CARTAN S GENERALIZATION OF LIE S THIRD THEOREM
|
|
|
- Prudence Elliott
- 10 years ago
- Views:
Transcription
1 CARTAN S GENERALIZATION OF LIE S THIRD THEOREM ROBERT L. BRYANT MATHEMATICAL SCIENCES RESEARCH INSTITUTE JUNE 13, 2011 CRM, MONTREAL
2 In many ways, this talk (and much of the work it reports on) owes its existence to an article I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. Part I (the transitive groups), JournalD AnalyseMath. 15 (1965), Simple examples (now called pseudogroups) include: (1) Diffeomorphisms (2) Volume-preserving diffeomorphisms (3) Symplectomorphisms and Contactomorphisms (4) Biholomorphisms, etc. Part II never appeared, and so there was no mention of gauge groups (one of Cartan s examples of an intransitive infinite simple group), and some of the more delicate issues that Cartan faced (with only partial success) were avoided.
3 In many ways, this talk (and much of the work it reports on) owes its existence to an article I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. Part I (the transitive groups), JournalD AnalyseMath. 15 (1965), Simple examples (now called pseudogroups) include: (1) Diffeomorphisms (2) Volume-preserving diffeomorphisms (3) Symplectomorphisms and Contactomorphisms (4) Biholomorphisms, etc. Cartan s work on the intransitive case has been (partially) taken up by many different people, and it has given rise to the theory of what are now called Lie algebroids and Lie groupoids.
4 Lie s Third Theorem: If L is a finite-dimensional, real Lie algebra, then there exists a Lie algebra homomorphism λ : L Vect(L) satisfying λ(x)(0) = x for all x L. Dual Formulation: Let δ : L Λ 2 (L )bealinearmap. Ifitsextension δ :Λ (L ) Λ (L )asagradedderivationofdegree1satisfiesδ 2 =0, then there is a DGA homomorphism φ : ( Λ (L ),δ ) ( Ω (L), d ) satisfying φ(α)(0) = α. Basis Formulation: If Cjk i = Ci kj (1 i, j, k n) areconstants,then there exist linearly independent 1-forms ω i (1 i n) onr n satisfying the structure equations dω i = 1 2 Ci jk ω j ω k if and only if these formulae imply d ( dω i) =0as a formal consequence.
5 Ageometricproblem:Classify those Riemannian surfaces (M 2,g)whose Gauss curvature K satisfies the second order system for some functions a and b. Hess g (K) =a(k)g + b(k)dk 2 Analysis Writing g = ω ω 2 2,thestructureequationsyield dω 1 = ω 12 ω 2 dω 2 = ω 12 ω 1 dω 12 = Kω 1 ω 2 dk = K 1 ω 1 + K 2 ω 2 and the condition to be studied is encoded as ( ) ( ) ( dk1 K2 a(k)+b(k) 2 K1 b(k) K = ω dk 2 K K b(k) K 1 K 2 a(k)+b(k) K 1 Applying d 2 =0tothesetwoequationsyields ( a (K) a(k)b(k)+k ) K i =0 fori =1, 2. )( ω1 Thus, unless a (K) =a(k)b(k) K, suchmetricshavek constant. ). ω 2
6 Conversely, suppose that a (K) = a(k)b(k) K. Does there exist a solution (N 3,ω)tothefollowingsystem? dω 1 = ω 12 ω 2 dω 2 = ω 12 ω 1 ω 1 ω 2 ω 12 0, ω = ω 1 ω 2 dω 12 = Kω 1 ω 2 ω 12 dk K 1 K 2 0 ω 1 dk 1 = 2 a(k)+b(k) K 1 b(k) K 1 K 2 K 2 ω 2. 2 dk 2 b(k) K 1 K 2 a(k)+b(k) K 1 ω 12 Note: d 2 =0is formallysatisfied forthesestructureequations. K 1 Answer: AtheoremofÉ. Cartan [1904] implies that a solution (N 3,ω) does indeed exist and is determined uniquely (locally near p, up to diffeomorphism) by the value of (K, K 1,K 2 )atp.
