POLISH ASSOCIATION FOR SPATIAL INFORMATION



Similar documents
T.A. Tarasova, and C.A.Nobre

The solar radiation model for Open source GIS: implementation and applications

Solar Radiation Models and Categrastical Network Marketing

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

SOLAR RADIATION AND YIELD. Alessandro Massi Pavan

The Surface Energy Budget

P.M. Rich, W.A. Hetrick, S.C. Saving Biological Sciences University of Kansas Lawrence, KS 66045

Radiative effects of clouds, ice sheet and sea ice in the Antarctic

2 Absorbing Solar Energy

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

Solarstromprognosen für Übertragungsnetzbetreiber

Radiation models for the evaluation of the UV radiation at the ground

SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEMS Vol. I - Solar Radiation Energy (Fundamentals) - L. Wald SOLAR RADIATION ENERGY (FUNDAMENTALS)

Total radiative heating/cooling rates.

Solar Heating Basics Page 1. a lot on the shape, colour, and texture of the surrounding

Multiangle cloud remote sensing from

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon

Energy Pathways in Earth s Atmosphere

The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates

Use of numerical weather forecast predictions in soil moisture modelling

Optimum Solar Orientation: Miami, Florida

Orbital-Scale Climate Change

Improvement in the Assessment of SIRS Broadband Longwave Radiation Data Quality

Clouds and the Energy Cycle

APPENDIX D: SOLAR RADIATION

8.5 Comparing Canadian Climates (Lab)

Corso di Fisica Te T cnica Ambientale Solar Radiation

REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

ESCI-61 Introduction to Photovoltaic Technology. Solar Radiation. Ridha Hamidi, Ph.D.

Lectures Remote Sensing

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

GIS Based Estimation and Mapping of Local Level Daily Irradiation on Inclined Surfaces

Solar Resource Assessment

Estimation of photosynthetically active radiation under cloudy conditions

CHAPTER 2 Energy and Earth

FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE :

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology Energy flux onto a unit surface:

Cloud Climatology for New Zealand and Implications for Radiation Fields

PHSC 3033: Meteorology Seasons

Seasonal Temperature Variations

Vaisala 3TIER Services Global Solar Dataset / Methodology and Validation

Electromagnetic Radiation (EMR) and Remote Sensing

ARM SWS to study cloud drop size within the clear-cloud transition zone

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography

CLOUD COVER IMPACT ON PHOTOVOLTAIC POWER PRODUCTION IN SOUTH AFRICA

Cloud Radiation and the Law of Attraction

Climatology of aerosol and cloud properties at the ARM sites:

A new simple parameterization of daily clear-sky global solar radiation including horizon effects

Expert System for Solar Thermal Power Stations. Deutsches Zentrum für Luft- und Raumfahrt e.v. Institute of Technical Thermodynamics

The Centre for Australian Weather and Climate Research. A partnership between CSIRO and the Bureau of Meteorology

Sun Earth Relationships

Tools for Viewing and Quality Checking ARM Data

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

Satellite'&'NASA'Data'Intro'

5. GIS, Cartography and Visualization of Glacier Terrain

Supporting Online Material for

EVALUATING SOLAR ENERGY PLANTS TO SUPPORT INVESTMENT DECISIONS

Meteorological Forecasting of DNI, clouds and aerosols

CLOSED LANDFILLS TO SOLAR ENERGY POWER PLANTS: ESTIMATING THE SOLAR POTENTIAL OF CLOSED LANDFILLS IN CALIFORNIA

CALCULATING SOLAR PHOTOVOLTAIC POTENTIAL ON RESIDENTIAL ROOFTOPS IN KAILUA KONA, HAWAII. Caroline Carl

APPLICATION OF THE UTCI TO THE LOCAL BIOCLIMATE OF POLAND S ZIEMIA KŁODZKA REGION

Comparison of Cloud and Radiation Variability Reported by Surface Observers, ISCCP, and ERBS

