Unification - The Standard Model

Size: px
Start display at page:

Download "Unification - The Standard Model"

Transcription

1 Unification - The Standard Model Information on Physics level 4 Undergraduate Course PT.4.6 K.S. Stelle, Office Huxley 519 November 9, 2015 Rapid Feedback to be handed in to the UG office Level 3 (day t.b.a.) Rapid Feedback Presentation every 2nd week (location, dates & times t.b.a.) Course Background This course is a fourth year MSci undergraduate course and is also part of the Quantum Fields and Fundamental Forces MSc run by the Theoretical Physics Group at Imperial. However, it is aimed at the same level as other level four courses. The Masters students have a wide range of backgrounds including some who have completed three-year physics degrees at a 2.1 level or higher, identical to the requirements for an Imperial MSci student to take this course. Support material is provided as described below. Course Outline In the Unification course, we will study the implications of symmetry in field theory. Quantum field theory is used to describe the fundamental interactions as probed in the particle accelerators at CERN, Fermilab, DESY, SLAC etc. It is also the key to understanding phase transitions, whether they took place in the early universe or in modern superconductor physics, so these ideas are also of vital importance to cosmologists and to condensed matter physicists. The course will mainly be concerned with symmetries described by continuous groups (Lie groups) and the discussion will be largely classical, although it is of course motivated by the full quantum theory. Accordingly, this course should only be taken in parallel with the QFT course (the converse, however, is not necessarily true). The objective is to understand the role of symmetry in the Standard Model of elementary particle physics, including a discussion of the mass generating sector of the Standard Model, i.e. the Higgs particle(s) which are currently being intensively searched for at Fermilab and CERN. Key ideas encountered include conserved Noether currents, Goldstone s theorem, local (i.e. gauge) symmetry, and symmetry breaking including the Brout-Englert- Higgs-Kibble mechanism. The ideas have much wider uses, however: they form the backbone of string theory; similar symmetry principles are fundamental to General relativity and gravity; they also explain superfluids and superconductors the Cooper pair in superconductivity theory is just the counterpart of the Higgs particle in particle physics.

2 How the course is taught 26 lectures, 1 revision lecture. Problem sheets: There will be 6 or 7 question sheets plus another revision sheet for self-study. Students are expected to attempt all the questions on the question sheets unless they are indicated as optional. You must keep up with the non-optional questions, especially the questions discussed in the rapid feedback sessions, or you will not follow the later lectures. These questions are representative also of what might appear on the final exam. Answers to (almost) all questions will be handed out about a week after the question sheet. Past exam papers will be a good guide to future exam questions. (Note that the exam format has changed as of Autumn 2005, but previous exam questions can still be of use). For MSc students, there is an optional test a mock exam, in the first week of term in January. This is provided so that we can use positive results to support MSc students applying for PhDs (at any institution or in any topic). The test will be marked informally and will not contribute to the final course grade. It also provides feedback on students progress. Undergraduates are welcome to take the test but should ask me first. The January test will be put on the web, so it can be used for revision for the main summer exam. Office Hours. I will be available in my office to answer questions for two hours each week. I am also available for office hours in the summer term before the exam. My full lecture notes will be made available to students. Many quantum field theory books exist and have the important topics of the course scattered through their pages. As this is an advanced course, it is assumed that students will use books and other sources to supplement the lectures. The bibliography indicates which parts of the various books are relevant. Students may like to look at similar chapters of other quantum field theory books, especially any recommended for the level 4 MSci QFT (quantum field theory) course or suggested for any of the courses on the QFFF MSc. The departmental web site for this course will contain all the paperwork handed out. Any significant updates or corrections will be available only in these electronic versions.

