ARM SWS to study cloud drop size within the clear-cloud transition zone
|
|
|
- Jack Grant
- 10 years ago
- Views:
Transcription
1 ARM SWS to study cloud drop size within the clear-cloud transition zone (GSFC) Yuri Knyazikhin Boston University Christine Chiu University of Reading Warren Wiscombe GSFC Thanks to Peter Pilewskie (UC) and Connor Flynn (PNNL)
2 Why is the transition zone? It is difficult to distinguish between cloudy and cloud-free air in remote sensing observations (e.g., Stevens & Feingold, 29). The regions around clouds are neither precisely clear nor precisely cloudy (Koren et al., 28). This problem has major climatic consequences, in particular on aerosol indirect effect studies, which demand a precise separation of clear and cloudy air (e.g., Charlson et al., 27).
3 ARM Shortwave Spectroradiometer The SWS measures zenith spectral radiance. Spectral Range: nm Spectral Resolution nm: 8nm nm: 2nm Spectral Sampling rate: Hz Field of view:.4 48 wavelengths (adapted from Pilewskie s presentation at the last ARM STM) 2
4 SZA=45 o May 8, g/m 2 wavelength (nm) (nm) wvl time (sec) at 25 sec zenith radiance 2758 CBH=2km
5 Consider the whole SWS spectrum SZA=45 o May 8, 27 wavelength (nm) (nm) wvl g/m time (sec) measured zenith radiance cloudy clear wavelength (nm) zenith radiance
6 Consider the whole SWS spectrum wavelength (nm) (nm) wvl SZA=45 o May 8, g/m time (sec) normalized zenith radiance cloudy clear wavelength (nm) zenith radiance 2758 Normalized to an extraterrestrial solar 5 spectrum
7 Spectral-invariant hypothesis Zenith radiance spectrum in the transition zone is a linear combination of cloudy and clear sky spectra with a wavelength-independent weight I transition (λ) = ai cloudy (λ) + ( a)i clear (λ), a (,), a a(λ) I transition (λ) I clear (λ) = a I cloudy(λ) I clear (λ) + ( a) (i) y(λ) = ax(λ) + b (ii) b = a 6
8 Checking spectral-invariance wavelength (nm) (nm) wvl time (sec) zenith radiance 2758 I transition (λ) I clear (λ) = a I cloudy(λ) I clear (λ) + ( a) ratios to clear ratios to clear /25 7/25 8/25 9/25 2/25 2/25 22/25 23/25 24/ nm cloudy to clear ratio (5/25) y = x R= y = x R= y = x R= y = x R= y = x R= y = x R= y = x R= y = x R=.9932 y = x R= nm cloudy to clear ratio (5/25)
9 Wavelength-independent function a(time) or a(space) wavelength (nm) (nm) wvl a(t) and I(t,λ) a(t) [based on nm] 44 nm 87 nm 64 nm time (sec) time (sec) zenith radiance 2758 from Marshak et al., 29 8
10 Do radiative transfer calculations confirm this spectral-invariant behavior found in SWS data? Use SBDART to calculate zenith radiance at 4-22 nm wavelengths with a nm resolution Atmosphere mid-latitude summer atmosphere 3 cm integrated water vapor amount default trace gas amount Aerosol Rural aerosol type;.2 optical depth at 55 nm 8% relative humidity Cloud -4 cloud optical depth (defined at 55 nm) km altitude from Chiu et al., ACPD 2 9
11 Modeling: Whole spectrum Normalized zenith radiance (a) B B2 B3 B4 B Ratios to clear (c) B B2 B3 τc=2. τc=. τc=.5 B4 B Wavelength (nm) Cloudy to clear ratio SBDARD zenith radiances Ratios to clear radiance I transition (λ) I clear (λ) = a I cloudy (λ) I clear (λ) + b
12 Modeling: B and B5 bands B.4-.8 um B um Ratios to clear Ratios to clear B Cloudy to clear ratio (d) (e) τc=2.; (.8,.9) τc=.; (.47,.52) τc=.5; (.25,.74) τc=2.; (.78,4.52) τc=.; (.43,6.33) τc=.5; (.2,5.6) 5 B Cloudy to clear ratio Ratios to clear (c) B B2 B3 τc=2. τc=. τc=.5 B Cloudy to clear ratio B5 Ratios to clear radiance I transition (λ) I clear (λ) = a I cloudy (λ) I clear (λ) + b
13 Surface albedo (B) Slope function (b) Black Sand Vegetated Snow Surface albedo (a) Vegetated Snow Sand.2 Cloud optical depth Wavelength ( nm) 2
14 Slope function (d) Aerosol effect (B) Rural Urban Oceanic Aerosol optical depth Single scattering albedo (a) (b) Rural Urban Oceanic Rural Urban Oceanic.2 Cloud optical depth. Assymetry factor (c) Rural Urban Oceanic Wavelength (nm)
15 Different drop size in B and B (.2,5.6) B5 Ratios to clear (.25,.74) (.2,.82) (.2,2.28) B 4µm;B 4µm;B5 6µm;B 6µm;B Cloudy-to-clear ratio τ c =3. cloudy 6μm τ c =. clear 5 4μm The high sensitivity of the intercept to cloud drop size can be used to understand cloud growth/evaporation processes in the transition zone 4
16 Application to aerosol effect on cloud morphology LWP (g/m2 on log-scale) clean polluted distance (m) distance (m) Koren et al. (GRL, 29): The polluted field dries out more rapidly with distance from cloud, and in the cleaner cloud field there are more numerous and larger weak-cloud elements. Jiang et al. (JGR, 29) these responses are a result of stronger evaporation at cloud edges in the case of polluted clouds. 5
