Chapter 4 Load Tables for Flexural Members and Connections

Similar documents
Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Stresses in Beam (Basic Topics)

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

Optimum proportions for the design of suspension bridge

Green Thread Product Data

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

Formwork for Concrete

Design Analysis and Review of Stresses at a Point

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MATERIALS AND MECHANICS OF BENDING

9.3 Two-way Slabs (Part I)

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG METAL BAR GRATING NAAMM

Series 4000 Fiberglass Pipe and Fittings

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

Technical Notes 3B - Brick Masonry Section Properties May 1993

16. Beam-and-Slab Design

Optimising plate girder design

INTRODUCTION TO BEAMS

New approaches in Eurocode 3 efficient global structural design

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Concrete Frame Design Manual

Compression Members: Structural elements that are subjected to axial compressive forces

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

ENGINEERING COUNCIL CERTIFICATE LEVEL

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

UNRESTRAINED BEAM DESIGN I

International Nursing and Rehab Center Addition 4815 S. Western Blvd. Chicago, IL

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Sheet metal operations - Bending and related processes

BLIND TEST ON DAMAGE DETECTION OF A STEEL FRAME STRUCTURE

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Torsion Tests. Subjects of interest

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

Stability Of Structures: Additional Topics

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

Aluminium systems profile selection

Technical Report Example (1) Chartered (CEng) Membership

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

Structural Design Calculation For Pergola

Steel Design Report. Governing Criteria Stress Ratio

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

AISI CHEMICAL COMPOSITION LIMITS: Nonresulphurized Carbon Steels

APPENDIX H DESIGN CRITERIA FOR NCHRP PROJECT NEW BRIDGE DESIGNS

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

4B The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

APE T CFRP Aslan 500

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

DISTRIBUTION OF LOADSON PILE GROUPS

Eurocode 3 for Dummies The Opportunities and Traps

Solution for Homework #1

Section 5A: Guide to Designing with AAC

Safety Grating GSSG-13R GRIP STRUT. safety grating

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

Bending Stress in Beams

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Mechanical Properties - Stresses & Strains

Introduction to Mechanical Behavior of Biological Materials

Mechanics of Materials. Chapter 5 Stresses In Beams

Fabcograte FRP Grating. Tolerances: ±1/16. Tolerances: ±1/16. THICKNESS BAR SPACING PANEL SIZE (FT.) WT (LBS) 1" 1.5" x 1.

Chapter 17: Springs. Fundamentals of Machine Elements, 3 rd ed. Schmid, Hamrock and Jacobson CRC Press

Detailing of Reinforcment in Concrete Structures

Deflections. Question: What are Structural Deflections?

Introduction. Background

Stress Strain Relationships

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

Design Of Reinforced Concrete Structures ii Two-Way Slabs

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig some of the trusses that are used in steel bridges

Design Parameters for Steel Special Moment Frame Connections

Lecture 8 Bending & Shear Stresses on Beams

Solid Mechanics. Stress. What you ll learn: Motivation

ETABS. Integrated Building Design Software. Concrete Frame Design Manual. Computers and Structures, Inc. Berkeley, California, USA

Lap Fillet Weld Calculations and FEA Techniques

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

Chapter 8. Flexural Analysis of T-Beams

Liquid Hydrogen Pressure Vessel Analysis

The elements used in commercial codes can be classified in two basic categories:

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

Basics of Reinforced Concrete Design

Preliminary steel concrete composite bridge design charts for Eurocodes

Reinforced Concrete Design

MECHANICS OF MATERIALS

8.2 Elastic Strain Energy

Steel joists and joist girders are

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements:

FIBERGLASS REINFORCED PLASTIC (FRP) PIPING SYSTEMS DESIGNING PROCESS / FACILITIES PIPING SYSTEMS WITH FRP

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams

Transcription:

Load Tables for Flexural Members and Connections Beam Deflections - A pultruded beam will be designed for deflection, strength and buckling. Fiber reinforced composite beams exhibit both flexural and shear deflections. Shear deflections are most apparent when the span to depth ratios are less than 0. At short spans, the shear deflections comprise a significant portion of the actual deflections; therefore, the designer should always account for shear deflections when designing with composites. Reference Pultex Fiber Reinforced Polymer Structural Profiles Material Properties Sheets for the appropriate properties of the profiles for which you are utilizing in your design. Although coupon testing is a good quality control method, composite materials are not homogeneous and will exhibit different properties in the web and flange areas. Deflection predictions should be made with values based on full section testing. Please reference Appendix B per ASTM D198 for full section testing procedure. The Uniform Load Tables were calculated using physical properties that were derived from full section testing. The Load Tables are based on simply supported end conditions with uniformly distributed loads. For beam loadings and end conditions not represented in the Uniform Load Tables, reference the Beam Deflection Formula and relative design tables. The following formula was used to predict the deflections in The Uniform Load Tables: 5wL 4 + w L Where: 384 EI 8A G A ka w (mm ) A w Shear area of profile (mm ) (Ref. Table ) k Shear coefficients (Ref. Table ) E x Modulus of elasticity (GPa) G Modulus of rigidity (Shear Modulus) (GPa) I Moment of inertia (mm 4 ) L Length of span Deflection (mm) w Load on the beam Stresses Fiber reinforced composite beams exhibit compressive, flexural, and shear stresses under various load conditions. The dominating failure mode for long span flexural members is typically local buckling of the compressive flange, while short spans are dominated by in-plane shear failures. s The allowable stresses used in The Uniform Load Tables are based on the ultimate compressive buckling, flexural and shear strengths with applied safety factors. Specifically, a.5 safety factor is used for local buckling and flexural stresses while a 3 safety factor is used for shear. The following shear and flexure formula were used to predict the Loads. Vf v (A w ); where f v allowable shear stress 31 MPa 10.3 MPa (Equation P-4) 1

M f b (S x ); where f b allowable flexural stress 7.6 MPa 91.0 MPa (Equation P-5) Local Buckling of the Compression Flange for Wide Flange, I-Sections, Square Tube and Rectangular Tube Sections The local compression buckling strength of pultruded wide flange, I-Sections, square tubes and rectangular tubes can be determined by utilizing the following equations. The local bucking equations were derived from University research. (Reference Step by Step Design Equations for Fiber-reinforced Plastic Beams for Transportation Structures)Davalos,Barbero and Qiao σ x cr [ q ( ( Ex ) ( Ey ) ) + p( Ey ) ( xy ) + ( Gxy ) )] f π t f f f 1 b ν f f (Equation P-3) Where, σ x is the critical stress, and p and q are constants that are defined by the coefficient of restraint (ζ) at the junction of the plates: I/W sections: ( E y ) f b f ; b ( E ) 0.004 0.065 bw p 0.3 + ; q 0.05 + ; ζ ζ 0.5 ζ + 0.4 b f y w Box sections: ( E y ) f b f ; b ( E ) 0.00 0.08 bw p.0 + ; q 1.0 + ; ζ ζ 1.3 ζ + 0. b f y w Where: σ x cr b b b f b w E x E y f G xy p q t ζ w Critical buckling stress in (MPa) Half the width of the compression flange for I/W sections (mm) The width of the compression flange for box sections, bb f (mm) Width of the compression flange (mm) Height of the section (mm) Longitudinal modulus of elasticity (GPa) Transverse modulus of elasticity (GPa) Flange Modulus of rigidity (Shear Modulus) (GPa) Constant defined by the coefficient of restraint (ζ) Constant defined by the coefficient of restraint (ζ) Thickness of the compression flange (mm) Coefficient of restraint of the compression plates Web