Risk and vulnerability assessment of the build environment in a dynamic changing society

CALIPSO, CloudSat, CERES, and MODIS Merged Data Product

Simulation of global solar radiation based on cloud observations

Comparison of different methods for the determination of sunshine duration

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

RADIATION (SOLAR) Introduction. Solar Spectrum and Solar Constant. Distribution of Solar Insolation at the Top of the Atmosphere

What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

Radiation Transfer in Environmental Science

Open Source Map Based Software for Photovoltaic System Layout Design

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

VALIDATION OF SAFNWC / MSG CLOUD PRODUCTS WITH ONE YEAR OF SEVIRI DATA

LECTURE N 3. - Solar Energy and Solar Radiation- IDES-EDU

Empirical study of the temporal variation of a tropical surface temperature on hourly time integration

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Ocean Level-3 Standard Mapped Image Products June 4, 2010

Cloud Oxygen Pressure Algorithm for POLDER-2

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Overview of the IR channels and their applications

NASA Earth System Science: Structure and data centers

Land Albedo and Global Warming Validation for RE- Analysis

Sensitivity of Surface Cloud Radiative Forcing to Arctic Cloud Properties

Proposal for a Discovery-level WMO Metadata Standard

Spatially distributed assessment of solar resources for energy applications in Slovakia

Notable near-global DEMs include

NIGHT RADIATIVE COOLING The effect of clouds and relative humidity Mike Luciuk

1. Theoretical background

Ecosystem-land-surface-BL-cloud coupling as climate changes

WEATHER AND CLIMATE practice test

Cloud detection and clearing for the MOPITT instrument

Impact of water harvesting dam on the Wadi s morphology using digital elevation model Study case: Wadi Al-kanger, Sudan

Scholars Research Library. Estimation of global solar radiation using cloud cover and surface temperature in some selected cities in Nigeria

Transcription:

POLISH ASSOCIATION FOR SPATIAL INFORMATION MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION... ANNALS OF GEOMATICS 2008 m VOLUME VI m NUMBER 2 107 MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION APPLICATION OF THE R.SUN MODEL MODELOWANIE DOP YWU POTENCJALNEGO PROMIENIOWANIA S ONECZNEGO DLA OBSZARU HORNSUNDU I WERYFIKACJA WYNIKÓW ZASTOSOWANIE R.SUN Mariusz Szymanowski 1, Maciej Kryza 2, Krzysztof Miga³a 2, Piotr Sobolewski 3, Lech Kolondra 4 1 Department of Cartography, Institute of Geography and Regional Development Wroc³aw University, Poland 2 Department of Meteorology and Climatology, Institute of Geography and Regional Development, Wroc³aw University, Poland 3 Institute of Geophysics, Polish Academy of Science, Poland 4 Department of Geomorphology, University of Silesia, Poland Keywords: solar radiation, GIS, Spitsbergen S³owa kluczowe: promieniowanie s³oneczne, GIS, Spitsbergen Introduction The spatial and temporal variations of incoming solar energy determine the dynamics of many landscape processes, including snow and ice melt, thaw/freeze cycles, air and soil temperature and moisture, photosynthesis and evapotranspiration, all with a strong impact on the local climate diversity. Accurate, both in space and time, solar radiation data are needed for many applications and can be very useful in polar climatology, supporting studies of the dynamics of glaciated and nonglaciated ecosystems and their behavior under climate change scenarios. Solar radiation reaching the Earth s surface is a result of complex interactions of energy between the atmosphere and surface. At a global scale, the latitudinal gradients of radiation are caused by the geometry of the Earth and its rotation and orbit around the Sun. At regional and local scales, terrain (relief) is the major factor modifying the spatial distribution of radiation. Variability in elevation, surface inclination (slope), orientation (aspect) and shadows cast by terrain features may create strong local gradients in incoming solar radiation. To account for the spatial variation of solar radiation in mountainous areas, solar radiation models integrated within the Geographical Information Systems (GIS) and considering slope, aspect and shadowing effects, are useful. In fact the integrated GIS-solar models, with strong

