X-Ray Free Electron Lasers



Similar documents
X-Ray Free Electron Lasers

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

Calculation of Eigenmodes in Superconducting Cavities

Damping Wigglers in PETRA III

Coupling Impedance of SIS18 and SIS100 beampipe CERN-GSI-Webmeeting

Development of Virtual Accelerator Environment for Beam Diagnostics *


Comb beam for particle-driven plasma-based accelerators

Status of the Free Electron Laser

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

- thus, the total number of atoms per second that absorb a photon is

C.-K. Ng. Stanford Linear Accelerator Center. and. T. Weiland. University oftechnology. FB18, Schlossgartenstr. 8. D64289, Darmstadt, Germany.

Accelerator Physics WS 2011/12

Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using the Finite Integration Technique

Acousto-optic modulator

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Undulators and wigglers for the new generation of synchrotron sources

BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY

Short overview of TEUFEL-project

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

1. Basics of LASER Physics

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Spin Tracking with COSY INFINITY and its Benchmarking

Assessment Plan for Learning Outcomes for BA/BS in Physics

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

Frequency Map Experiments at the Advanced Light Source. David Robin Advanced Light Source

View of ΣIGMA TM (Ref. 1)

Physics 6C, Summer 2006 Homework 2 Solutions

Electric and Magnetic Field Lenses

Analysis of Electromagnetic Propulsion on a Two-Electric-Dipole System

Curriculum for Excellence. Higher Physics. Success Guide

PHYS 1624 University Physics I. PHYS 2644 University Physics II

Slice Emittance Measurements at the SLAC Gun Test Facility*

Wake Field Calculations at DESY

Institute of Accelerator Technologies of Ankara University and TARLA Facility

Surface plasmon nanophotonics: optics below the diffraction limit

Periodic wave in spatial domain - length scale is wavelength Given symbol l y

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

Modern Classical Optics

How To Understand Light And Color

Les Accélérateurs Laser Plasma

Physics 111 Homework Solutions Week #9 - Tuesday

Robust Algorithms for Current Deposition and Dynamic Load-balancing in a GPU Particle-in-Cell Code

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Blackbody radiation derivation of Planck s radiation low

RF FRONT END FOR HIGH BANDWIDTH BUNCH ARRIVAL TIME MONITORS IN FREE-ELECTRON LASERS AT DESY

Energy. Mechanical Energy

Wir schaffen Wissen heute für morgen

Boardworks AS Physics

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, :15 to 4:15 p.m.

Cathode Ray Tube. Introduction. Functional principle

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell ( )

Results: Low current ( ) Worst case: 800 MHz, GeV, 4 turns Energy oscillation amplitude 154 MeV, where

Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube

Does Quantum Mechanics Make Sense? Size

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

Review Questions PHYS 2426 Exam 2

STAR: State of the art

Physics 30 Worksheet # 14: Michelson Experiment

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Fundamentals of Electromagnetic Fields and Waves: I

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

Examples of Uniform EM Plane Waves

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

Physics 214 Waves and Quantum Physics. Lecture 1, p 1

Status of the SOLEIL project Commissioning from Linac to beamlines

arxiv: v2 [physics.acc-ph] 27 Oct 2014

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

How To Understand The Physics Of A Single Particle

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, :15 to 4:15 p.m.

CREOL, College of Optics & Photonics, University of Central Florida

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN

LHC optics measurement & correction procedures. M. Aiba, R. Calaga, A. Morita, R. Tomás & G. Vanbavinckhove

Calculating particle properties of a wave

One example: Michelson interferometer

Radiant Dyes Laser Accessories GmbH

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Tom Wilson Product Marketing Manager Delivery Systems Varian Medical Systems International AG. CERN Accelerator School, May 2015

E/M Experiment: Electrons in a Magnetic Field.

Transcription:

X-Ray Free Electron Lasers Lecture 1. Introduction. Acceleration of charged particles Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich 18 0. April 015

General information Lecture: X-Ray Free Electron Lasers Place: S 17, room 114, Schloßgartenstraße 8, 6489 Darmstadt Time: Monday, 11:40-13:0 (lecture), 13:30-15:10 (exercises) 1. (07.04.14) Introduction. Acceleration of charged particles. (14.04.14) Synchrotron radiation 3. (05.05.14) Low-gain FELs 4. (1.05.14) High-gain FELs 5. (19.05.14) Self-amplified spontaneous emission. FLASH and the European XFEL in Hamburg 6. (0.06.14) Numerical modeling of FELs 7. (3.06.14) New FEL schemes and challenges 8. (30.06.14) Exam PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite

General information Lecture: X-Ray Free Electron Lasers Literature K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner Verlag, 1996. P. Schmüser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers, Springer, 008. E. L. Saldin, E. A. Schneidmiller, M. V. Yurkov, The Physics of Free Electron Lasers, Springer, 1999. Lecturer: PD Dr. Igor Zagorodnov Deutsches Elektronen Synchrotron (MPY) Notkestraße. 85, 607 Hamburg, Germany phone: +49-40-8998-180 e-mail: Igor.Zagorodnov@desy.de web: www.desy.de/~zagor/lecturesfel PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 3

Contents Motivation. Free electron laser Particle acceleration Betatron. Weak focusing Circular and linear accelerators Strong focusing RF Resonators Bunch compressors Phase space linearization PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 4

Motivation Laser a special light parallel (tightly collimated) monochromatic (small bandwidth) coherent (special phase relations) The laser light allows to make accurate interference images (three dimensional pictures). PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 5

Motivation Free electron laser Quantum Laser gas light accelerator Free electron laser (FEL) undulator laser light energy pump mirrors Light Amplification by Stimulated Emission of Radiation bunch non quantized electron energy the electron bunch is the energy source und the lasing medium John Madey, Appl. Phys. 4, 1906 (1971) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 6

Motivation Why FEL? Reflectivity drops quickly no mirrors under 100 nm no long-term excited states for the population inversion PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 7

Motivation Why FEL? PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 8

Motivation FEL as a source of X-rays peak brilliance [ph/(s mrad mm 0.1% BW)] Photon flux is the number of photons per second within a spectral bandwidth of 0.1% photons Φ = s 0.1 BW Brilliance Φ B = π Σ Σ 4 xy x' y ' photon energy [ev] Σ xy = σ x, eσ y, e Σ = σ σ x' y ' θ, ph θ, ph PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 9 x y

Motivation FEL as a source of X-rays brilliant extremely short pulses (~ fs) ultra short wavelengths (atom details resolution) coherent (holography at atom level) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 10

Motivation Experiment with FEL light H.Chapman et al, Nature Physics,,839 (006) FEL puls 3 nm puls length: 5 fs PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 11

Motivation Experiment with FEL light 1 µm example structure in 0 nm membran diffraction image reconstructed image H.Chapman et al, Nature Physics,,839 (006) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 1

Motivation High-Gain FEL P rad ~ N el P rad ~ N el data from FLASH E[µJ] z[ m ] Exponential growth λ[nm] W. Ackermann et al, Nature Photonics 1, 336 (007) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 13

Motivation FLASH ( Free Electron LASer in Hamburg) RF gun accelerator undulator photon laboratory PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 14

Motivation FLASH ( Free Electron LASer in Hamburg) accelerator PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 15

Particle acceleration Requirements on the beam z L g E( z) ~ e short radiation wavelength λ ~ 1 γ E[µJ] short gain length Lg 5 6 5 4 ε ε σ γ ~ 1+ O 1 I I z[ m] high beam energy high peak current low emittance low energy energy spread PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 16

Particle acceleration Emittance dx px x = = - trajectory slope dz p z ε x = x x xx, ε n x = γε - the normalized emittance is x conserved during acceleration PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 17

Particle acceleration Methods of particle acceleration The energy of relativistic particle 4 0 E = m c + p c with the relativistic momentum p = γ m v 0 ( 1 ) 0.5 γ = β β = v / c Cockroft-Walton generator(1930) can be changed in EM field FL = q( v B + E) r E = F dr = q E dr = qu r L r r 1 1-19 -19 1eV=1.60 10 C 1V=1.60 10 J PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 18

Particle acceleration Acceleration in electrostatic field Van de Graff accelerator The energy capability of this sort of devices is limited by voltage breakdown, and for higher energies one is forced to turn to other approaches. Daresbury, ~0MeV PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 19

Particle acceleration Acceleration to higher energy? The particles are sent repeatedly through the electrostatic field. No pure acceleration is obtained. The electric field exists outside the plates. This field decelerates the particle. Time dependent electromagnetic field! Maxwell s equations (1865) H = J + D t E = B t D = ρ B = 0 generelized Ampere s law Faraday s law Coulomb s law absence of free magnetic poles PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 0

Particle acceleration Acceleration to higher energy? Faraday s law Edr = Bds t Betatron RF resonators E B R PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 1