Stress Calculations of Channels The Wide Flange-, I- and Box sections mentioned above are loaded in the plane of symmetry and bend in the plane of loading. Channel sections, however, do not exhibit such behavior unless the loading is applied through the shear center. In normal construction with channel members, such a loading condition is seldom observed; therefore, the top flange of channel sections, must be adequately supported to resist rotation due to off shear center loading. The Maximum Uniform Loads in the Uniform Load Tables were calculated using working stress analysis with the assumption that the members are fully laterally supported. Reference Equations P-4 and P-5 on page 1. (Note: CPI is currently developing local buckling and laterally unsupported beam equations for the next update) Lateral-Torsional Buckling The Uniform Loads in the Uniform Load Tables are derived assuming that adequate lateral support is provided for the flexural members. The degree of lateral support for structures is difficult to predict. Figures a. d. represent common bracing scenarios that are considered to provide adequate lateral support. Note that the bracing intervals must be adequate. In the event that lateral support is not used, the designer must investigate lateral torsional buckling criteria. The Uniform Load Tables contain a column titled load, laterally unsupported beam global buckling capacity. Please note that the global buckling load tables include a.5x safety factor. For I-Sections or Wide Flange Sections, the lateral torsional buckling load for various loading conditions can be determined by using the following equation: 3

Design Equation for Lateral-Torsional Buckling π πey M cr Cb CwI y + E KL b KL b y I y G J (Equation P-1) Where, for Wide Flange Sections and I-Sections h I y C w 1 4 J bt f + ht w 3 3 3 ( ) C w Warping constant (mm 6 ) J Torsion constant (mm 4 ) C b Moment variation constant (Ref. Table 1) M cr Critical moment (N-m) L b Unsupported length between points that have lateral restraint (mm) E y Modulus of elasticity for bending about minor axis y-y (GPa) (Use same value as Ex, for simplicity. Values are very similar) E y E x G Shear modulus (GPa) K Effective length coefficient (Ref. Table 1) I y Moment of Intertia about the minor axis (mm 4 ) C b is a moment gradient adjuster, that depends on the type of load and end restraint conditions. Values for C b can be located in Table 1. 4

Table 1 Lateral Buckling Coefficient for Various End Conditions 1 Lateral Support about y-axis Moment gradient adjuster (C b ) Effective length coefficient (K) None 1.0 1.0 None Full 1.13 0.97 1.0 0.5 None Full 1.30 0.86 1.0 0.5 None Full 1.35 1.07 1.0 0.5 None Full 1.70 1.04 1.0 0.5 5

Beam Deflection Formula Uniform load on simple beam Total Equiv. Uniform Load wl 4 5 wl wl max. (at midpoint) + 384 EI 8 G A w x 3 3 x ( l lx + x ) 4 EI wl R is V 1 V x w x wl M max. (at midpoint) 8 w x M x ( l x ) Note: Reference Table. Shear Areas and Shear Coefficients for Various Cross Sections A', A'kA w. Uniform load on beam fixed at both ends Total Equiv. Uniform Load max. M M 1 (at midpoint) (at midpoint) M x R is V V max. (at ends) x x wl 3 4 w l 384 EI + w x 4 EI l wl 1 w w l 1 w l 4 w 1 x ( l x ) wl 8 G A ( 6 l x l 6 x ) Point load on simply supported beam Total max. M Equiv. max. (at (at M Uniform x x point when point when of of Load x x load) < 1 load) < 1 V P 3 P l 48 EI Px 48 EI P P l 4 Px Pl + 4 G A ( 3 l 4 x ) 6

Point load on beam with fixed ends Total M max. Equiv. max. (at M Uniform x (at center x when when midpoint) and Load x < ends) x < 1 V 1 P 3 P l 19 EI Px 48 EI P P l 8 P 8 l ( 4 x l ) P l + 4 G A ( 3 l 4 x ) Point load on cantilever beam Total Equiv. Uniform Load 8P max. M max. ( at free end ) R is ( at fixed end ) M V x x 3 P l 3 EI P 6 EI P P l Px P l + G A 3 3 ( l 3 l x + x ) Uniform load on cantilever beam Total Equiv. Uniform Load 4 wl max. (at free end) R is V V x x 4 w l 8 EI w 4 EI wl wx wl + G A 4 3 4 ( x 4 l x + 3 l ) M max. (at fixed end) M x wl w x 7