3 Requirements Quantum Field Theory QFT (Quantum Field Theory) is used to describe the interactions of fundamental particles (electrons, positrons, photons, quarks, neutrinos, etc.). It is also the fundamental description required for the description of phase transitions in systems such as superconducting and superfluid transitions in condensed matter theory. The Unification course is expressed in the language of QFT and therefore the Unification course only makes sense when taken in conjunction with a QFT course. The Unification course itself uses classical analysis but will make frequent reference to the quantum generalizations provided by the QFT course. So QFT is not a prerequisite but it should at least be taken in parallel with Unification. The two courses complement each other: many ideas appear in both courses and seeing them twice usually enhances the understanding of both courses. Lagrangians and actions Lagrangians and actions are a main way of summarizing all the information about a classical system. They form the usual starting point for QFT as used in particle physics and, as such, the entire Unification course will be expressed in this language. It is therefore essential that students be familiar with the use of Lagrangians and actions. In the Unification course, we will use the Lagrangian/action formulation for fields (rather than for the coordinates of particles) in order to derive the Euler-Lagrange equations as the equations of motion. The necessary level of knowledge should be provided by the undergraduate course on Advanced Classical Physics, although elements also appear in the second year Mathematical Methods course. Almost any book on QFT will provide a suitable summary and introduction in the context of fields; see the Unification or QFT course bibliographies. Special Relativity and Index Notation The course will work throughout in the context of relativistic particle physics. This means that knowledge of standard relativistic notation will be assumed from the start, so knowledge of 4-index notation and of the Einstein summation convention in four space-time dimensions will be needed. The required level of knowledge should be provided by the undergraduate course on Advanced Classical Physics. Group Theory At the core of the Unification course is the link between symmetries of field-theory Lagrangians and the properties of the particles arising as excitations of such theories. In particular we will look at symmetries which can be described mathematically by continuous groups known as Lie groups, and by the closely related structures known as Lie algebras. In practice it will be sufficient to understand these simply in the context of matrix representations, either for general unitary matrices (i.e. the group U(d) and its unimodular subgroup SU(d)), or general

4 orthogonal matrices (i.e. the group O(d) and its unimodular subgroup SO(d)). Specific examples will mostly be limited to 2x2 or 3x3 matrices and one-dimensional phase factors. A general knowledge of group theory and group representations is a prerequisite, including the group axioms and a basic understanding of matrix representations. Lie Groups and Lie Algebras are also prerequisites. However, the course will not assume any high degree of fluency in these topics and I expect that for most students this will be the first time they have applied these ideas in practice. We will use the simplest examples, namely the trivial, fundamental and adjoint matrix representations for the groups mentioned above (U(d), SU(d), O(d), SO(d)). The third year undergraduate group theory course should be sufficient to provide a necessary coverage of these topics. A detailed understanding of finite groups and associated topics such as the use of characters, Schur's lemma or orthogonality theorems will not be required, A fluency with vector spaces and matrix algebra is essential but this should have been encountered in the second year Mathematical Methods course. Some QFT books provide a short introduction at the level required - see the Unification or QFT course bibliographies. Particle Physics The course will assume a rough familiarity with the Standard Model of particle physics. The basic properties of the four fundamental forces of nature (electromagnetism, strong nuclear, weak nuclear and gravity) and the associated particles (photon, gluons, W and Z bosons and the graviton) should be known at a basic level. Similarly, the fundamental fermions (electrons, neutrinos, quarks and their bound states the baryons (neutron, proton etc.) and the mesons (pions etc.), and the scalar(s) (Higgs) should all be familiar. You should be aware that these come in three generations. The particle part of the third year undergraduate nuclear and particle physics course should be sufficient to provide the needed background. The fourth year particle physics course contains elements of the unification course without the mathematical development. Both undergraduate particle physics courses generally have good web-based materials (see the physics department web site).