7 Cartan s result: Suppose that Cjk i = Ci kj and F i α (with 1 i, j, k n and 1 α s) arereal-analyticfunctionsonr s such that the equations dω i = 1 2 Ci jk (a) ωj ω k and da α = Fi α (a) ωi formally satisfy d 2 =0. Then,foreveryb 0 R s,thereexistsanopen neighborhood U of 0 R n,linearlyindependent1-formsη i on U, anda function b : U R s satisfying dη i = 1 2 Ci jk(b) η j η k, db α = F α i (b) η i, and b(0) = b 0. Up to local diffeomorphism of (R n, 0), the pair (η, b) isgerm-unique. Remark 1: Cartan assumed that F =(Fi α)hasconstantrank,butit turns out that, for a solution (η, b) withu connected, F (b) = ( Fi α(b)) always has constant rank anyway. Remark 2: Cartan worked in the real-analytic category and used the Cartan-Kähler theorem in his proof, but the above result is now known to be true in the smooth category. (Cf. P. Dazord)
8 The Hessian equation example: dω 1 = ω 12 ω 2 dω 2 = ω 12 ω 1 ω 1 ω 2 ω 12 0, ω = ω 1 ω 2 dω 12 = Kω 1 ω 2 ω 12 dk K 1 K 2 0 ω 1 dk 1 = 2 a(k)+b(k) K 1 b(k) K 1 K 2 K 2 ω 2. 2 dk 2 b(k) K 1 K 2 a(k)+b(k) K 1 ω 12 K 1 d 2 =0isformallysatisfiedwhena (K) =a(k)b(k) K. Remark: The F -matrix either has rank 0 (when K 1 = K 2 = a(k) =0) or 2 (all other cases). The rank 0 cases have K constant. The rank 2 cases have a 1-dimensional symmetry group and each represents a surface of revolution.
9 Modern formulation of Cartan s theory: A Lie algebroid is a vector bundle a : Y A over a manifold A endowed with a Lie algebra structure {, } :Γ(Y ) Γ(Y ) Γ(Y ) and a bundle map α : Y TA that induces a Lie algebra homomorphism on sections and satisfies the Leibnitz compatibility condition {U, fv } = α(u)(f) V + f {U, V } for f C (A) andu, V Γ(Y ). In our case, take a basis U i of Y = R s R n with a : Y R s the projection and define {U j, U k } = C i jk(a) U i and α(u i )=F α i (a) a α. The formal condition d 2 = 0 ensures that α induces a Lie algebra homomorphism and satisfies the above compatibility condition. A solution isab : B n A covered by a bundle map η : TB Y of rank n that induces a Lie algebra homomorphism on sections.
10 Some geometric applications: 1. Classification of Bochner-Kähler metrics. (B, 2001) 2. Classification of Levi-flat minimal hypersurfaces in C 2.(B,2002) 3. Classification of isometrically deformable surfaces preserving the mean curvature. (originally done by Bonnet in the 1880s) 4. Surfaces with prescribed curvature operator. (B, 2001) 5. Classification of projectively flat Finsler surfaces of constant flag curvature (B, 1997). 6. Classification of austere 3-folds. (B, 1991) 7. Classification of the exotic symplectic holonomies. (originally done by Schwachhofer, et al.) Many more examples drawn from classical differential geometry.
11 AgeneralizationofCartan stheorem.consider equations dη i = 1 2 Ci jk(h) η j η k dh a = ( F a i (h)+a a iα(h)p α) η i. C i jk, F a i,anda a iα (where 1 i, j, k n, 1 a s, and1 α r) are specified functions on a domain X R s. Assume: (1) The functions C, F,andA are real analytic. (2) The tableau A(h) = ( A a iα (h)) is rank r and involutive, withcartan characters s 1 s 2 s q >s q+1 =0forallh R s. (3) d 2 =0reducestoequationsoftheform 0=A a iα(h) ( dp α + B α j (h, p) η j) η i for some functions Bj α.(torsion absorbable hypothesis) Then: Modulo diffeomorphism, the general real-analytic solution depends on s q functions of q variables. Moreover, one can specify h and p arbitrarily at a point. Remark: The proof is a straightforward modification of Cartan s proof in the case r =0(i.e.,whenthereareno freederivatives p α ).