Two Concentrated Loads Equally Spaced on a Simply Supported Beam Total x ( at center ) Px ( when x < a ) ( 3 la 3 a x ) Pa ( when x > a and < ( l - a) ) ( 3 lx 3 x a ) M Equiv. max. Uniform max. (between M x x Load R is loads) V 8 Pa l Pa EI P Pa ( when x < a ) P x 6 6 l 8 EI EI a 6 + Pa G A Table Shear Areas and Shear Coefficients for Various Cross Sections for calculating A', A' ka w Cross Section Type Shear Area k Cross Section Type Shear Area k Rectangular Section A w bd 5/6 Channel Section A w bt 5/6 I or W-Section A w bt 5/6 Channel Section A w ht 1 I or W-Section A w th 1 Solid Round A w π 8/9 Square Tube A w th 1 Angle Section A w th 1 Rectangular Tube A w tb 5/6 Circular Tube A w πrt 1/4 Note: Arrows indicate direction of shear forces k Shear coefficient A w Shear area Note: Values are approximated for simplicity. For exact shear coefficients reference Timoshenko's Beam Theory. 8

Examples of Beam Selection of Pultex Profiles used as Flexural Members Example 1. Design Parameters Select a Pultex Wide Flange Section capable of withstanding a uniform load of 1314 N/m, over a simply supported span of 5m, with a deflection limit of L/180. The beam is laterally supported and has an assumed weight of 7.34 kg/m. Solution Refer to the Uniform Load Tables. The load tables do not take into account the weight of the beam; therefore, add the weight of the section to the design load. From the Uniform Load Tables, reference the 15mm x 15mm x 9.5 mm (nominal) Wide Flange Section. Locate the span column and find the 5m span and look across the columns to the L/180 column. The number in the space represents a uniform load of 154 N/m. This load is more than the design load 1386 N/m (included weight of selected beam). Therefore, the section is adequate. Select a 15 mm x 15 mm x 9.5mm Wide Flange Section. Example. Design Parameters Select a Pultex Wide Flange Section that is simply supported and is capable of withstanding a laterally unsupported load of 550 N/m at a span of 6.4m with a deflection less than L/40. Solution Reference the Uniform Load Tables. Select a member size to begin the process. Locate the 03mm x 03mm x 9.5mm Wide Flange Section and the span of 6.5m. Locate the load, laterally unsupported beam, global buckling capacity and locate the 6.5m span and load interface. The maximum load is 960 N/m and is not adequate; therefore, select a larger Wide Flange Section. Select a 54mm x 54mm x 1.7mm Wide Flange Section. Locate the 6.5m span and Maximum Load Laterally Unsupported column. The maximum load is 883 N/m with a x safety factor. The 883 N/m load is greater than the design load plus the weight of the Wide Flange Section; therefore, the 54mm x 54mm x 1.7mm beam is adequate. Scanning across the columns, notice that the 711 N/m design load is less than the 3193 N/m load in the L/40 column; therefore, the deflection will be less than L/40. Select a 54mm x 54mm x 1.7mm Wide Flange Section. Example 3. Design Parameters Determine the maximum allowable point load and deflection of a laterally unsupported 15mm x 15mm x 9.5mm Wide Flange Section that is simply supported at a span of 3.66mm. The beam is to be used in a 10% concentration of Potassium Hydroxide. Solution Step 1. Reference equation (P-1) for lateral-torsional buckling. π πe y M cr Cb CwI y + KL b KL b C w Warping constant (mm 6 ) J Torsion constant (mm 4 ) C b Moment gradient adjuster M cr Critical moment (mm-n) L Unsupported length (mm) E I GJ y y 9