5 Bibliography Background H.F. Jones, Groups, Representation and Physics" (Institute of Physics Publishing, Bristol, 2nd edition 1998, ISBN ). [Chapter 1, section 2.2, chapter 3 (not section 3.2), sections 6.1, 6.2, 8.1 and 8.2 cover all the group theory needed for Unification. Chapters 6, 8, 9, 10 and 11 cover Lie groups in sufficient depth for the full MSc course including a good introduction to symmetries of spacetime in chapter 9 on the Poincaré group.] L.H.Ryder, Quantum Field Theory" (Cambridge University Press, Cambridge, 1985). [General QFT book at an appropriate level for the QFT and Unification courses.] F.Mandl and G.Shaw, Quantum Field Theory" (Wiley, Chichester, revised edition 1996). [General QFT book recommended for the QFT course and for the MSc course in general. Sections 2.1 and 2.2 provide a summary of the required knowledge of special relativity and Lagrangian mechanics.] Overview E.S. Abers and B.W. Lee, Gauge Theories (Physics Reports 9C, No. 1, November 1973). [The first part of this classic Physics Reports review covers many of the main topics of the Unification course. Even if it is hard to read at the beginning of the course, it is hoped that students will be able to understand it by the end of the course.] Cliff Burgess and Guy Moore, The Standard Model a Primer (Cambridge University Press, 2007). [A brand-new graduate level course, goes beyond the Unfication course level. Looks to be a complete and up-to-date treatment of the subject.] Further resources T-P. Cheng and L-F. Li, Gauge Theory of Elementary Particle Physics" (Oxford Univ. Press, 1984). [General QFT book. Starts with good overview of classical Lagrangians. Section 4.1 is a very compact outline of essential group theory ideas needed for Unification. The rest of chapter 4 gives a compact discussion of more group theory as needed for MSc students.] S. Weinberg, Gravitation and Cosmology (Wiley, 1972). [Chapter 2, sections 1-9 provides a good background on Special Relativity.] T. Kibble and F. Berkshire, Classical Mechanics" (Longman, Harlow, 1996). [This book covers Lagrangians etc. at a level accessible to Imperial students.]

6 D. Vvedensky, Group Theory" [Notes from a previous lecturer of the undergraduate Group Theory course.] Howard Georgi, Lie Algebras in Particle Physics" (Perseus Books, Reading, MA, Second Edition 1999, ISBN ). [A standard particle physics text which focuses on compact Lie groups and algebras (about 90% of the text), especially SU(2), SU(3), SU(N), SO(N), SU(5), and SO(10). It is quite useful for MSc students. Make sure that you get the second edition as it is much better and includes an excellent forty-page survey of finite groups. Read this introductory survey even if you don't buy the book.] M.Hamermesh, Group Theory and its applications to physical Problems" (Pergamon/Addison-Wesley, 1962), but available now as a cheap Dover (New York, 1989) paperback, ISBN Ch. 1-3,8 [A classic mathematical presentation of Group theory which accessible to physicists. Good for a serious foundation but written in a rather old-fashioned style] Gordon Kane, Modern Elementary Particle Physics" (Addison-Wesley, Redwood City CA, 1987, ISBN ). [Contains little on history or experimental details, but has a very good description of the Standard Model of particle physics and beyond without using quantum field theory.] David Griffths, Introduction to Elementary Particles" (John Wiley, N.Y., 1987). [Has rather more details than Kane, but without much actual quantum field theory.] I.S.Hughes, Elementary Particles" (Cambridge University Press, Cambridge, 3rd edition 1991, ISBN ). D.H.Perkins, Introduction to High Energy Physics" (Adison-Wesley, Redwood City CA, 3rd edition 1986). [Many descriptions of experimental methods as well as the Standard Model of particle physics.] I.J.R.Aitchison and A.J.G. Hey, Gauge Theories in Particle Physics" (Adam-Hilger, Bristol, 1982). [A good introductory text about all aspects of quantum field theory. It stops short of teaching you how to use quantum field theory but it will explain why one uses quantum field theory, what it means and how it relates to the real world. The recent two-volume edition is highly recommended as a comprehensive and readable book.] Sidney Coleman, Aspects of Symmetry: Selected Erice Lectures of Sidney Coleman" (Cambridge University Press, Cambridge, 1985) ISBN [A superb text about certain key topics in field theory but not a complete QFT course. Chapter 1 on SU(2), SU(3) and SU(N) symmetry is a good way to learn about these topics in a particle-physics context, although the applications are by now rather dated. Chapter 5 is the classic introduction to spontaneous symmetry breaking in the context of QFT including gauge fields.]