17 (Potential) observational evidence: 2NFOV Case Case 2 Case 3 2NFOV FOV =.2 wavelengths: 673 nm (RED) 87 nm (NIR) 6
18 Summary - The slope and intercept of the spectral-invariant relationship is mostly sensitive to cloud properties and NOT sensitive to surface type and aerosol properties - At visible wavelengths, both the slope and intercept primarily depend on cloud optical depth; at waterabsorbing wavelengths, the intercept depends on cloud absorption properties - These results suggest a new cloud retrieval method for the transition zone even with insufficient knowledge about spectral surface albedo and aerosol properties 7
19 Cloud optical depth (a) 3D effect Slope function (a) SBDART MC,sun in the east MC,sun in the west B Ratios to clear Distance (km) 8 (b) SBDART 7 (.22,.8) MC,sun in the east 6 (.7,.85) 5 4 (.42,.62) 3 MC,sun in the west Slope function Cloud optical depth SBDART MC,sun in the east MC,sun in the west B Cloudy to clear ratio.2 Cloud optical depth. 8
20 Discussion There is a wavelength-independent function a(time) or a(space) a(t) that characterizes the transition zone (TZ) between cloudy and clear areas. The TZ spectrum is fully determined by this function and zenith radiances spectra of clear and cloudy sky areas. t Model simulations support this statement. However, we do not have yet a clear theoretical understanding of the observed (and simulated) phenomenon. High temporal resolution meas. in the TZ can be well approx. by the lower temporal resolution plus a linear interpolation. Missing (or saturated) spectral data in the TZ can be well retrieved using meas. of the whole spectra of clear and cloudy sky areas. 9
21 Discussion 2 (applications) If spectral-invariance of the TZ is established, function a(t) can be studied using only two wavelengths, e.g. high temporal resolution 2NFOV (with Red and Near IR channels). The TZ between ice clouds and cloud-free area is longer and smoother than between water and cloud-free area. Koren et al. (29) and Jiang et al. (29) found much sharper cloud edges in polluted environments compared to their cleaner counterparts. Thus a(t) can serve as a characteristic of pollution in a field with small Cu clouds. 2
22 Discussion 3 (remote sensing) -The slope and intercept of the spectral-invariant relationship is mostly sensitive to cloud properties and not sensitive to surface type and aerosol properties -At visible wavelengths, both the slope and intercept primarily depend on cloud optical depth; at water-absorbing wavelengths, the intercept depends on cloud absorption properties - These results suggest a new cloud retrieval method for the transition zone even with insufficient knowledge about spectral surface albedo and aerosol properties 2
23 Possible application to cloud thermodynamic phase: 2NFOV water ice TSI images every 3 sec Ice vs water clouds.8 4, 6 km, ice 5, km, water 2NFOV function a.6.4 Function a(dist) FOV =.2 wavelengths: 673 nm (RED) 87 nm (NIR) distance (m) 22
24 Spectral-invariance y(λ) = ax(λ) + b 23
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
The study of cloud and aerosol properties during CalNex using newly developed spectral methods
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt, Peter Pilewskie University of Colorado, ATOC/LASP
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
The Surface Energy Budget
The Surface Energy Budget The radiation (R) budget Shortwave (solar) Radiation Longwave Radiation R SW R SW α α = surface albedo R LW εσt 4 ε = emissivity σ = Stefan-Boltzman constant T = temperature Subsurface
Labs in Bologna & Potenza Menzel. Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture
Labs in Bologna & Potenza Menzel Lab 3 Interrogating AIRS Data and Exploring Spectral Properties of Clouds and Moisture Figure 1: High resolution atmospheric absorption spectrum and comparative blackbody
Cloud vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness
Cloud vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness A. Marshak, Y. Knyazikhin, A. Davis, W. Wiscombe, and P. Pilewskie NASA GSFC, Code 913,
Radiation models for the evaluation of the UV radiation at the ground
Radiation models for the evaluation of the UV radiation at the ground Peter Koepke UV-Group Meteorological Institute Munich Ludwig-Maximilians-University [email protected] www. jostjahn. de Natural UV
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius
Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 9-, The Effect of Droplet Size Distribution on the Determination of Cloud Droplet Effective Radius F.-L. Chang and Z. Li ESSIC/Department
Total radiative heating/cooling rates.