E y Modulus of elasticity for bending about minor axis (GPa) E y E Example 3 (cont d) G Shear modulus (GPa) K Effective length coefficient (ref. Table 1) Step. Use equation (P-) to predict the critical moment M cr. Obtain the moment variation constant C b from Table 1. C b is 1.35 for the simply supported beam with no end constraints and a point load (Table 1.) L is the laterally unsupported length of 3.66m or 3660 mm. E is the modulus of elasticity (reference the Pultex Fiber Reinforced Polymer Structural Profiles Material Properties Sheet) E 7.59 GPa. G is the modulus of rigidity (Shear Modulus) (reference the Pultex Fiber Reinforced Polymer Structural Profiles Material Properties Sheet) G 3.45 GPa C w is the warping constant; a value can be located in the Elements of Section in the Design Manual. For the 15mm x 15mm x 9.5mm Wide Flange Section, C w 3.18E10mm 6. J is torsion constant, a value can be found in the Elements of Section in the Design Manual. For the 15mm x 15mm x 9.5mm Wide Flange Section, J 131698mm 4. I y is the moment if inertia about the weak axis, I y 554163mm 4. (from Elements of Section) K is the effective length coefficient from Table 1., K 1. Step 3. Equate M cr M cr 1.35 π π 7.59GPa 6 4 ( 3.18E10 )( 554163mm ) (1)3660mm (1)3660mm" + ( 7.59GPa )( 554163mm M cr 15,093 N-m For a simply supported span with a point load at mid span, the maximum moment is given by M PL/4. Where: P point load in (N) L length of span, equals L b in the present case. Therefore, calculate P. 15093 N-m P(3.66m)/4 P 16,495 N Apply the desired safety factor. In this case, use a.5 safety factor. Therefore, P allowable 6,598N Step 4. Calculate the allowable deflection with the 6,60N load. From the beam deflection equations, determine the equation for the simply supported, mid-span, point load condition. 3 1 PL 1 PL + 48 EI 4 GA' 4 )( 345GPa )( 131698mm 4 ) 10 Where: A' ka w Deflection (in) P Concentrated load (lbs.);i.e., P allowable 6,600N L length of span (in) 3.66mm

G Modulus of rigidity (Shear modulus) (GPa) i.e., 3.45 GPa E Full section modulus of elasticity (GPa), i.e., 7.59 GPa I x Moment of inertia (mm 4 ), i.e., 16964344mm 4 Example 3 (cont d) A ka w, i.e. 1(1,45mm )1,45mm A w Cross sectional area of web 1,45mm k Shear Coefficient Reference Table. (Shear area of common cross sections), i.e.,(table ) Step 5. Solve for deflection. 1 48 3 (6,600N )( 3.66m ) ( 7.59GPa )( 16964344mm 15.57mm or L/35 Step 6. Determine if the flexural strength is adequate. 4 1 (6,600N )( 3.66m ) + ) 4 ( 3.45GPa )( 1,45mm.0015mm ) σ f M/S x Where: σ f flexural stress (GPa) M maximum moment (N - m) S x Section modulus (mm 3 ) From the Elements of Section of The New and Improved Design Manual for Pultrusion of Standard and Custom Fiber Reinforced Polymer Structural Profiles, determine S x for the 15mm x 15mm x 9.5mm Wide Flange Section. S x 630mm 3. From the Pultex SuperStructural Profiles for Wide Flange Sections and I-Sections Material Properties Sheets, determine the ultimate flexural strength and apply the proper safety factor, which in the present case is.5. σ f 7.6 MPa ultimate flexural strength. (7.6 MPa/.5) (3.66mm/4)/630mm 3 P flexural 4,983 lbs. P flexural > P allowable therefore, the strength is adequate. Step 7. Calculate the Critical Buckling load and determine if it is adequate. From equation (P-): Where: σ cr x [ q ( ( Ex ) * ( E y ) ) + p( E y ) ( xy ) + ( Gxy ) )] π t f f f f 1 b ν ( E y ) f b f ; b ( E ) 0.004 0.065 bw p 0.3 + ; q 0.05 + ; ζ ζ 0.5 ζ + 0.4 b f y w f f σ x cr b b b f Critical buckling stress in (MPa) Half the width of the compression flange for I/W sections (mm) The width of the compression flange for box sections, bb f (mm) width of the compression flange (mm) 11