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15 Examples of The questions are roughly ordered by chapter but are often connected across the different chapters. Ordering is as in

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

STRING THEORY: Past, Present, and Future

STRING THEORY: Past, Present, and Future STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

The Higgs Boson. Linac08 Victoria BC, Canada CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

More information

Particle Physics. The Standard Model. A New Periodic Table

Particle Physics. The Standard Model. A New Periodic Table 5 Particle Physics This lecture is about particle physics, the study of the fundamental building blocks of Nature and the forces between them. We call our best theory of particle physics the Standard Model

More information

The Physics Graduate Program

The Physics Graduate Program The Physics Graduate Program p. 1/3 The Physics Graduate Program Jacobus Verbaarschot, Graduate Program Director jacobus.verbaarschot@stonybrook.edu Stony Brook, August 2015 The Physics Graduate Program

More information

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe

REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe REALIZING EINSTEIN S DREAM Exploring Our Mysterious Universe The End of Physics Albert A. Michelson, at the dedication of Ryerson Physics Lab, U. of Chicago, 1894 The Miracle Year - 1905 Relativity Quantum

More information

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our

1 Introduction. 1 There may, of course, in principle, exist other universes, but they are not accessible to our 1 1 Introduction Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution. Cosmology is soundly based on observations, mostly astronomical, and laws of physics. These

More information

Maintaining a Work/Life Balance. APS Webinar

Maintaining a Work/Life Balance. APS Webinar Maintaining a Work/Life Balance APS Webinar B.T.Fleming Yale University February 22nd, 2011 A few words about myself: Bonnie Fleming Horace D. Taft Associate Professor of Physics Yale University Teaching:

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Toward a PhD Degree in Physics

Toward a PhD Degree in Physics Steps Toward a PhD Degree p. 1/?? Toward a PhD Degree in Physics Jacobus Verbaarschot, Graduate Program Director jacobus.verbaarschot@stonybrook.edu Stony Brook, August 2012 The Grand Picture Steps Toward

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

Elementary Particle Physics Fall Term 2014. Course Information

Elementary Particle Physics Fall Term 2014. Course Information Physics 145 Harvard University Elementary Particle Physics Fall Term 2014 Course Information Instructors: Gary Feldman, Professor, Lyman 232, 496-1044, gfeldman@fas.harvard.edu Teaching Fellow, Stephen

More information

One of the primary goals of physics is to understand the wonderful variety of nature in a

One of the primary goals of physics is to understand the wonderful variety of nature in a A Unified Physics by by Steven Weinberg 2050? Experiments at CERN and elsewhere should let us complete the Standard Model of particle physics, but a unified theory of all forces will probably require radically

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014

Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Where is Fundamental Physics Heading? Nathan Seiberg IAS Apr. 30, 2014 Disclaimer We do not know what will be discovered. This is the reason we perform experiments. This is the reason scientific research

More information

DOCTOR OF PHILOSOPHY IN PHYSICS

DOCTOR OF PHILOSOPHY IN PHYSICS DOCTOR OF PHILOSOPHY IN PHYSICS The Doctor of Philosophy in Physics program is designed to provide students with advanced graduate training in physics, which will prepare them for scientific careers in

More information

College of Arts and Sciences

College of Arts and Sciences Note: It is assumed that all prerequisites include, in addition to any specific course listed, the phrase or equivalent, or consent of instructor. 105 SICS AND ASTRONOMY TODAY. (1) This course is intended

More information

Vector or Pseudovector?