12 Example: Riemannian 3-manifolds with const. Ricci eigenvalues. For simplicity, assume the eigenvalues are all distinct, with c 1 >c 2 >c 3. Then there exist ω i,φ i so that g = ω ω ω 3 2 and dω 1 = φ 2 ω 3 φ 3 ω 2 dω 2 = φ 3 ω 1 φ 1 ω 3 dω 3 = φ 1 ω 2 φ 2 ω 1 dφ 1 = φ 2 φ 3 + c 1 ω 2 ω 3 dφ 2 = φ 3 φ 1 + c 2 ω 3 ω 1 dφ 3 = φ 1 φ 2 + c 3 ω 1 ω 2 2 nd Bianchi implies that there are functions a i and b i so that φ 1 = a 1 ω 1 +(c 1 c 3 ) b 3 ω 2 +(c 1 c 2 ) b 2 ω 3 φ 2 = a 2 ω 2 +(c 2 c 1 ) b 1 ω 3 +(c 2 c 3 ) b 3 ω 1 φ 3 = a 3 ω 3 +(c 3 c 2 ) b 2 ω 1 +(c 3 c 1 ) b 1 ω 2. d(dω i )=0,thenyields9equationsforda i,db i. These can be written in the form da i = ( A ij (a, b)+p ij ) ωj db i = ( B ij (a, b)+q ij ) ωj, where q ii =0andq ij = p jk /(c i c j )when(i, j, k) aredistinct.
13 dω 1 = φ 2 ω 3 φ 3 ω 2 dω 2 = φ 3 ω 1 φ 1 ω 3 dω 3 = φ 1 ω 2 φ 2 ω 1 φ 1 = a 1 ω 1 +(c 1 c 3 ) b 3 ω 2 +(c 1 c 2 ) b 2 ω 3 φ 2 = a 2 ω 2 +(c 2 c 1 ) b 1 ω 3 +(c 2 c 3 ) b 3 ω 1 φ 3 = a 3 ω 3 +(c 3 c 2 ) b 2 ω 1 +(c 3 c 1 ) b 1 ω 2. da i = ( A ij (a, b)+p ij ) ωj db i = ( B ij (a, b)+q ij ) ωj, where q ii =0andq ij = p jk /(c i c j )when(i, j, k) aredistinct. This defines an involutive tableau (in the p-variables) of rank r =9and with characters s 1 =6,s 2 =3,ands 3 =0. Cartan scriteriaaresatisfied, so the desired metrics depend on three functions of two variables. Asimilaranalysisapplieswhenc 1 = c 2 c 3,showingthatsuchmetrics depend on one function of two variables. When c 1 = c 2 = c 3,theCartananalysisgivestheexpectedresultthat the solutions depend on a single constant.
14 General Holonomy. A torsion-free H-structure on M n (where H GL(m) anddim(m) =n) satisfiesthefirststructureequation dω = φ ω where φ takes values in h GL(m) andthesecondstructureequation dφ = φ φ + R(ω ω) where R takes values in K 0 (h), the space of curvature tensors. Bianchi becomes dr = φ R + R (ω) where R takes values in K 1 (h) K 0 (h) m. Second Theorem: For all groups H satisfying Berger s criteria except the exotic symplectic list, K 1 (h) isaninvolutivetableauandtheaboveequations satisfy Cartan s criteria. Ex: For G 2 GL(7, R), the tableau K 1 (g 2 )hass 6 = 6 >s 7 =0,sothe general metric with G 2 -holonomy depends on 6 functions of 6 variables.
15 Other examples. 1. (Cartan, 1926) The metrics in dimension 4 with holonomy SU(2) depend locally on 2 functions of 3 variables. 2. (Cartan-Einstein, ) Analysis of Einstein s proposed unified field theory via connections with torsion. 3. (Cartan, 1943) The Einstein-Weyl structures in dimension 3 depend on 4 functions of 2 variables. 4. (B, 1987) The Ricci-solitons in dimension 3 depend on 2 functions of 2 variables. (More generally, Ric(g) =a(f) g +b(f)df 2 +c(f) Hess g (f).) 5. (B, 2008) The solitons for the G 2 -flow in dimension 7 depend on 16 functions of 6 variables.
