3-rd lecture: Modified gravity and local gravity constraints
|
|
|
- Ashlee Baldwin
- 10 years ago
- Views:
Transcription
1 3-rd lecture: Modified gravity and local gravity constraints
2 Local gravity tests If we change gravity from General Relativity, there are constraints coming from local gravity tests. Solar system tests, violation of equivalence principle, I will discuss the compatibility of modified gravity models (including f(r) gravity, Brans-Dicke theory, dilaton gravity, ) with such experiments.
3 There are many modified gravity models other than f(r) gravity. A few examples are: (i) Brans-Dicke theory (with a potential V) w BD is called a Brans-Dicke parameter. (ii) Dilaton gravity A scalar field couples to R. (iii) Scalar-tensor theory
4 These modified gravity models can be written in the form Matter action We perform the conformal transformation where Let us consider scalar-tensor theories Introducing a new scalar field the action in the Einstein frame is where We set " 2 =1
5 In f(r) gravity we obtain the same action with We introduce the following quantity i.e., In f (R) gravity we have For scalar-tensor models with constant coupling Q, we find Then the Jordan frame action is
6 The Jordan frame action with constant Q. where (i) Q = 0 Quintessence (GR with a scalar field) (ii) Nonzero constant Q Setting we obtain the Brans-Dicke action: with the correspondence When Q goes to 0 w BD goes to infinity. (GR case)
7 Orginal Brans-Dicke theory (1961) The potential V is absent. Massless scalar field In this case the scalar field can freely propagate. The current solar-system tests give the bound Using the relation, this bound translates into The constant Q has a meaning of a coupling between the scalar field and matter in the Einstein frame. In the absence of the potential V, such a coupling needs to be suppressed ( Q <<1).
8 Theories with large couplings Q In f(r) gravity the coupling is large: If the potential is absent, it is not possible to satisfy solar system constraints ( ). However the potential is present in f(r) gravity: (gravitational origin) It is possible to satisfy local gravity constraints if the model is designed so that the mass of the field is heavy in the region where gravity experiments are carried out. This property holds for large coupling models with a scalar-field potential.
9 Chameleon mechanism (Khoury and Weltman, 2003) The effective coupling between the field and matter can be made much smaller than Q through a chameleon mechanism. Consider the action in Jordan frame: with The action in the Einstein frame is given by where In the Einstein frame dark energy couples to matter with the coupling Q. We are basically interested in the case where the potential V of the field is responsible for dark energy, while at the same time the model is consistent with local gravity tests.
10 Two demands for large-coupling scalar fields (i) The field mass needs to be small in order to realize the acceleration today on cosmological scales. Massless chameleon (ii) The field mass needs to be large in the region of high density to avoid the propagation of the fifth force. The field changes its mass depending on the environment it is in. Chameleon field Massive chameleon
11 The scalar-field equation in the Einstein frame Taking the variation of the Einstein frame action ( ) with respect to the field, we obtain The trace of the matter is where (non-relativistic matter) The energy density in the Einstein frame is Instead we use the energy density in the Einstein frame. that is conserved The scalar field directly couples to matter.
12 An effective potential has a minimum in the presence of a matter coupling. where With a coupling Q Runaway potential (used often in quintessence) such as The coupling induces a potential minimum.
13 The field mass about the potential minimum gets larger for increasing energy density. Massive Massless Large " m Small " m (The local region with high density) (The cosmological region with low density)!!
14 Spherically symmetric configuration The field equation in the Einstein frame (for weak gravity) is where Inside and outside the body, the effective potential has maxima at U," (" A ) + Qe Q" A # A = 0,!! " B << " A!! U, ( B ) + Qe Q B # B = 0 The field values at the maxima are different inside/outside the body.
15 The spherical symmetric configuration Inside the star Outside the star (r < r c ) (r > r c ) The body has a thin-shell if the field is almost frozen around in the most region of the inside of the star and if it evolves around the surface of the star.
16 The field profile There are three regions of interest. (i) 0 < r < r 1 in this region The field is nearly frozen. The field exists around. (ii) r < r < r 1 c (r is the radius of star) c in this region under the boundary condition The field begins to evolve. The field begins to evolve because of the dominance of the matter coupling. (iii) r > r c in this region The kinetic energy is dominant. under the boundary condition
17 The coefficients A, C, D, E are known by connecting three solutions at r=r and r=r (T. Tamaki and S.T.) 1 c The field solution outside the body, for m << m, is B A The radius r is determined by the following condition 1 This corresponds to where at the surface of body. is the gravitational potential
18 Thick-shell and thin-shell solutions The solution outside the body is (i) Thick-shell solutions If the field is away from at r=0, the field rapidly rolls down the potential. This corresponds to r 1 =0 and then The coupling is of the order of Q. It is not possible to satisfy local gravity constraints unless Q <<1.