Vector or Pseudovector? Vector or Pseudovector? Jeffrey A. Phillips Loyola Marymount University Los Angeles, CA 90045 By using a corner reflector it is possible to perform an inversion or improper transformation thereby identifying

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Generally Covariant Quantum Mechanics

Generally Covariant Quantum Mechanics Chapter 15 Generally Covariant Quantum Mechanics by Myron W. Evans, Alpha Foundation s Institutute for Advance Study (AIAS). (emyrone@oal.com, www.aias.us, www.atomicprecision.com) Dedicated to the Late

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

Mathematicians look at particle physics. Matilde Marcolli

Mathematicians look at particle physics. Matilde Marcolli Mathematicians look at particle physics Matilde Marcolli Year of Mathematics talk July 2008 We do not do these things because they are easy. We do them because they are hard. (J.F.Kennedy Sept. 12, 1962)

More information

The Science Education System in Oxford and the UK. David Andrews

The Science Education System in Oxford and the UK. David Andrews The Science Education System in Oxford and the UK David Andrews 1 Outline of this talk High school education (brief) Undergraduate education Oxford Physics Other sciences at Oxford Other universities Postgraduate

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

The Dawn of PHYSICS BEYOND THE. By Gordon Kane 68 SCIENTIFIC AMERICAN

The Dawn of PHYSICS BEYOND THE. By Gordon Kane 68 SCIENTIFIC AMERICAN The Dawn of PHYSICS BEYOND THE By Gordon Kane 68 SCIENTIFIC AMERICAN STANDARD MODEL The Standard Model of particle physics is at a pivotal moment in its history: it is both at the height of its success

More information

Postgraduate Induction in Physics at Royal Holloway, University of London

Postgraduate Induction in Physics at Royal Holloway, University of London Postgraduate Induction in Physics at Outline of Talk Induction Training Assessment & Annual Review Research in the Department Academic training in Department Generic Skills Programme GRADnet Postgraduate

More information

ISU Department of Mathematics. Graduate Examination Policies and Procedures

ISU Department of Mathematics. Graduate Examination Policies and Procedures ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Weak Interactions: towards the Standard Model of Physics

Weak Interactions: towards the Standard Model of Physics Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental

More information

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time "flows" in one direction, the

TIME, SYMMETRY OF. Although everyday experience leads us to believe that time flows in one direction, the TIME, SYMMETRY OF Although everyday experience leads us to believe that time "flows" in one direction, the equations of both classical and modern physics work equally well in either time direction. Since

More information

THE BIG BANG HOW CLOSE CAN WE COME? Michael Dine Final Lecture Physics 171, 2009

THE BIG BANG HOW CLOSE CAN WE COME? Michael Dine Final Lecture Physics 171, 2009 THE BIG BANG HOW CLOSE CAN WE COME? Michael Dine Final Lecture Physics 171, 2009 New York Times: April, 2003 Reports a debate among cosmologists about the Big Bang. lll1.html Dr. Tyson, who introduced

More information

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009 Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,

More information

PHYSICS TEST PRACTICE BOOK. Graduate Record Examinations. This practice book contains. Become familiar with. Visit GRE Online at www.gre.

PHYSICS TEST PRACTICE BOOK. Graduate Record Examinations. This practice book contains. Become familiar with. Visit GRE Online at www.gre. This book is provided FREE with test registration by the Graduate Record Examinations Board. Graduate Record Examinations This practice book contains one actual full-length GRE Physics Test test-taking

More information

PS 320 Classical Mechanics Embry-Riddle University Spring 2010

PS 320 Classical Mechanics Embry-Riddle University Spring 2010 PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: reynodb2@erau.edu web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752

More information

Curriculum for Excellence. Higher Physics. Success Guide

Curriculum for Excellence. Higher Physics. Success Guide Curriculum for Excellence Higher Physics Success Guide Electricity Our Dynamic Universe Particles and Waves Electricity Key Area Monitoring and Measuring A.C. Monitoring alternating current signals with

More information

Universe. Can scientists theory of everything really explain all the weirdness the universe displays? /// BY EDWARD WITTEN