Extrinsic geometric flows
On joint work with Vladimir Rovenski from Haifa Paweł Walczak Uniwersytet Łódzki CRM, Bellaterra, July 16, 2010 Setting Throughout this talk: (M, F, g 0 ) is a (compact, complete, any) foliated, Riemannian
LECTURE III. Bi-Hamiltonian chains and it projections. Maciej B laszak. Poznań University, Poland
LECTURE III Bi-Hamiltonian chains and it projections Maciej B laszak Poznań University, Poland Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18 Bi-Hamiltonian chains Let (M, Π) be a Poisson
INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS
INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS NATHAN BROWN, RACHEL FINCK, MATTHEW SPENCER, KRISTOPHER TAPP, AND ZHONGTAO WU Abstract. We classify the left-invariant metrics with nonnegative
Invariant Metrics with Nonnegative Curvature on Compact Lie Groups
Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
The cover SU(2) SO(3) and related topics
The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of
Quantum Mechanics and Representation Theory
Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30
LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n
LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
Fiber Bundles and Connections. Norbert Poncin
Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem
14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important is that they generalize
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON
Vol. 65 (2010) REPORTS ON MATHEMATICAL PHYSICS No. 2 DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES IVÁN CALVO Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, E-28040 Madrid, Spain
University of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses
Lessons on Teaching Undergraduate General Relativity and Differential Geometry Courses Russell L. Herman and Gabriel Lugo University of North Carolina Wilmington, Wilmington, NC Abstract We describe the
tr g φ hdvol M. 2 The Euler-Lagrange equation for the energy functional is called the harmonic map equation:
Notes prepared by Andy Huang (Rice University) In this note, we will discuss some motivating examples to guide us to seek holomorphic objects when dealing with harmonic maps. This will lead us to a brief
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
CONNECTIONS ON PRINCIPAL G-BUNDLES
CONNECTIONS ON PRINCIPAL G-BUNDLES RAHUL SHAH Abstract. We will describe connections on principal G-bundles via two perspectives: that of distributions and that of connection 1-forms. We will show that
Why do mathematicians make things so complicated?
Why do mathematicians make things so complicated? Zhiqin Lu, The Math Department March 9, 2010 Introduction What is Mathematics? Introduction What is Mathematics? 24,100,000 answers from Google. Introduction
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific
ISU Department of Mathematics. Graduate Examination Policies and Procedures
ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Nonzero degree tangential maps between dual symmetric spaces
ISSN 1472-2739 (on-line) 1472-2747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris
Fiber bundles and non-abelian cohomology
Fiber bundles and non-abelian cohomology Nicolas Addington April 22, 2007 Abstract The transition maps of a fiber bundle are often said to satisfy the cocycle condition. If we take this terminology seriously
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds F. Özdemir Department of Mathematics, Faculty of Arts and Sciences Istanbul Technical University, 34469 Maslak-Istanbul, TURKEY [email protected]
8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.
