Resonance and fractal geometry



Similar documents
BIFURCATION PHENOMENA IN THE 1:1 RESONANT HORN FOR THE FORCED VAN DER POL - DUFFING EQUATION

NONLINEAR TIME SERIES ANALYSIS

FIVE MOST RESISTANT PROBLEMS IN DYNAMICS. A. Katok Penn State University

The Government of the Russian Federation

Nonlinear normal modes of three degree of freedom mechanical oscillator

Dimension Theory for Ordinary Differential Equations

SEMICONDUCTOR lasers with optical feedback have

Fractal Fourier spectra in dynamical systems

P. V A D A S Z J O U R N A L P U B L IC A T IO N S ( )

Chapter 7. Lyapunov Exponents. 7.1 Maps

Lecture 13. Gravity in the Solar System

Dynamics of Renormalization Operators

A Pragmatic Introduction to Chaos Theory for Engineers

How To Know If A Solution Of The Navier-Stokes Equations Is Smooth

Hidden Order in Chaos: The Network-Analysis Approach To Dynamical Systems

Computer Animation and the Geometry of Surfaces in 3- and 4-Space

November UNIT SELECTION GUIDE Bachelor of Education (Secondary: Mathematics) and Bachelor of Science

3.2 Sources, Sinks, Saddles, and Spirals

Breeding and predictability in coupled Lorenz models. E. Kalnay, M. Peña, S.-C. Yang and M. Cai

NONLINEAR TIME SERIES ANALYSIS

p img SRC= fig1.gif height=317 width=500 /center

Differential Equations in Economics

Nonlinear Systems of Ordinary Differential Equations

The Systematic Descent from Order to Chaos

EXPERIMENTAL INVESTIGATION OF A TWO-DEGREE-OF-FREEDOM VIBRO-IMPACT SYSTEM

Design of 2D waveguide networks for the study of fundamental properties of Quantum Graphs

Statistical Physics and Dynamical Systems approaches in Lagrangian Fluid Dynamics

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

NICHOLAS D. BRUBAKER

Lab 6: Bifurcation diagram: stopping spiking neurons with a single pulse

Transmission Line and Back Loaded Horn Physics

Introduction to Engineering System Dynamics

Precession of spin and Precession of a top

ANIMATED PHASE PORTRAITS OF NONLINEAR AND CHAOTIC DYNAMICAL SYSTEMS

8 Fractals: Cantor set, Sierpinski Triangle, Koch Snowflake, fractal dimension.

Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version

Curriculum Vitae. June, 1998 Graduation in Mathematics (5-years degree), Faculty of Sciences of the University of Lisbon (FCUL)

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

The idea to study a boundary value problem associated to the scalar equation

On a conjecture by Palis

Part IV. Conclusions

Code: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS

On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems

DYNAMIC DOMAIN CLASSIFICATION FOR FRACTAL IMAGE COMPRESSION

Fiber sums of genus 2 Lefschetz fibrations

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

Discrete mechanics, optimal control and formation flying spacecraft

Dynamics of Celestial Bodies, PLANETARY PERTURBATIONS ON THE ROTATION OF MERCURY

Coupling, entrainment, and synchronization of biological oscillators Didier Gonze

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

The Department of Mathematics Document Series

APPLIED MATHEMATICS ADVANCED LEVEL

NEUROMATHEMATICS: DEVELOPMENT TENDENCIES. 1. Which tasks are adequate of neurocomputers?

Curriculum Vitae. 01 August 1973, Gümüşhane, TURKEY. Phone : / Ext.: : kilic@erciyes.edu.tr

Allocation of Mathematics Modules at Maynooth to Areas of Study for PME (Professional Masters in Education)

The Oort cloud as a dynamical system

Credit Number Lecture Lab / Shop Clinic / Co-op Hours. MAC 224 Advanced CNC Milling MAC 229 CNC Programming

ANALYSIS OF A MODEL OF TWO PARALLEL FOOD CHAINS. Sze-Bi Hsu. Christopher A. Klausmeier. Chiu-Ju Lin. (Communicated by the associate editor name)

Bandwidth statistics from the eigenvalue moments for the Harper Hofstadter problem

Timing Errors and Jitter

PHYS 1624 University Physics I. PHYS 2644 University Physics II

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Simulation, prediction and analysis of Earth rotation parameters

Real Time Simulation of Power Plants

Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues

Gravity Field and Dynamics of the Earth

On the Palis Conjecture

Advanced CFD Methods 1

CURRICULUM GUIDE

Georgia Milestones Content Weights for the School Year

References. [1] R. Colombo, F. Marcellini and M. Rascle. A 2-Phase Trac Model based on a Speed Bound SIAM J. Appl. Math,Vol 70,(2010),

Essential Question. Enduring Understanding

ISSCC 2003 / SESSION 13 / 40Gb/s COMMUNICATION ICS / PAPER 13.7

Transcription:

Resonance p.1/27 Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen

Resonance p.2/27 Summary i. resonance ii. two oscillators: torus- en circle dynamics iii. driven oscillators, examples: - Hopf-Neĭmark-Sacker bifurcation - parametric resonance - Hopf saddle-node bifurcation for maps

Resonance p.3/27 What is resonance? Resonance: interaction of oscillating subsystems, where rational ratio of frequencies and with compatible motion voorbeelden: 1 : 1 resonance: Huygens s clocks, Moon and Earth, Charon and Pluto 1 : 2 resonance: Botafumeiro (Santiago de Compostela) 2 : 3 resonance: Mercury

Christiaan Huygens (1629-1695) Christiaan Huygens and title page Horologium Oscillatorium 1673 cycloids and synchronisation Resonance p.4/27

Resonance p.5/27 Huygens s clocks synchronous Chr. Huygens, Œuvres Complètes de Christiaan Huygens, publiées par la Société Hollandaise des Sciences 16, Martinus Nijhoff, The Hague 1929, Vol. 5, 241-262; Vol. 17, 156-189

Tidal resonance Moon caught by Earth in 1 : 1 resonance Pluto and Charon caught each other: als the ultimate fate of the Earth-Moon system... Mercury caught in 3 : 2 resonance A. Correia and J. Laskar, Mercury s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics, Nature 429 (24) 848-85 Resonance p.6/27

Resonance p.7/27 Botafumeiro Santiago de Compostela incense container brought into 1:2 resonance by pully: period exactly equals twice that of the forcing

Resonance p.8/27 Mathematical programme modelling in terms of dynamical systems depending on parameters emergence of several kinds of dynamics: periodic, quasi-periodic and chaotic bifurcations (fase transitions) in between applications from climate change to (biological) cell systems

Resonance p.9/27 Torus en circle dynamics simplest model: torus dynamics P(ϕ) ϕ Poincaré map: ϕ ϕ + 2πα + εf(ϕ) dynamics of the circle (by iteration) resonant periodic

Resonance p.1/27 Example: Arnol d family ϕ ϕ + 2πα + ε sinϕ 3 2.5 ε 2 1.5 1.5-1/2-4/9-3/7-2/5-3/8-1/3-2/7-1/4-2/9-1/5-1/6-1/7-1/8 α 1/8 1/7 1/6 1/5 2/9 1/4 2/7 1/3 3/8 2/5 3/7 4/9 1/2 resonance tongues in (α,ε)-vlak catalogue of circle and torus dynamics

Resonance p.11/27 Explanation torus dynamics within tongues: periodicity resonance phase-locking synchronisation within main tongue : 1:1 resonance entrainment outside tongues: quasi-periodicity each orbit densely fills torus / circle H.W. Broer and F. Takens, Dynamical Systems and Chaos, Epsilon-Uitgaven 64, 29; revised edition Appl. Math. Sc., Springer-Verlag, 21 (to appear) H.W. Broer, K. Efstathiou and E. Subramanian, Robustness of unstable attractors in arbitrarily sized pulse-coupled systems with delay, Nonlinearity 21(1) (28), 13-49

Resonance p.12/27 Devil s staircase.6.4.2 -.2 -.4 -.6 -.4 -.2.2.4 α rotation number mean rotation as a function of α, continuous, non-decreasing and constant on plateaux for rational values of resonance rational H.W. Broer, C. Simó and J.C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity 11 (1998), 667-77

Resonance p.13/27 Geometry in parameter space non-resonance fractal geometry Cantor set, topologically small (nowhere dense) positive Lebesgue measure fractal set with Droste effect motion quasi-periodic with irrational rotation number; strongly irrational differentiable conjugation with rigid rotation V.I. Arnol d, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag 1983 J. Oxtoby, Measure and Category, Springer-Verlag 1971

Resonance p.14/27 Conclusions Huygens s clocks torus / circle model weakly coupled oscillators as before almost identical oscillators modulo 1 parameters (α,ε) in main tongue M. Bennett, M.F. Schatz, H. Rockwood and K. Wiesenfeld, Huygens s clocks, Proc. R. Soc. Lond. A 458 (22), 563-579

Resonance p.15/27 Hopf-Neĭmark-Sacker I more general: map f : R 2 R 2 fixed point f() = eigenvalues derivative e 2π(α±iβ) with α and β p/q example: f is Poincaré map of driven oscillator ẍ + ax + cẋ = εq(x,ẋ,t) with q(x,ẋ,t + 2π) q(x,ẋ,t) locally: geometry with universal singularities (saddle node / fold and other bifurcations) globaal: quasi-periodicity and fractal geometry

Resonance p.16/27 Hopf-Neĭmark-Sacker II β α non-degenerate case q 5 F. Takens, Forced oscillations and bifurcations. In: Applications of Global Analysis I, Comm. of the Math. Inst. Rijksuniversiteit Utrecht (1974). In: H.W. Broer, B. Krauskopf and G. Vegter (eds.), Global Analysis of Dynamical Systems, IoP Publishing (21), 1-62