Universe. Can scientists theory of everything really explain all the weirdness the universe displays? /// BY EDWARD WITTEN Can scientists theory of everything really explain all the weirdness the universe displays? /// BY EDWARD WITTEN Astronomers have wrapped up cosmic history in a neat package. Or so it might seem. Some

More information

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg

More information

Undergraduate Degree Programs in the Department of Physics and Astronomy

Undergraduate Degree Programs in the Department of Physics and Astronomy UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES DEPARTMENT OF PHYSICS AND ASTRONOMY Undergraduate Degree Programs in the Department of Physics and Astronomy Updated 8/17/2015 This document

More information

Outline. book content motivations storyline

Outline. book content motivations storyline Outline book content motivations storyline Content history from 1968 (Veneziano amplitude) to 1984 (first string revolution) 7 parts with introductions, 35 contributors and 5 appendices: I. Overview (Veneziano,

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

A CONFRONTATION WITH INFINITY

A CONFRONTATION WITH INFINITY A CONFRONTATION WITH INFINITY Nobel lecture 1999. Gerard t Hooft Institute for Theoretical Physics University of Utrecht, Princetonplein 5 3584 CC Utrecht, the Netherlands e-mail: g.thooft@fys.ruu.nl 1.

More information

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Selected Topics in Elementary Particle Physics ( Haupt-Seminar ) Paola Avella, Veronika Chobanova, Luigi Li Gioi, Christian Kiesling, Hans-Günther Moser, Martin Ritter, Pit Vanhoefer Time: Do, 12 ct -14

More information

The future of string theory

The future of string theory JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 7 JULY 2001 The future of string theory John H. Schwarz a) California Institute of Technology, Pasadena, California 91125 Received 2 January 2001; accepted

More information

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

Evolution of the Universe from 13 to 4 Billion Years Ago

Evolution of the Universe from 13 to 4 Billion Years Ago Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the

More information

The Standard Model of Particle Physics. Tom W.B. Kibble Blackett Laboratory, Imperial College London

The Standard Model of Particle Physics. Tom W.B. Kibble Blackett Laboratory, Imperial College London The Standard Model of Particle Physics Tom W.B. Kibble Blackett Laboratory, Imperial College London Abstract This is a historical account from my personal perspective of the development over the last few

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

r 'i, CMU-HEP--91-10 DE92 002769

r 'i, CMU-HEP--91-10 DE92 002769 d, r 'i, CMU-HEP--91-10 DE92 002769 REMARKS ON PSEUDOSCALAR HIGGS PARTICLES" LING-FONG LI Physics Department, Carnegie-Mellon University, Pittaburgh, PA 15_18 ABSTRACT It is suggested that Z decays into

More information

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY 1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

More information

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Atomic structure This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

How To Teach Physics At The Lhc

How To Teach Physics At The Lhc LHC discoveries and Particle Physics Concepts for Education Farid Ould- Saada, University of Oslo On behalf of IPPOG EPS- HEP, Vienna, 25.07.2015 A successful program LHC data are successfully deployed

More information

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units

Introduction to Elementary Particle Physics. Note 01 Page 1 of 8. Natural Units Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Natural Units There are 4 primary SI units: three kinematical (meter, second, kilogram) and one electrical (Ampere 1 ) It is common in the

More information

THEORETICAL PHYSICS @TCD

THEORETICAL PHYSICS @TCD THEORETICAL PHYSICS @TCD 1 2 4 3 5 6 TR035 Theoretical Physics String Theory 1 Subatomic Collision at CERN 2 Magnetic Molecules Showing Opposite Spin States 3 Crystal Lattice 4 Foam Structure 5 Cosmic

More information

PHYSICS (AS) {PHYS} Experiments in classical mechanics.