Mathematical Physics, Lecture 9
Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential
Geometry and Topology
Geometry and Topology CMUP 21/07/2008 CMUP (21/07/2008) Geometry and Topology 1 / 9 People Permanent academic staff (pluri-anual 2007 2010) Inês Cruz Poisson and symplectic geometry, singularities of vector
Fiber Bundles. 4.1 Product Manifolds: A Visual Picture
4 Fiber Bundles In the discussion of topological manifolds, one often comes across the useful concept of starting with two manifolds M ₁ and M ₂, and building from them a new manifold, using the product
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
Classification of Bundles
CHAPTER 2 Classification of Bundles In this chapter we prove Steenrod s classification theorem of principal G - bundles, and the corresponding classification theorem of vector bundles. This theorem states
1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1
Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Group Theory. 1 Cartan Subalgebra and the Roots. November 23, 2011. 1.1 Cartan Subalgebra. 1.2 Root system
Group Theory November 23, 2011 1 Cartan Subalgebra and the Roots 1.1 Cartan Subalgebra Let G be the Lie algebra, if h G it is called a subalgebra of G. Now we seek a basis in which [x, T a ] = ζ a T a
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
arxiv:1112.3556v3 [math.at] 10 May 2012
ON FIBRATIONS WITH FORMAL ELLIPTIC FIBERS MANUEL AMANN AND VITALI KAPOVITCH arxiv:1112.3556v3 [math.at] 10 May 2012 Abstract. We prove that for a fibration of simply-connected spaces of finite type F E
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
Ernst Binz and Peter ojners Universität Mannheirh Lehrstuhl Mathematik I, SeminJrgebäude 68131 Mannheim
Einstein Equation and Geometrie Quantization Ernst Binz and Peter ojners Universität Mannheirh Lehrstuhl Mathematik, SeminJrgebäude 68131 Mannheim A5 No. 202 / 1995 Einstein Equation and Geometnic Quantization
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
ISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
Ideal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
Factoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
Chapter 9 Unitary Groups and SU(N)
Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
How To Understand The Theory Of Differential Geometry
Chapter 23 Fiber bundles Consider a manifold M with the tangent bundle T M = P M T P M. Let us look at this more closely. T M can be thought of as the original manifold M with a tangent space stuck at
APPLICATIONS OF TENSOR ANALYSIS
APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
RESULTANT AND DISCRIMINANT OF POLYNOMIALS
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Structure of the Root Spaces for Simple Lie Algebras
Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)
FIXED POINT SETS OF FIBER-PRESERVING MAPS
FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: [email protected] Christina L. Soderlund Department of Mathematics
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Symplectic structures on fiber bundles
Symplectic structures on fiber bundles François Lalonde Université du Québec à Montréal ([email protected]) Dusa McDuff State University of New York at Stony Brook ([email protected]) Aug 27, 2000,
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Decision-making with the AHP: Why is the principal eigenvector necessary
European Journal of Operational Research 145 (2003) 85 91 Decision Aiding Decision-making with the AHP: Why is the principal eigenvector necessary Thomas L. Saaty * University of Pittsburgh, Pittsburgh,
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
MATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales [email protected] Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
State of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
Spectral Networks and Harmonic Maps to Buildings
Spectral Networks and Harmonic Maps to Buildings 3 rd Itzykson Colloquium Fondation Mathématique Jacques Hadamard IHES, Thursday 7 November 2013 C. Simpson, joint work with Ludmil Katzarkov, Alexander
Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
(Quasi-)Newton methods
(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Survey and remarks on Viro s definition of Khovanov homology
RIMS Kôkyûroku Bessatsu B39 (203), 009 09 Survey and remarks on Viro s definition of Khovanov homology By Noboru Ito Abstract This paper reviews and offers remarks upon Viro s definition of the Khovanov
A simple application of the implicit function theorem
Boletín de la Asociación Matemática Venezolana, Vol. XIX, No. 1 (2012) 71 DIVULGACIÓN MATEMÁTICA A simple application of the implicit function theorem Germán Lozada-Cruz Abstract. In this note we show
Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve
QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem
MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001
A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS
Computation of crystal growth. using sharp interface methods
Efficient computation of crystal growth using sharp interface methods University of Regensburg joint with John Barrett (London) Robert Nürnberg (London) July 2010 Outline 1 Curvature driven interface motion
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Eikonal Slant Helices and Eikonal Darboux Helices In 3-Dimensional Riemannian Manifolds
Eikonal Slant Helices and Eikonal Darboux Helices In -Dimensional Riemannian Manifolds Mehmet Önder a, Evren Zıplar b, Onur Kaya a a Celal Bayar University, Faculty of Arts and Sciences, Department of
Moving Least Squares Approximation
Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the
On the existence of G-equivariant maps
CADERNOS DE MATEMÁTICA 12, 69 76 May (2011) ARTIGO NÚMERO SMA# 345 On the existence of G-equivariant maps Denise de Mattos * Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação,
Linear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
Luminy Lecture 1: The inverse spectral problem
Luminy Lecture 1: The inverse spectral problem Steve Zelditch Northwestern University Luminy April 10, 2015 The inverse spectral problem The goal of the lectures is to introduce the ISP = the inverse spectral
Associativity condition for some alternative algebras of degree three
Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras
Elements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