Lecture. Total radiative heating/cooling rates. Objectives:. Solar heating rates.. Total radiative heating/cooling rates in a cloudy atmosphere.. Total radiative heating/cooling rates in different aerosol-laden
Cloud Climatology for New Zealand and Implications for Radiation Fields
Cloud Climatology for New Zealand and Implications for Radiation Fields G. Pfister, R.L. McKenzie, J.B. Liley, A. Thomas National Institute of Water and Atmospheric Research, Lauder, New Zealand M.J. Uddstrom
Remote Sensing of Clouds from Polarization
Remote Sensing of Clouds from Polarization What polarization can tell us about clouds... and what not? J. Riedi Laboratoire d'optique Atmosphérique University of Science and Technology Lille / CNRS FRANCE
Multiangle cloud remote sensing from
Multiangle cloud remote sensing from POLDER3/PARASOL Cloud phase, optical thickness and albedo F. Parol, J. Riedi, S. Zeng, C. Vanbauce, N. Ferlay, F. Thieuleux, L.C. Labonnote and C. Cornet Laboratoire
3.4 Cryosphere-related Algorithms
3.4 Cryosphere-related Algorithms GLI Algorithm Description 3.4.-1 3.4.1 CTSK1 A. Algorithm Outline (1) Algorithm Code: CTSK1 (2) Product Code: CLFLG_p (3) PI Name: Dr. Knut Stamnes (4) Overview of Algorithm
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
T.A. Tarasova, and C.A.Nobre
SEASONAL VARIATIONS OF SURFACE SOLAR IRRADIANCES UNDER CLEAR-SKIES AND CLOUD COVER OBTAINED FROM LONG-TERM SOLAR RADIATION MEASUREMENTS IN THE RONDONIA REGION OF BRAZIL T.A. Tarasova, and C.A.Nobre Centro
Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements
Faculty of Physics and Earth Sciences Retrieval of vertical cloud properties of deepconvective clouds by spectral radiance measurements Tobias Zinner Evi Jäkel, Sandra Kanter, Florian Ewald, Tobias Kölling
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Satellite Measurements of Solar Spectral Irradiance
Satellite Measurements of Solar Spectral Irradiance LASP University of Colorado [email protected] March 2006 1 Talk Outline Motivation for Solar Spectral Irradiance solar energy input climate
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography
Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu
Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D2, PAGES 2059 2066, JANUARY 27, 1999 Absorption of solar radiation by the cloudy atmosphere: Further interpretations of collocated aircraft measurements
Data processing (3) Cloud and Aerosol Imager (CAI)
Data processing (3) Cloud and Aerosol Imager (CAI) 1) Nobuyuki Kikuchi, 2) Haruma Ishida, 2) Takashi Nakajima, 3) Satoru Fukuda, 3) Nick Schutgens, 3) Teruyuki Nakajima 1) National Institute for Environmental
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA
MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli
MSG-SEVIRI cloud physical properties for model evaluations
Rob Roebeling Weather Research Thanks to: Hartwig Deneke, Bastiaan Jonkheid, Wouter Greuell, Jan Fokke Meirink and Erwin Wolters (KNMI) MSG-SEVIRI cloud physical properties for model evaluations Cloud
Spectral Response for DigitalGlobe Earth Imaging Instruments
Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral
Lectures Remote Sensing
Lectures Remote Sensing ATMOSPHERIC CORRECTION dr.ir. Jan Clevers Centre of Geo-Information Environmental Sciences Wageningen UR Atmospheric Correction of Optical RS Data Background When needed? Model
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL
Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical
Let s consider a homogeneous medium characterized by the extinction coefficient β ext, single scattering albedo ω 0 and phase function P(µ, µ').