Betatron main coils corrector coils yoke vacuum chamber beam The magnetic field is changed in a way, that the particle circle orbit remains constant. The accelerating electric field appears according to the Faraday s law from the changing of the magnetic field. PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite

Betatron Constant orbit condition y E R B Centrifugal force mvϕ Ffug = R Is equal to the Lorentz force F = qv B. L ϕ pɺ = ϕ qrb z z 0 B = 0 B z Edr = π 0 E = E ϕ 0 From Faraday s law Bɺ ds = π ɺ 1 Bɺ zds π R REϕ R Bav Bɺ av = Bav B z = ɺ This 1: relation was found in 198 by Wideröe. PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 3 z R pɺ ϕ From Newton s law pɺ = F ϕ = qe ϕ R pɺ = ϕ q Bɺ x av

Betatron. Weak focusing Betatron oscillations near the reference orbit n = R B z B z r - field index 0 < n < 1 - orbit stability condition Transverse oscillations are called betatron oscillations for all accelerators. PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 4

Betatron. Weak focusing Radial stability ϕ R + r F0 = F ( R) = F ( R) = qv B fug L ϕ z mvϕ mvϕ r r 0 Ffug ( R + r) = 1 = F 1 R + r R R R Bz r FL ( R + r) = qvϕbz ( R + r) qvϕ [ Bz ( R) + r] = F0 (1 n ) r R r Frad ( R + r) = FL + Ffug = F0 ( n 1) R The radial force is pointed to the design orbit if R n < 1 n = B PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 5 z B z r

Betatron. Weak focusing Radial stability (exercises 1,) field index orbit 1 1.5 1 0.5 0 0 0. 0.4 0.6 t[mks] relative radius 1. y[m] 0.5 0-0.5-1 -1 0 1 x[m] relative moment 1. 1.1 1 0.9 0 0. 0.4 0.6 t[mks] 1.15 1.1 1.05 1 0 0. 0.4 0.6 t[mks] PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 6

Betatron. Weak focusing Vertical stability B = µ J + D t FL = q( v B + E) B = B r z z r z = 0 Br Bz z Fz ( z) = qvϕ Br ( z) qvϕ z = qvϕ z = F0 n z r R The vertical force is pointed to the design orbit if r Frad ( R + r) = F0 ( n 1) n < 1 R z F ( z) = F n n > 0 R z 0 n > 0 The orbit is stable in all directions if 0 < n < 1 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 7

Betatron PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 8

Circular and linear accelerators Circular accelerators: many runs through small number of cavities. Linear accelerators: one run through many cavities PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 9

Strong focusing BESSY II, Berlin PETRA III, Hamburg S. Kahn, Free-electron lasers. (a tutorial review) Journal of Modern Optics 55, 3469-351 (008) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 30

Strong focusing dipole qudrupole sextupole multipolar expansion equations of motion transfer matrix (quadrupole) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 31

Strong focusing PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 3

RF Resonators Waveguides Maxwell equations in vacuum E = µ 0 H ɺ H = ε 0 E ɺ E = 0 From F = F F follows wave equations 1 E = c E ɺɺ 0 H = H = 0 We separate the periodical time dependance und use the representation (traveling wave) z E( r, t) = E( r ) i ( t k z ) e ω z H( r, t) = H( r ) i ( t k z ) e ω 1 c H ɺɺ x r = y z 0 r x = y PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 33

RF Resonators For the space field distribution in transverse plane we obtain ( ) k c ( ) 0 E r + E r = H( r ) + H( r ) = 0 k = k k k = ω / c c z Waveguides k c The smallest wave number (cut frequency) k c Wave propagation in the waveguide is possible only if k>k c. If k<k c then the solution exponentially decays along z. k k = kz + kc k c Phase velocity is larger than the light velocity ω ck k vph = = = c + > c k k k c 1 z z z k z PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 34

RF Resonators Waveguides Unlike free space plane wave the waves in waveguides have longitudinal components mπ x mπ y Ez = E e a b H = 0. z ( ) 0 sin sin i ω t k z z, π m π n kc = +, m = 1,,...; n = 1,,... a b TM waves TE waves mπ x mπ y ( z ) 0 cos cos i ω t H k z z = H e, a b Ez = 0. π m π n kc = +, m = 0,1,,...; n = 0,1,,... a b E E J k r m e H i( ωt kz z) z = 0 m ( c )cos( ϕ), z = 0. xmn kc =, m = 0,1,,...; n = 1,,... a H H J k r m e i( ωt kz z) z = 0 m ( c )cos( ϕ), Ez = 0. x mn kc =, m = 0,1,,...; n = 0,1,,... a PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 35 J ( x ) = 0 m mn J ( x ) = 0 m mn