108 MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, KRZYSZTOF MIGA A, PIOTR SOBOLEWSKI, LECH KOLONDRA theoretical background of astronomical and atmospheric information, together with terrain characteristics, are the only solution for small but heterogeneous regions with a lack of observational data, that limits the applicability of other methods (e.g. spatial interpolation). Solar models available through GIS systems have been developed since 1990s. The first models were based on simple empirical formulae, e.g. SolarFlux for ArcInfo (Dubayah and Rich, 1995), Solei for Idrisi (Miklánek, 1993) and Genasys (Kumar et al., 1997). More advanced solutions are implemented in Solar Analyst, which is an extension of ArcGIS (Fu and Rich, 2000) and the SRAD model (McKenney et al., 1999), both designed and suitable for fine scale analysis. The r.sun model, which has been used in our study, is based on the previous work by Hofierka (1997), and is available as a part of the OpenSource GIS GRASS environment (GRASS Development Team, 2007; Hofierka and Šuri, 2002; Šuri and Hofierka, 2004). This model was used to prepare the data for the European Solar Radiation Atlas project of the European Commission (Scharmer and Greif, 2000). This paper brings the general concept of the r.sun model and presents the preliminary results of beam and diffused solar radiation for the for the surroundings of the Polish Polar Station in Hornsund Fjord, SW Spitsbergen. The calculated spatial patterns of solar radiation are presented for different time periods and validated by comparison with the measurements. The study is performed as part of the TOPOCLIM project, under the 4 th International Polar Year activities. The r.sun model The r.sun model is designed to calculate the irradiance/irradiation for both clear-sky and overcast conditions. The model works in two modes. In the first mode, raster maps of instantaneous beam (I B ), diffuse (I D ) and reflected solar irradiance [Wm -2 ], together with the solar incident angle [degrees] can be calculated for a given day and time. In the second mode the spatial patterns of daily sums of solar irradiation [Whm -2 ] and duration of the beam irradiation [minutes] are computed. The model requires only a few mandatory input parameters: elevation above the sea level; slope and aspect of the terrain; local solar time (for mode 1); and a day number (for both modes). The user may also change the default setting of other parameters, including the Linke atmospheric turbidity factor (L TF ), ground albedo and real sky radiation coefficients separately for beam and diffuse components. Spatially distributed parameters can be set as raster maps. Optionally, the model accounts for obstructions of the sky by local terrain features from the Digital Elevation Model (DEM). The astronomical parameters, such as solar declination, are computed internally by the model. The starting point for the beam component irradiation modelling is the solar constant, which is then corrected for the Earth s orbit eccentricity (day number) and the attenuation by a cloudless atmosphere using the Linke atmospheric turbidity factor and Rayleigh optical thickness at a given air mass. After this, the beam irradiance fo a horizontal surface and then an inclined surface [Wm -2 ] are calculated. The modelling of the diffuse component for a horizontal surface [Wm -2 ] is a product of the normal extraterrestrial irradiance, a diffuse transmission function dependent on the L TF, and a diffuse solar altitude function dependent on the solar altitude. The Linke turbidity factor is a key component as atmospheric turbidity increases the diffuse radiation and decreases the direct radiation. The Linke turbidity factor is a key element influencing the modelled results for both beam and diffused radiation. It expresses the absorption by the water vapor and the absorption and scattering by the aerosol particles and can be interpreted as the number of clean dry atmospheres that would be necessary to produce the same attenuation of the extraterrestrial radiation that

MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION... 109 is produced by the real atmosphere (Louche et al., 1986). In this way, it compares the actual atmospheric extinction coefficient of the atmosphere over the whole solar spectrum with the theoretical atmospheric extinction coefficient of pure dry air over the same spectrum and path length (Vida et al., 1999). The larger the L TF, the stronger is the attenuation of the radiation by the clear sky atmosphere. The estimation of the clear-sky ground reflected irradiance for inclined surfaces and computation of overcast irradiation has not been performed in this study. The detailed description of the procedure can be found in Hofierka and Šuri (2002) or Šuri and Hofierka (2004). The r.sun model can be used, as mentioned above, to calculate instantaneous or daily radiation. The model output may be aggregated to other time spans. This can be easily done, for example, using Linux shell scripts. In this paper, monthly, daily and instantaneous spatial patterns of beam and diffused and total (beam+diffused) radiation are presented, whereas the model validation is based on measured data. Study area The study area is the locality of the Werenskjold Glacier in SW Spitsbergen (Wedel Jarlsberg Land), with a special attention for the Arie Valley in the vicinity of the Polish Polar Station in the Hornsund Fjord (Fig. 1). The whole area covers 288 km 2 ; the elevation changes from sea level to 948 m a.s.l. and the steepest slopes reach 68 degrees. Input data The following mandatory spatial input data were provided as an input to the r.sun model: 1. 10-meter resolution digital elevation model (DEM; Fig. 1) based on the source data for the orthophotomap (1:25 000) Werenskioldbreen and surrounding areas ( Norsk Polarinstitutt and Silesian University). 2. Inclination and orientation of terrain calculated using the r.slope.aspect GRASS function to process the DEM. 3. The Linke Turbidity factor is assumed to be spatially constant over the study area, but due to the dynamic temporal nature, the calculations are performed for each hour of the year using the real solar elevation to avoid a certain degree of generalisation. The L TF is calculated with the formula proposed by Dogniaux (1984), fide Page (1986): 85 + γ L TF = + 0.1 ( 16 + 0.22w) β ( ) A 39.5exp w + 47.4 where γ is the solar elevation in degrees, w is the precipitable water vapour contents (PWC) in [cm] and β A is the Angstrom turbidity coefficient (dimensionless). In the absence of available observational data for w and β A, according to Dogniaux, the following values were used: 2 cm of precipitable water content and β A = 0.05. The constant PWC value over the year is a simplification, as it is expected to change, for example, with air temperature. Model validation Instantaneous total radiation measurements are available from the Polish Polar Station for the years 2005 and 2006, together with cloud cover data (in 3-hourly steps). As the clear-sky

110 MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, KRZYSZTOF MIGA A, PIOTR SOBOLEWSKI, LECH KOLONDRA radiation is the point of interest in this paper, periods with cloudiness less or equal to one (in octants) are selected and compared with the modelled total radiation. The number of clearsky total radiation measurements is 158. Results & discussion Monthly average beam, diffused and total (beam+diffused) solar radiation, calculated from the modelled daily radiation sums, is presented in Figure 2. The largest spatial variations are for the beam radiation and are related to the complex terrain and, therefore, variations in slope and aspect. The steep south facing slopes receive much larger amounts of beam solar radiation than the slopes of northern exposure. In August, there are small areas with no direct radiation, i.e. permanently shadowed by the surrounding mountain ridges. The spatial variations of diffused radiation are not large, and the spatial pattern of the total solar radiation is similar to that calculated for the beam radiation. Daily beam radiation is presented for selected days of the period from 1 st of May to 1 st of September (Fig. 3). The shadowing effects of the surrounding mountains are clearly pronounced at the beginning of May, on 15 th August and in September. Instantaneous beam radiation for the selected area is presented at 3 hourly steps, starting on 15 th of August, at 00 local solar time (Fig. 4). The modelled beam solar radiation for the selected area changes from 0 to almost 1000 Wm -2. The location of the shadowed areas changes during the day, but each time their spatial extent is substantial. This might have significant influence on various aspects of the environment. The mean air temperature of August is within the range of +4.4 to +5.2 o C, therefore large variations in incoming solar radiation over the day may lead to frequent freeze / thaw cycles and may influence the hydrological cycle, etc. The r.sun model results are compared with the measured total (beam+diffused) solar radiation values (Fig. 5). There is a good agreement between the modelled and measured total radiation despite the relatively simple meteorological parameterization. The adjusted R 2 is above 0.93, with the mean absolute error close to 35 W. It should, however, be noticed that the r.sun model tends to overestimate the modelled total radiation for the values larger than 400 Wm -2. This may be attributed to the simple parameterization of the L TF factor, which is calculated with the PWC being constant over the year. For the warm season, the PWC is expected to be higher, and this can explain the differences between the modelled and measured results. Summary The preliminary results of clear-sky radiation modelled with r.sun are presented and checked against the available measurements. The model is found to be in good agreement with the measurements, despite its simple meteorological parameterization. Improvements in the L TF calculation are needed and preferably based on the measurements. This will probably increase the overall agreement between the modelled and observed results for the clear sky conditions. The r.sun model can be considered as a robust and very flexible GIS tool for radiation modelling. The main strength of the model is its simplicity and relatively small demands on input data. There are no hard-coded limitations, for example, for the area size or it s resolution. High resolution modelling, especially incorporating the shadowing effect of terrain, however,

MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION... 111 Figure 5. Modelled vs. measured solar radiation [Wm -2 ]. 1:1 line solid, best fit line dashed can be time and resource consuming. On the other hand, high resolution and quality of the input DEM is of great importance for the final results, especially for mountainous areas. The results presented here are for the clear-sky conditions, which are not very common in the Spitsbergen area. The r.sun model is also able to calculate the beam and diffused solar radiation for the overcast sky and some preliminary results, not presented here, are encouraging. As these data are valuable for ecological, glaciological or hydrological studies, work will be undertaken to provide the spatial data on radiation under the real sky (including overcast) conditions. References Dougniaux R., 1984: De l influence de l estimation du facteur total de trouble atmosphérique sur l évaluation du rayonnement solaire direct par ciel clair. Application aux données radiométriques de L IRM a Uccle. Institut Royal Météorologique de Belgique (IRM), Miscellanea, Ser. C. Dubayah R., Rich P.M., 1995: Topographic solar radiation models for GIS. Int J Geogr Inform Syst 9:405-419 Fu P., Rich P.M., 2000: The Solar Analyst 1.0 user manual. Helios Environmental Modeling Institute, http:/ /www.hemisoft.com. GRASS Development Team, 2007: Geographic Resources Analysis Support System (GRASS) Software. ITC-irst, Trento, Italy. http://grass.itc.it. Hofierka J., Šuri M., 2002: The solar radiation model for Open Source GIS: implementation and applications, Proc of the Open Source GIS GRASS users conference 2002 Trento, Italy, 11-13 September 2002. Kumar L., Skidmore A.K., Knowles E., 1997: Modelling topographic variation in solar radiation in a GIS environment. Int J Geogr Inform Sci 11(5): 475-497. Louche A., Peri G., Iqbal M., 1986: An analysis of Linke Turbidity Factor. Solar Energy 37(6):393-396. McKenney D.W., Mackey B.G., Zavitz B.L., 1999: Calibration and sensitivity analysis of a spatiallydistributed solar radiation model. Int J Geogr Inform Sci 13(1): 49-65. Miklánek P., 1993: The estimation of energy incom in grid points over the basin using simple digital elevation model. Ann Geophys, European Geophysical Society. Springer, Suppl. II, 11:296. Page J.K., 1986: Prediction of solar radiation on inclined surfaces. Solar Energy R & D in the European Community, Series F, Solar Radiation Data, vol. 3. Dordrecht: Reidel Publishing Company.