Lecture 22. Methods for solving the radiative transfer equation with multiple scattering. Part 4: Monte Carlo method. Radiative transfer methods for inhomogeneous ouds. Objectives: 1. Monte Carlo method.
GOES-R AWG Cloud Team: ABI Cloud Height
GOES-R AWG Cloud Team: ABI Cloud Height June 8, 2010 Presented By: Andrew Heidinger 1 1 NOAA/NESDIS/STAR 1 Outline Executive Summary Algorithm Description ADEB and IV&V Response Summary Requirements Specification
FRESCO. Product Specification Document FRESCO. Authors : P. Wang, R.J. van der A (KNMI) REF : TEM/PSD2/003 ISSUE : 3.0 DATE : 30.05.
PAGE : 1/11 TITLE: Product Specification Authors : P. Wang, R.J. van der A (KNMI) PAGE : 2/11 DOCUMENT STATUS SHEET Issue Date Modified Items / Reason for Change 0.9 19.01.06 First Version 1.0 22.01.06
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties Michael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier Rault NASA Langley Research Center, MS 435,
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
Table of Contents. An Introduction to Hyperspectral Imaging Technology
Table of Contents 1.0 Introduction... 1 2.0 Electromagnetic Radiation... 1 2.1 The Electromagnetic Spectrum... 2 2.2 Electromagnetic Interactions with Matter... 3 3.0 Spectroscopy... 5 3.1 Refraction and
Cloud Oxygen Pressure Algorithm for POLDER-2
Cloud Oxygen ressure Algorithm for OLDER-2 1/7 Cloud Oxygen ressure Algorithm for OLDER-2 Aim of the : Determination of cloud gen pressure from arent pressure by removing the contribution. Date of the
V6 AIRS Spectral Calibra2on
V6 AIRS Spectral Calibra2on Evan Manning Bob Deen Yibo Jiang George Aumann Denis EllioA Jet Propulsion Laboratory California Ins2tute of Technology 5/4/09 1 Spectral Calibra2on Primer AIRS measures radiance
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS
IMPACT OF DRIZZLE AND 3D CLOUD STRUCTURE ON REMOTE SENSING OF CLOUD EFFECTIVE RADIUS Tobias Zinner 1, Gala Wind 2, Steven Platnick 2, Andy Ackerman 3 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen,
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
An Introduction to Twomey Effect
An Introduction to Twomey Effect Guillaume Mauger Aihua Zhu Mauna Loa, Hawaii on a clear day Mauna Loa, Hawaii on a dusty day Rayleigh scattering Mie scattering Non-selective scattering. The impact of
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates
The Next Generation Flux Analysis: Adding Clear-Sky LW and LW Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates C. N. Long Pacific Northwest National Laboratory Richland, Washington
How to calculate reflectance and temperature using ASTER data
How to calculate reflectance and temperature using ASTER data Prepared by Abduwasit Ghulam Center for Environmental Sciences at Saint Louis University September, 2009 This instructions walk you through
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains
Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
Climatology of aerosol and cloud properties at the ARM sites:
Climatology of aerosol and cloud properties at the ARM sites: MFRSR combined with other measurements Qilong Min ASRC, SUNY at Albany MFRSR: Spectral irradiances at 6 six wavelength passbands: 415, 500,
ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP)
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH ABI Algorithm Theoretical Basis Document For Daytime Cloud Optical and Microphysical Properties (DCOMP) Andi Walther UW/CIMSS William Straka,
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature
CERES Edition 2 & Edition 3 Cloud Cover, Cloud Altitude and Temperature S. Sun-Mack 1, P. Minnis 2, Y. Chen 1, R. Smith 1, Q. Z. Trepte 1, F. -L. Chang, D. Winker 2 (1) SSAI, Hampton, VA (2) NASA Langley
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
How To Measure Solar Spectral Irradiance
Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique. D. Bolsée, N. Pereira, W. Decuyper, D. Gillotay, H. Yu Belgian Institute
Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately
The Importance of Understanding Clouds
NASA Facts National Aeronautics and Space Administration www.nasa.gov The Importance of Understanding Clouds One of the most interesting features of Earth, as seen from space, is the ever-changing distribution
Radiative effects of clouds, ice sheet and sea ice in the Antarctic
Snow and fee Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of Yokohama Symposia J2 and J5, July 1993). IAHS Publ. no. 223, 1994. 29 Radiative effects of clouds, ice sheet and sea