PHYSICS (AS) {PHYS} Experiments in classical mechanics. 008. Physics for Architects I. (I) Physical World Sector. All classes.prerequisite(s): Entrance credit in algebra and trigonometry. Credit is awarded for only one of the following courses: PHYS 008, PHYS

More information

MA150/WR150 Investigations in Geometry Spring 2014 Lectures: Tuesday, Thursday 2-3:30 in COM 213 Discussion section: Tuesday 3:30-4:30 in PSY B36

MA150/WR150 Investigations in Geometry Spring 2014 Lectures: Tuesday, Thursday 2-3:30 in COM 213 Discussion section: Tuesday 3:30-4:30 in PSY B36 MA150/WR150 Investigations in Geometry Spring 2014 Lectures: Tuesday, Thursday 2-3:30 in COM 213 Discussion section: Tuesday 3:30-4:30 in PSY B36 Professor: Steve Rosenberg Office: MCS 248 Contact: sr@math.bu.edu;

More information

Guide to the MSCS Program Sheet

Guide to the MSCS Program Sheet Guide to the MSCS Program Sheet Eric Roberts (revisions by Claire Stager) September 2008 Welcome to the Stanford Computer Science Department! This guide is designed to help you understand the requirements

More information

Periodic Table of Particles/Forces in the Standard Model. Three Generations of Fermions: Pattern of Masses

Periodic Table of Particles/Forces in the Standard Model. Three Generations of Fermions: Pattern of Masses Introduction to Elementary Particle Physics. Note 01 Page 1 of 8 Periodic Table of Particles/Forces in the Standard Model Three Generations of Fermions: Pattern of Masses 1.0E+06 1.0E+05 1.0E+04 1.0E+03

More information

Final. Mark Scheme. Physics A PHYA1. (Specification 2450) Unit 1: Particles, quantum phenomena and electricity

Final. Mark Scheme. Physics A PHYA1. (Specification 2450) Unit 1: Particles, quantum phenomena and electricity Version.0 General Certificate of Education (A-level) June 0 Physics A PHYA (Specification 450) Unit : Particles, quantum phenomena and electricity Final Mark Scheme Mark schemes are prepared by the Principal

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Gravity and running coupling constants

Gravity and running coupling constants Gravity and running coupling constants 1) Motivation and history 2) Brief review of running couplings 3) Gravity as an effective field theory 4) Running couplings in effective field theory 5) Summary 6)

More information

The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree. Graduate Skills Base and the Core of Physics The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

230483 - QOT - Quantum Optical Technologies

230483 - QOT - Quantum Optical Technologies Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

EC824. Financial Economics and Asset Pricing 2013/14

EC824. Financial Economics and Asset Pricing 2013/14 EC824 Financial Economics and Asset Pricing 2013/14 SCHOOL OF ECONOMICS EC824 Financial Economics and Asset Pricing Staff Module convenor Office Keynes B1.02 Dr Katsuyuki Shibayama Email k.shibayama@kent.ac.uk

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Venue: Department of Physics, via Madonna delle Carceri 9, tel (+39) 0737 402529, fax (+39) 0737 402853

Venue: Department of Physics, via Madonna delle Carceri 9, tel (+39) 0737 402529, fax (+39) 0737 402853 Class LM-17 Physics Venue: Department of Physics, via Madonna delle Carceri 9, tel (+39) 0737 402529, fax (+39) 0737 402853 Web address: https://didattica.unicam.it/esse3/corsodistudio.do?cod_lingua=ita&cds_id=67

More information

THEORY OF EVERYTHING. Michael Duff INSTANT EXPERT 12

THEORY OF EVERYTHING. Michael Duff INSTANT EXPERT 12 THEORY OF EVERYTHING Michael Duff INSTANT EXPERT 12 Four fundamental forces ArSciMed/spl below: DESY/nasa What holds the quarks and leptons, or building-block particles, together? As far as we can tell,

More information

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes

More information

Prerequisite: High School Chemistry.

Prerequisite: High School Chemistry. ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written

More information

The Elegant Universe Teacher s Guide

The Elegant Universe Teacher s Guide The Elegant Universe Teacher s Guide On the Web It s the holy grail of physics the search for the ultimate explanation of how the universe works. And in the past few years, excitement has grown among scientists

More information

About the Author. journals as Physics Letters, Nuclear Physics and The Physical Review.