RF Resonators Waveguides PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 36

RF Resonators Acceleration? The cylindrical waveguide were an ideal accelerator structure, if it were possible to use E z component of TM wave. However the velocity of the particle is always smaller than the wave phase velocity v ph. waveguide with irises (traveling waves) RF resonators (standing waves) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 37

RF Resonators Waveguide with irises (traveling wave) Through tuning of phase velocity according to the particle velocity it is possible to obtain, that the bunches synchronously with TM wave fly and obtain the maximal acceleration. k cylindrical waveguide vph = c waveguide with irises vph < c π L k z L PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 38

RF Resonators Acceleration with standing and traveling waves π mode PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 39

RF Resonators π mode We separate only the periodic time dependence and take the represantation (standing wave) E( r, t) = E( r) e iωt H( r, t) = H( r) e iωt For the space field distribution we obtain ( ) k E( r) 0 E r + = ( ) k H( r) 0 H r + = PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 40

RF Resonators Pillbox TM 010 -Welle 0 E( r) = 0 E z H( r) 0 = H ϕ 0 r E 0 z + Ez + k Ez = z r r 0 0 ( ) E = E J kr E ( ) 0 H = ϕ J1 kr c k =.405. R PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 41

RF Resonators Klystron P Klzstron =ηui Strahl The electron beam energy is converted in RF energy. η klystron efficiency (45-65%) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 4

RF Resonators The exact resonance frequency could be tuned. The resonator is exited through an inductive chain. The waveguide from klystron is at the end closed in such way, that a standing wave exists with its maximum at distance λ/4 from the wall. PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 43

RF Resonators self field of cavity (driven by bunches) the concept of wake fields is used to describe the integrated kick (caused by a source particle, seen by an observer particle) short range wakes describe interaction of particles in same bunch long range wakes describe multi bunch interactions important for FELs: longitudinal single bunch wakes change the energy chirp and interfere with bunch compression PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 44

Bunch compressors PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 45

Bunch compressors δ s 0 momentum compaction factor ( 3 δ δ δ ) s = s + s = s R + T + U 1 0 0 56 566 5666 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 46

Bunch compressors M. Dohlus et al.,electron Bunch Length Compression, ICFA Beam Dynamics Newsletter, No. 38 (005) p.15 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 47

Phase space linearization FLASH In accelerator modules the energy of the electrons is increased from 5 MeV (gun) to 100 MeV (undulator). E = ev cos( ks + ϕ ) 1,1 1,1 1,1 E = ev cos(3 ks + ϕ ) 1,3 1,3 1,3 E = ev cos( ks1 + ϕ) E = ev cos( ks + ϕ ) 3 3 3 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 48

Phase space linearization FLASH In compressors the peak current I is increased from 1.5-50 A (gun) to 500 A (undulator). i ( 3 ) 56δ 566δ 5666δ s = R + T + U PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 49

Phase space linearization rollover compression vs. linearized compression Q=0.5 nc ~ 1.5 ka Q=1 nc ~.5 ka PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 50

Phase space linearization Gun Longitudinal dynamics(exercise 3) B C 1 B C M 1,1 M 1,n M M 3 V ( s) maxv 1,1 1. 1 0.8 0.6 0.4 0. V = V cos( ks) + V cos(3 ks + ϕ ) V + V cosϕ 1,1 1,3 1,3 1,1 1,3 1,3 ( 1,3 ϕ1,3 ) ( 1,1 1,3 ϕ1,3 ) 3 3V sin ks 0.5 V + 9V cos( ) k s + O( s ) ϕ V 1,3 = π 1 = V 9 1,3 1,1 V V V + O( s ) 1,1 1,3 3 0-0. -1.5-1 -0.5 0 0.5 1 1.5 ks PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 51

Phase space linearization Gun Longitudinal dynamics(exercise 3) B C 1 B C M 1,1 M 1,n M M 3 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 5

Phase space linearization Gun Longitudinal dynamics(exercise 3) B C 1 B C M 1,1 M 1,n M M 3 Zagorodnov I., Dohlus M., A Semi-Analytical Modelling of Multistage Bunch Compression with Collective Effects, Phys. Rev. ST Accel. Beams, 14, 014403 (011) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 53

Outlook FLASH ( Free Electron LASer in Hamburg) RF gun accelerator undulator laboratory PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 54

Outlook FLASH ( Free Electron LASer in Hamburg) undulator 7m PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 1 0. April 015 Seite 55