bd η ce η bc η de ) + η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm )η hn ) d (4) cdmn = i( η am η bd η cn + η ad (η bm η cn η bn η cm ) (26) +η ac η bn η dm + η an (η bd η cm η bc η dm ) + η am η bc η dn η ac η bm η dn ) d (5) cdefghmn = i(η ah η bn η cm η df η eg η ah η bm η cn η df η eg η af η bn η cm η dh η eg (27) +η af η bm η cn η dh η eg η ah η bn η cf η dm η eg + η af η bn η ch η dm η eg + η ah η bf η cn η dm η eg η af η bh η cn η dm η eg + η a h η bm η cf η dn η eg η af η bm η ch η dn η eg η ah η bf η cm η dn η eg + η af η bh η cm η dn η eg η ag η bn η cm η df η eh + η ag η bm η cn η df η eh + η af η bn η cm η dg η eh η af η bm η cn η dg η eh + η ag η bn η cf η dm η eh η af η bn η cg η dm η eh η ag η bf η cn η dm η eh + η af η bg η cn η dm η eh η ag η bm η cf η dn η eh + η af η bm η cg η dn η eh + η ag η bf η cm η dn η eh η af η bg η cm η dn η eh η ah η bn η cg η df η em + η ag η bn η ch η df η em + η ah η bg η cn η df η em η ag η bh η cn η df η em + η ah η bn η cf η dg η em η af η bn η ch η dg η em η ah η bf η cn η dg η em + η af η bh η cn η dg η em η ag η bn η cf η dh η em + η af η bn η cg η dh η em + η ag η bf η cn η dh η em η af η bg η cn η dh η em η ah η bg η cf η dn η em + η ag η bh η cf η dn η em + η ah η bf η cg η dn η em 7

η af η bh η cg η dn η em η ag η bf η ch η dn η em + η af η bg η ch η dn η em + η ah η bm η cg η df η en η ag η bm η ch η df η en η ah η bg η cm η df η en + η ag η bh η cm η df η en η ah η bm η cf η dg η en + η af η bm η ch η dg η en + η ah η bf η cm η dg η en η af η bh η cm η dg η en + η ag η bm η cf η dh η en η af η bm η cg η dh η en η ag η bf η cm η dh η en +η af η bg η cm η dh η en + η ah η bg η cf η dm η en η ag η bh η cf η dm η en η ah η bf η cg η dm η en + η af η bh η cg η dm η en + η ag η bf η ch η dm η en η af η bg η ch η dm η en η ah η bn η cm η de η fg + η ah η bm η cn η de η fg + η ae η bn η cm η dh η fg η ae η bm η cn η dh η fg + η ah η bn η ce η dm η fg η ae η bn η ch η dm η fg η ah η be η cn η dm η fg + η ae η bh η cn η dm η fg η ah η bm η ce η dn η fg + η ae η bm η ch η dn η fg + η ah η be η cm η dn η fg η ae η bh η cm η dn η fg + η ag η bn η cm η de η fh η ag η bm η cn η de η fh η ae η bn η cm η dg η fh + η ae η bm η cn η dg η fh η ag η bn η ce η dm η fh + η ae η bn η cg η dm η fh + η ag η be η cn η dm η fh η ae η bg η cn η dm η fh + η ag η bm η ce η dn η fh η ae η bm η cg η dn η fh η ag η be η cm η dn η fh + η ae η bg η cm η dn η fh + η ah η bn η cg η de η fm η ag η bn η ch η de η fm η ah η bg η cn η de η fm + η ag η bh η cn η de η fm η ah η bn η ce η dg η fm + η ae η bn η ch η dg η fm + η ah η be η cn η dg η fm η ae η bh η cn η dg η fm + η ag η bn η ce η dh η fm η ae η bn η cg η dh η fm η ag η be η cn η dh η fm + η ae η bg η cn η dh η fm + η ah η bg η ce η dn η fm η ag η bh η ce η dn η fm η ah η be η cg η dn η fm + η ae η bh η cg η dn η fm + η ag η be η ch η dn η fm η ae η bg η ch η dn η fm + η an (η bf η cm η dh η eg η bf η ch η dm η eg + η bg η cm η df η eh η bf η cm η dg η eh η bg η cf η dm η eh + η bf η c g η dm η eh η bg η ch η df η em + η bf η ch η dg η em + η bg η cf η dh η em η bf η cg η dh η em η be η cm η dh η fg + η be η ch η dm η fg η bg η cm η de η fh + η be η cm η dg η fh + η bg η ce η dm η fh η be η cg η dm η fh + η bm (η cf (η dg η eh η dh η eg ) + η ch (η df η eg η de η fg ) + η cg (η de η fh η df η eh ) + η ce (η dh η fg η dg η fh )) + 8