About the Author. journals as Physics Letters, Nuclear Physics and The Physical Review. About the Author Dr. John Hagelin is Professor of Physics and Director of the Doctoral Program in Physics at Maharishi International University. Dr. Hagelin received his A.B. Summa Cum Laude from Dartmouth

More information

Programme Specification Mphys (Hons) Physics with Astronomy

Programme Specification Mphys (Hons) Physics with Astronomy Programme Specification Mphys (Hons) Physics with Astronomy 1 Awarding Institution 2 Teaching Institution 3 Programme Accredited by 4 Final Award 5 Programme title 6 UCAS Code 7 QAA Subject Benchmark 8

More information

Linear Algebra: Vectors

Linear Algebra: Vectors A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

More information

Higher Education in Hungary

Higher Education in Hungary in Hungary Institute for Theoretical Physics Eötvös University RECFA visit to Hungary, October 4-5, 2013 Some facts about Hungary Population: 9.9 million GDP (2012): 98 billion EUR GDP per capita (2012):

More information

Jeremy Sakstein Curriculum Vitae

Jeremy Sakstein Curriculum Vitae Contact Information University of Portsmouth Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX Email: jeremy.sakstein@port.ac.uk Website: jeremysakstein.com www.icg.port.ac.uk/author/saksteij/ Academic

More information

NDSU Department of Physics. Graduate Student Handbook

NDSU Department of Physics. Graduate Student Handbook NDSU Department of Physics Graduate Student Handbook Department of Physics North Dakota State University Fargo, ND 58108-6050 History Draft: August 24, 2014 Table of Contents 1. Contact 2 2. Graduate Program

More information

Ph.D., Particle Physics Theory Thesis title: FCNC Processes of B and K Mesons from Lattice QCD University of Edinburgh October 1995 July1999

Ph.D., Particle Physics Theory Thesis title: FCNC Processes of B and K Mesons from Lattice QCD University of Edinburgh October 1995 July1999 Curriculum Vitae Date of Birth: 8 th April 1971 Nationality: Place of Birth: Work Address: Taiwanese Taipei City Institute for Physics National Chiao-Tung University Hsinchu 300 Taiwan Work Telephone:

More information

Ph.D Brochure Department of Physics

Ph.D Brochure Department of Physics Ph.D Brochure Department of Physics Year 2016 Introduction High Energy Physics Optics, Spectroscopy and Laser-Plasma Physics Computational Condensed Matter Physics Experimental Condensed Matter Physics

More information

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology

Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology Gravitational self-force in the ultra-relativistic regime Chad Galley, California Institute of Technology with Rafael Porto (IAS) arxiv: 1302.4486 v2 soon! (with details) Capra16; Dublin, Ireland; July

More information

PHY1020 BASIC CONCEPTS IN PHYSICS I

PHY1020 BASIC CONCEPTS IN PHYSICS I PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong

More information

Online Course Syllabus MT201 College Algebra. Important Notes:

Online Course Syllabus MT201 College Algebra. Important Notes: Online Course Syllabus MT201 College Algebra Important Notes: This document provides an overview of expectations for this online course and is subject to change prior to the term start. Changes may also

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

PH.D. REQUIREMENTS IN THE DEPARTMENT OF PHYSICS AND ASTRONOMY. 1. Course Requirements

PH.D. REQUIREMENTS IN THE DEPARTMENT OF PHYSICS AND ASTRONOMY. 1. Course Requirements PH.D. REQUIREMENTS IN THE DEPARTMENT OF PHYSICS AND ASTRONOMY Completion of the Ph.D. requires (1) completion of 72 semester hours of coursework with satisfactory grades in each course and an overall average

More information

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela csalgado@usc.es http://cern.ch/csalgado LHC physics program Fundamental

More information