Resonance p.17/27 Hopf-Neĭmark-Sacker III mildly-degenerate case q 7

Resonance p.18/27 Conclusions Arnol d tongues universal: fold, cusp, swallowtail and Whitney umbrella H.W. Broer, M. Golubitsky and G. Vegter, The geometry of resonance tongues: A Singularity Theory approach, Nonlinearity 16 (23), 1511-1538 H.W. Broer, S.J. Holtman and G. Vegter, Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neĭmark-Sacker families, Nonlinearity 21 (28), 2463-2482 H.W. Broer, S.J. Holtman, G. Vegter and R. Vitolo, Geometry and dynamics of mildly degenerate Hopf-Neĭmarck-Sacker families near resonance, Nonlinearity 22 (29), 2161-22 H.W. Broer, S.J. Holtman and G. Vegter, Recognition of resonance type in periodically forced oscillators. Physica-D (21) (to appear)

Parametric resonance driven oscillator ẍ + (a + εq(t)) sin x = (swing) with q(t + 2π) q(t) for example: q(t) = cost q(t) = cost + 3 2 cos(2t) q(t) = signum (cos t) loss of stability in discrete tongues emanating from (a,ε) = ( 1 4 k2, ), k =, 1, 2,... subharmonic bifurcations H.W. Broer and G. Vegter, Bifurcational aspects of parametric resonance, Dynamics Reported, New Series 1 (1992), 1-51 Resonance p.19/27

Resonance tongues swing 6 6 5 5 4 4 3 3 2 2 1 1-2 -1 1 2 3 4 5 6-2 -1 1 2 3 4 5 6 6 5 4 3 2 1-2 -1 1 2 3 4 5 6 H.W. Broer and M. Levi, Geometrical aspects of stability theory for Hill s equations, Archive Rat. Mech. An. 131 (1995), 225-24 H.W. Broer and C. Simó, Resonance tongues in Hill s equations: a geometric approach, Journal of Differential Equations 166 (2), 29-327 Resonance p.2/27

Botafumeiro revisited Poincaré map swing in 1 : 2 resonance period doubling quasi-periodicity chaos... Resonance p.21/27

Resonance p.22/27 From gaps to tongues universal geometry from gaps to tongues with ε extra parameter collapse theory of gaps quasi-periodical analogue q(t) = Q(ω 1 t,ω 2 t,...,ω n t) with Q : T n R : geometry per tongue as before globally fractal geometry and Droste effect for example: n = 2 with ω 1 = 1 and ω 2 = 1 2 ( 5 1) rotatie number as before H.W. Broer, H. Hanßmann, Á. Jorba, J. Villanueva and F.O.O. Wagener, Normal-internal resonances in quasi-periodically forces oscillators: a conservative approach. Nonlinearity 16 (23), 1751-1791

Resonance p.23/27 Devil s staircase revisited.8.75.7.65.6.55.5.38.4.42.44.46.48.5.52 rotation number as a function of a tongues gaps spectrum Schrödinger operator Cantor spectrum and devils staircases... J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials, Comment. Math. Helvetici 59 (1984), 39-85 H.W. Broer, J. Puig and C. Simó, Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation, Commun. Math. Phys. 241 (23), 467-53

Resonance p.24/27 Hopf saddle-node I map f : R 3 R 3, fixed point f() = eigenvalues derivative 1 en e 2π(α±iβ) with α and β p/q math more experimental inspired by climate models... H.W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing, Nonlinearity 15(4) (22), 125-1267 A.E. Sterk, R. Vitolo, H.W. Broer, C. Simó and H.A. Dijkstra, New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Physica D: Nonlinear Phenomena 239 (21), 71-718 H.W. Broer, H.A. Dijkstra, C. Simó, A.E. Sterk and R. Vitolo, The dynamics of a low-order model for the Atlantic Multidecadal Oscillation, DCDS-B (21) (to appear)

Hopf saddle-node II box H.1 d1.5 -.5 -.1.2 O.4.6 I.8 d2 1 1.2 1.4 H H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, analysis of a resonance bubble, Physica D 237 (28), 1773-1799 H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, the Arnol d resonance web, Bull. Belgian Math. Soc. Simon Stevin 15 Resonance p.25/27 (28), 769-787

Hopf saddle-node III 1 n=.46 C C1 1 y -1 z x x -1-1 1-1 1 1 n=.4555 D D1 1 y -1 z x x -1-1 1-1 1 corresponding dynamics: quasi-periodicity and chaos... Resonance p.26/27

Conclusions co-existence periodicity (including resonance), quasi-periodicity and chaos in product state- and parameter space bifurcations (phase transitions): singularities non-resonances: Kolmogorov-Arnol d-moser theory fractal geometry and Droste effect modelling at a larger scale D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 2 (1971), 167-192; 23 (1971), 343-344 H.W. Broer, KAM theory: the legacy of Kolmogorov s 1954 paper, Bull. AMS (New Series) 41(4) (24), 57-521 H.W. Broer, B. Hasselblatt and F. Takens (eds.): Handbook of Dynamical Systems, Volume 3 North-Holland, 21 (to appear) Resonance p.27/27