112 MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, KRZYSZTOF MIGA A, PIOTR SOBOLEWSKI, LECH KOLONDRA Scharmer K., Greif J. (eds), 2000: The European Solar Radiation Atlas, Volume 2: Database and Exploitation Software. Les Presses de l École des Mines: Paris. http://www.helioclim.net/esra/index.html. Šuri M., Hofierka J., 2004: A New GIS-based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans GIS 8(2):175-190. Vida J., Foyo-Moreno I., Alados-Arboledas L., 1999: Performance validation of MURAC, a cloudless sky radiance model proposal. Energy 24:705-721. Abstract R.sun is a solar radiation model implemented in the OpenSource GRASS GIS. The model can be used to calculate spatial patterns of both instantaneous and daily sums of beam, diffused and reflected solar radiation. The input data are digital elevation model, needed to calculate slopes and their aspects, and the Linke turbidity factor, which describes the attenuation of the solar radiation in the atmosphere. Optionally, terrain-shadowing effects may be considered, which is important for areas with complex relief. Effects of cloudiness on the incoming solar radiation can also be parameterised, separately for the beam and diffused radiation. Here the r.sun model is applied to calculate the potential (i.e. for cloudless conditions) solar radiation for the Hornsund area (SW Spitsbergen). The shadowing effect is included, which is of special importance for the area because of the relief complexity and low solar altitudes. The results are shown on a series of maps and compared with measurements. The validation of the model shows a good agreement between the model results and the available measurements. Streszczenie R.sun jest narzêdziem s³u ¹cym do modelowania dop³ywu promieniowania s³onecznego do powierzchni ziemi, zaimplementowanym w dzia³aj¹cym na licencji OpenSource systemie GIS GRASS. Model mo e byæ zastosowany do obliczania zarówno wielkoœci chwilowych (momentowych), jak i dziennych sum promieniowania bezpoœredniego, rozproszonego i odbitego. Wejœciowymi informacjami s¹: cyfrowy model terenu, potrzebny do okreœlenia nachyleñ i ekspozycji stoków oraz wspó³czynnik zmêtnienia Linkego, opisuj¹cy zmniejszenie promieniowania s³onecznego w atmosferze. Dodatkowo istnieje mo liwoœæ uwzglêdnienia zachmurzenia nieba, parametryzowanego oddzielnie dla promieniowania bezpoœredniego i rozproszonego. Model r.sun zastosowano tu do obliczenia potencjalnego (niebo bezchmurne) promieniowania dla obszaru Hornsundu (SW Spitsbergen). W opracowaniu uwzglêdniono efekty zacienienia, zwi¹zane z urozmaicon¹ rzeÿb¹ terenu, szczególnie istotne przy niskim po³o eniu s³oñca nad horyzontem. Wyniki zaprezentowano na mapach i zweryfikowano poprzez porównanie z danymi pomiarowymi. Walidacja modelu wykaza³a du ¹ zgodnoœæ miêdzy wielkoœciami estymowanymi za pomoc¹ r.sun a zmierzonymi. dr Mariusz Szymanowski szymanma@meteo.uni.wroc.pl phone: +48 071 375 2830 dr Maciej Kryza kryzam@meteo.uni.wroc.pl dr hab. Krzysztof Miga³a migalak@meteo.uni.wroc.pl mgr in. Piotr Sobolewski piotrs@igf.edu.pl dr in. Lech Kolondra leszek.kolondra@us.edu.pl

MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION... 113 Figure 1. DEM for the study area (contour lines every 100 m)

114 MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, KRZYSZTOF MIGA A, PIOTR SOBOLEWSKI, LECH KOLONDRA Figure 2. Monthly mean beam (IB), diffused (ID) and total (IT) solar radiation flux under clear sky conditions [Wm -2 ]

MODELLING AND VALIDATION OF THE POTENTIAL SOLAR RADIATION FOR THE HORNSUND REGION... 115 Figure 3. Daily mean beam solar radiation flux under clear sky conditions [Wm -2 ]

116 MARIUSZ SZYMANOWSKI, MACIEJ KRYZA, KRZYSZTOF MIGA A, PIOTR SOBOLEWSKI, LECH KOLONDRA Figure 4. Instantaneous beam solar radiation flux under clear sky conditions [Wm -2, hours in local solar time]