(η bg (η ch η de η ce η dh ) + η be (η cg η dh η ch η dg ))η fm + η bh (η cf (η dm η eg η dg η em ) + η cm (η de η fg η df η eg ) + η cg (η df η em η de η fm ) + η ce (η dg η fm η dm η fg ))) + (η ah (η bm (η ce η dg η cg η de ) + η bg (η cm η de η ce η dm ) + η be (η cg η dm η cm η dg )) + η ag (η bm (η ch η de η ce η dh ) + η bh (η ce η dm η cm η de ) + η be (η cm η dh η ch η dm )) + η ae (η bm (η cg η dh η ch η dg ) + η bh (η cm η dg η cg η dm ) + η bg (η ch η dm η cm η dh )))η fn + η am ( η bf η cn η dh η eg + η bf η ch η dn η eg η bg η cn η df η eh + η bf η cn η dg η eh + η bg η cf η dn η eh η bf η cg η dn η eh + η bg η ch η df η en η bf η ch η dg η en η bg η cf η dh η en + η bf η cg η dh η en + η be η cn η dh η fg η be η ch η dn η fg + η bg η cn η de η fh η be η cn η dg η fh η bg η ce η dn η fh + η be η cg η dn η fh + η bn (η cf (η dh η eg η dg η eh ) + η ch (η de η fg η df η eg ) + η cg (η df η eh η de η fh ) + η ce (η dg η fh η dh η fg )) + (η bg (η ce η dh η ch η de ) + η be (η ch η dg η cg η dh ))η fn + η bh (η cf (η dg η en η dn η eg ) + η cn (η df η eg η de η fg ) + η cg (η de η fn η df η en ) + η ce (η dn η fg η dg η fn )))) d (6) cdefghmn = i(η am η bd η cn η eh η fg η ac η bn η dm η eh η fg (28) η am η bc η dn η eh η fg + η ac η bm η dn η eh η fg η am η bd η cn η eg η fh + η ac η bn η dm η eg η fh + η am η bc η dn η eg η fh η ac η bm η dn η eg η fh + η an (η bd η cm η bc η dm )(η eg η fh η eh η fg ) η ah η bd η cg η en η fm + η ag η bd η ch η en η fm + η ah η bc η dg η en η fm η ac η bh η dg η en η fm η ag η bc η dh η en η fm + η ac η bg η dh η en η fm + η ah η bd η cg η em η fn η ag η bd η ch η em η fn η ah η bc η dg η em η fn + η ac η bh η dg η em η fn + η ag η bc η dh η em η fn η ac η bg η dh η em η fn + η ah η bd η cf η en η gm η af η bd η ch η en η gm η ah η bc η df η en η gm + η ac η bh η df η en η gm + η af η bc η dh η en η gm η ac η bf η dh η en η gm η ah η bd η ce η fn η gm + η ae η bd η ch η fn η gm + η ah η bc η de η fn η gm η ac η bh η de η fn η gm η ae η bc η dh η fn η gm + η ac η be η dh η fn η gm η ah η bd η cf η em η gn + η af η bd η ch η em η gn + η ah η bc η df η em η gn η ac η bh η df η em η gn η af η bc η dh η em η gn + η ac η bf η dh η em η gn + η ah η bd η ce η fm η gn η ae η bd η ch η fm η gn η ah η bc η de η fm η gn + η ac η bh η de η fm η gn + 9

η ae η bc η dh η fm η gn η ac η be η dh η fm η gn η ag η bd η cf η en η hm + η af η bd η cg η en η hm + η ag η bc η df η en η hm η ac η bg η df η en η hm η af η bc η dg η en η hm + η ac η bf η dg η en η hm + η ag η bd η ce η fn η hm η ae η bd η cg η fn η hm η ag η bc η de η fn η hm + η ac η bg η de η fn η hm + η ae η bc η dg η fn η hm η ac η be η dg η fn η hm η af η bd η ce η gn η hm + η ae η bd η cf η gn η hm + η af η bc η de η gn η hm η ac η bf η de η gn η hm η ae η bc η df η gn η hm + η ac η be η df η gn η hm + (η ac η bg η df η em η ac η bf η dg η em + η ae η bd η cg η fm η ac η bg η de η fm η ae η bc η dg η fm + η ac η be η dg η fm + η ag (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η ae (η bc η df η bd η cf ) + η ac (η bf η de η be η df ))η gm + η af (η bd (η ce η gm η cg η em ) + η bc (η dg η em η de η gm )))η hn + η ad ((η bn η cm η bm η cn )(η eh η fg η eg η fh ) + η bf η ch η en η gm η be η ch η fn η gm η bf η ch η em η gn + η be η ch η fm η gn + η bh (η cg (η en η fm η em η fn ) + η cf (η em η gn η en η gm ) + η ce (η fn η gm η fm η gn )) η bf η c g η en η hm + η be η cg η fn η hm + η bf η ce η gn η hm η be η cf η gn η hm + (η bf (η cg η em η ce η gm ) + η be (η cf η gm η cg η fm ))η hn + η bg (η ch (η em η fn η en η fm ) + η cf (η en η hm η em η hn ) + η ce (η fm η hn η fn η hm )))) d (7) cdefmn = ( η af η bd η cn η em + η ac η bn η df η em + (29) η af η bc η dn η em η ac η bf η dn η em η am η bd η cf η en + η af η bd η cm η en + η am η bc η df η en η ac η bm η df η en η af η bc η dm η en + η ac η bf η dm η en + η ae η bd η cn η fm η ac η bn η de η fm η ae η bc η dn η fm + η ac η be η dn η fm + η an (η bd (η cf η em η ce η fm ) + η bc (η de η fm η df η em )) + (η am (η bd η ce η bc η de ) + η ae (η bc η dm η bd η cm ) + η ac (η bm η de η be η dm ))η fn + η ad (η bf (η cn η em η cm η en ) + η bn (η ce η fm η cf η em ) + η bm (η cf η en η ce η fn ) + η be (η cm η fn η cn η fm ))) d (8) cdefghpqmn = 1 2 (η deǫ cfgh η ec ǫ dfgh ǫ edgh η fc + ǫ ecgh η ld ) (30) (ǫ bmnp η aq ǫ anpq η bm + ǫ ampq η bn ǫ amnq η bp + ǫ amnp η bq ) 10