19 (ii) Thin-shell solutions Thin-shell If r is close to r and m r >>1, then 1 c A c r 1 r c where Q eff is the effective coupling given by Q eff becomes much smaller than Q when the body has a thin-shell. Using the previous relation we have where
20 Using the thin-shell parameter, the effective coupling is Q becomes smaller than Q for eff The upper bound on the thin-shell parameter can be obtained by solar-system tests and by the violation of equivalence principle.
21 Solar-system constraints The spherically symmetric metric in the Jordan frame is The Einstein frame metric is where Under the weak gravity background we have (because ) where (thin-shell solutions)
22 Under the condition we have The post Newtonian parameter is The tightest solar-system bound coming from the Shapiro time delay effect is This translates into As long as the thin-shell parameter is much smaller than 1, the solar system constraints are satisfied even for Q =O(1).
23 The fifth-force with The fifth force that exerts on a particle with a unit mass (i.e., acceleration) is (suppressed for ) The presence of the fifth force leads to the difference of accelerations of Earth and Moon toward the Sun. A detailed calculation gives Stronger than solar system constraints
24 The equivalence constraint gives where we used
25 (i) The potential Concrete models This runaway potential is often used in the context of dark energy. Solving the equation U," (" B ) + Qe Q" B # B = 0 gives! The constraint gives where we used When n=1, When n=2, Compatible with the energy scale responsible for dark energy
26 (ii) f(r) gravity In f(r) gravity the potential in the Einstein frame is where Consider the model In this case we have The equivalence constraint gives For the existence of a late-time de Sitter point we require Taking and Indistinguishable from the LCDM model
27 Models that can deviate from the LCDM model Hu Starobinsky Hu and Sawicki: (R /R f (R) = R " #R 0 ) 2n 0 (May, 2007) (R /R 0 ) 2n +1 2 Starobinsky: $ f (R) = R " #R 0 1" 1+ R 2 2 ( /R 0 ) "n ' R 0 " H 0 %& () (June, 2007)! Cosmological! constant disappears in a flat space. f (R = 0) = 0! R >> R 0 and!! The solar-system constraints are satisfied for n > 0.5 The equivalence principle constraints are satisfied for n >1 (Capozziello and S.T.) In these models the deviation from the LCDM model becomes significant around the present epoch on cosmological scales.!
Structure formation in modified gravity models
Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general
Modified Gravity and the CMB
Modified Gravity and the CMB Philippe Brax, IphT Saclay, France arxiv:1109.5862 PhB, A.C. Davis Work in progress PhB, ACD, B. Li Minneapolis October 2011 PLANCK will give us very precise information on
Gravity Testing and Interpreting Cosmological Measurement
Cosmological Scale Tests of Gravity Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research January 2011 References Caldwell & Kamionkowski 0903.0866 Silvestri
DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY
DYNAMICAL SYSTEMS APPROACH TO F(R) GRAVITY Sulona Kandhai University of Cape Town, South Africa Supervised by Prof. Peter Dunsby FIELD EQUATIONS OF F(R) GRAVITY Field equations are derived from the generalised
Gravitation modifiée à grande distance & tests dans le système solaire 10 avril 2008
Gravitation modifiée à grande distance et tests dans le système solaire Gilles Esposito-Farèse, GRεCO, IAP et Peter Wolf, LNE-SYRTE 10 avril 2008 Gravitation modifiée à grande distance & tests dans le
Localization of scalar fields on Branes with an Asymmetric geometries in the bulk
Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg
Name Class Date. true
Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized
DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION
1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.
Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE
Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question
Big Bang Cosmology. Big Bang vs. Steady State
Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion
At the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:
Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational
Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Physics 53. Gravity. Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope
Physics 53 Gravity Nature and Nature's law lay hid in night: God said, "Let Newton be!" and all was light. Alexander Pope Kepler s laws Explanations of the motion of the celestial bodies sun, moon, planets
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
Dark Energy, Modified Gravity and The Accelerating Universe
Dark Energy, Modified Gravity and The Accelerating Universe Dragan Huterer Kavli Institute for Cosmological Physics University of Chicago Makeup of universe today Dark Matter (suspected since 1930s established
Lesson 29: Newton's Law of Universal Gravitation
Lesson 29: Newton's Law of Universal Gravitation Let's say we start with the classic apple on the head version of Newton's work. Newton started with the idea that since the Earth is pulling on the apple,
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant
A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong
Solar Energy Production
Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the
Testing dark matter halos using rotation curves and lensing
Testing dark matter halos using rotation curves and lensing Darío Núñez Instituto de Ciencias Nucleares, UNAM Instituto Avanzado de Cosmología A. González, J. Cervantes, T. Matos Observational evidences
Gravity Field and Dynamics of the Earth
Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
Gravitational potential
Gravitational potential Let s assume: A particle of unit mass moving freely A body of mass M The particle is attracted by M and moves toward it by a small quantity dr. This displacement is the result of
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
On a Flat Expanding Universe
Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Name: Date: Period: Gravity Study Guide
Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law
A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)
A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris) Outline 1. ADM formulation & EFT formalism. Illustration: Horndeski s theories 3. Link with observations Based on
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.
IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational
8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.
Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005
Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the
Mechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
W02D2-2 Table Problem Newton s Laws of Motion: Solution
ASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 W0D- Table Problem Newton s Laws of otion: Solution Consider two blocks that are resting one on top of the other. The lower block
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
RETURN TO THE MOON. Lesson Plan
RETURN TO THE MOON Lesson Plan INSTRUCTIONS FOR TEACHERS Grade Level: 9-12 Curriculum Links: Earth and Space (SNC 1D: D2.1, D2.2, D2.3, D2.4) Group Size: Groups of 2-4 students Preparation time: 1 hour
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
The Layout of the Solar System
The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density
Earth in the Solar System
Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with
Gravity is everywhere: Two new tests of gravity. Luca Amendola University of Heidelberg
Gravity is everywhere: Two new tests of gravity Luca Amendola University of Heidelberg Gravity in polarization maps and in supernovae Gravity in polarization maps and in supernovae Why testing gravity?
How Fundamental is the Curvature of Spacetime? A Solar System Test. Abstract
Submitted to the Gravity Research Foundation s 2006 Essay Contest How Fundamental is the Curvature of Spacetime? A Solar System Test Robert J. Nemiroff Abstract Are some paths and interactions immune to
Losing energy in classical, relativistic and quantum mechanics
Losing energy in classical, relativistic and quantum mechanics David Atkinson ABSTRACT A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the
Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole
Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom [email protected]
How Gravitational Forces arise from Curvature
How Gravitational Forces arise from Curvature 1. Introduction: Extremal ging and the Equivalence Principle These notes supplement Chapter 3 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate
The Sun and Solar Energy
I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives
Problem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA
PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by
Section 1 Gravity: A Force of Attraction
Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of
The Essence of Gravitational Waves and Energy
The Essence of Gravitational Waves and Energy F. I. Cooperstock Department of Physics and Astronomy University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) March 26, 2015 Abstract We discuss
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.
Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation
Axion/Saxion Cosmology Revisited
Axion/Saxion Cosmology Revisited Masahiro Yamaguchi (Tohoku University) Based on Nakamura, Okumura, MY, PRD77 ( 08) and Work in Progress 1. Introduction Fine Tuning Problems of Particle Physics Smallness
VELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Notes on Elastic and Inelastic Collisions
Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just
Lecture 19: Planet Formation I. Clues from the Solar System
Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies
Chapter 15 Collision Theory
Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional
World of Particles Big Bang Thomas Gajdosik. Big Bang (model)
Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)
So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.
Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015
Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around
Carol and Charles see their pencils fall exactly straight down.
Section 24-1 1. Carol is in a railroad car on a train moving west along a straight stretch of track at a constant speed of 120 km/h, and Charles is in a railroad car on a train at rest on a siding along
Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer
Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe
GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:
GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant
The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline
The Search for Dark Matter, Einstein s Cosmology and MOND David B. Cline Astrophysics Division, Department of Physics & Astronomy University of California, Los Angeles, CA 90095 USA [email protected]
The Milky Way Galaxy is Heading for a Major Cosmic Collision
The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing
The Location of the Missing Dark Matter A.G. Kelly.
The Location of the Missing Dark Matter A.G. Kelly. Abstract. A source of most of the missing Dark Matter is proposed. If the formation of stars was at a time, and in a position, such that the light from
The Two-Body Problem
The Two-Body Problem Abstract In my short essay on Kepler s laws of planetary motion and Newton s law of universal gravitation, the trajectory of one massive object near another was shown to be a conic
Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org
Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat
Moon Phases & Eclipses Notes
Moon Phases & Eclipses Notes Melka 2014-2015 The Moon The Moon is Earth s one natural satellite. Due to its smaller size and slower speed of rotation, the Moon s gravity is 1/6 of the Earth s gravitational
Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009
Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