Clouds. Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada
Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Outline of this Lecture Overview of clouds Warm cloud formation Precipitation formation
Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption
Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Optimum Solar Orientation: Miami, Florida
Optimum Solar Orientation: Miami, Florida The orientation of architecture in relation to the sun is likely the most significant connection that we can make to place in regards to energy efficiency. In
Chapter 2. The global energy balance. 2.1 Planetary emission temperature
Chapter 2 The global energy balance We consider now the general problem of the radiative equilibrium temperature of the Earth. The Earth is bathed in solar radiation and absorbs much of that incident upon
Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase
Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase MICHAEL D. KING 1 AND SI-CHEE TSAY 2 NASA Goddard Space Flight Center Greenbelt, Maryland 20771
MOD09 (Surface Reflectance) User s Guide
MOD09 (Surface ) User s Guide MODIS Land Surface Science Computing Facility Principal Investigator: Dr. Eric F. Vermote Web site: http://modis-sr.ltdri.org Correspondence e-mail address: [email protected]
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman, Richard Frey, Kathleen Strabala, Yinghui Liu, Liam Gumley, Bryan Baum,
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING
ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jd015505, 2011 An assessment of recent water vapor continuum measurements upon longwave and shortwave radiative transfer D. J. Paynter 1 and
Lake Monitoring in Wisconsin using Satellite Remote Sensing
Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources 2015 Wisconsin Lakes Partnership Convention April 23 25, 2105 Holiday Inn Convention
A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA
Romanian Reports in Physics, Vol. 66, No. 3, P. 812 822, 2014 ATMOSPHERE PHYSICS A SURVEY OF CLOUD COVER OVER MĂGURELE, ROMANIA, USING CEILOMETER AND SATELLITE DATA S. STEFAN, I. UNGUREANU, C. GRIGORAS
Number of activated CCN as a key property in cloud-aerosol interactions. Or, More on simplicity in complex systems
Number of activated CCN as a key property in cloud-aerosol interactions Or, More on simplicity in complex systems 1 Daniel Rosenfeld and Eyal Freud The Hebrew University of Jerusalem, Israel Uncertainties
a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.
J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar
Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.
Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Multiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007
JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1 14, doi:10.1002/jgrd.50713, 2013 Multiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007 Aaron
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team
DISCRIMINATING CLEAR-SKY FROM CLOUD WITH MODIS ALGORITHM THEORETICAL BASIS DOCUMENT (MOD35) MODIS Cloud Mask Team Steve Ackerman 1, Kathleen Strabala 1, Paul Menzel 1,2, Richard Frey 1, Chris Moeller 1,
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
The Sentinel-4/UVN instrument on-board MTG-S
The Sentinel-4/UVN instrument on-board MTG-S Grégory Bazalgette Courrèges-Lacoste; Berit Ahlers; Benedikt Guldimann; Alex Short; Ben Veihelmann, Hendrik Stark ESA ESTEC European Space Technology & Research
Retrieval of cloud spherical albedo from top-of-atmosphere reflectance measurements performed at a single observation angle
Atmos. Chem. Phys., 7, 3633 3637, 2007 Author(s) 2007. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Retrieval of cloud from top-of-atmosphere reflectance measurements
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations
SAFNWC/MSG Cloud type/height. Application for fog/low cloud situations 22 September 2011 Hervé LE GLEAU, Marcel DERRIEN Centre de météorologie Spatiale. Lannion Météo-France 1 Fog or low level clouds?
Diurnal Cycle: Cloud Base Height clear sky
Diurnal Cycle: Cloud Base Height clear sky Helsinki CNN I Madrid, 16 Dezember 2002 1 Cabauw Geesthacht Cabauw Geesthacht Helsinki Helsinki Petersburg Potsdam Petersburg Potsdam CNN I CNN II Madrid, 16
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH 2
ENVI Classic Tutorial: Atmospherically Correcting Multispectral Data Using FLAASH Atmospherically Correcting Multispectral Data Using FLAASH 2 Files Used in this Tutorial 2 Opening the Raw Landsat Image