b w E x E y f G xy p q t ζ σ x cr Height of the section (mm) Longitudinal modulus of elasticity (GPa) Transverse modulus of elasticity (GPa) Flange Modulus of rigidity (Shear Modulus) (GPa) Constant defined by the coefficient of restraint (ζ) Constant defined by the coefficient of restraint (ζ) Thickness of the compression flange (mm) Coefficient of restraint of the compression plates 156 MPa Step 7. The allowable local buckling load is determined by evaluating the critical buckling stress to bending stress and applying the appropriate safety factor. In this case use.5. Use σ M/S x where, MPL/4 Therefore, P (σ x cr S x 4)/L P buckling (156 MPa*638 mm 3 *4)/3.66mm 37995 N/.5 P allowable 15,198N> P global buckling 6598N; therefore, global buckling governs the design. The design is governed by M cr Lateral Torsional Buckling (Global buckling) and is limited to 6598N. Reference the Chemical Compatibility Guide to determine the proper Pultex Series. Choose Pultex 165 Series. 1

Nomenclature Deflection (mm) 1-(ν xy ν yx ) ζ Coefficient of restraint of the compression plates σ c Compressive stress (GPa) cr σ x Critical buckling stress in (GPa) ν xy Poisson s ratio (longitudinal) ν yx Poisson s ratio (transverse) a Unsupported length or region over which N x acts (length of beam) inches A w Shear area of profile (Table ) (mm ) A ka w, Shear coefficient x shear area of profile (mm ) b Half the width of the compression flange for I/W sections (mm) b The width of the compression flange for box sections, bb f (mm) b f Width of the compression flange (mm) b w Height of the section (mm) C b Moment Variation Constant C w Warping Constant (mm 6 ) D Deflection (mm) D 11, D Flexural rigidity in 1, and radial directions E x ore y Modulus of elasticity of the major or minor axis(gpa) E y local Local transverse modulus of Elasticity (GPa) f Flange f b Flexural stress (GPa) f v Shear stress (GPa) G Shear modulus (modulus of rigidity) (GPa) G xy Shear modulus (GPa) h Depth of section (mm) I x or y Moment of Inertia about desired axis (mm 4 ) J Torsion Constant (mm 4 ) K Effective length coefficient k Shear coefficient (Table.) L Length (mm) L b Unsupported length between points that have lateral restraint (mm) M Maximum moment (m -N) M cr Critical Moment that causes lateral buckling (m-n) P Point load (N) p Constant defined by the coefficient of restraint (ζ) q Constant defined by the coefficient of restraint (ζ) r Radius of gyration (mm) S x Section modulus (mm 3 ) t Thickness of compression flange (mm) V Shear Force (N) Wt. Weight of profile in N/m W lb Maximum load governed by critical local buckling W f Maximum load governed by flexural stress W v Maximum load governed by shear strength W lu Maximum laterally unsupported load L/D Ratio of length of the span to the deflection 13

Introduction to Pultex SuperStructural Profiles Product Advantage Summary When comparing pultruded fiber reinforced polymer composites to traditional building materials such as steel, one will notice that the strengths of the materials are generally comparable while the stiffness characteristics are dissimilar. For example, the modulus of elasticity of steel is approximately 9E6 psi., while the modulus of elasticity of a typical pultruded Wide Flange Section is.5-.8e6 psi. The stiffness difference is 11.5 times between the two materials. In an effort to improve stiffness, Creative Pultrusions, has modified the fiber architecture of selected structural profiles. The result improved the modulus of elasticity from.5-.8e6 psi to 3.9-4.0E6 psi., an average improvement in E-Modulus of 49%. Pultex SuperStructural profiles offer the designer the ability to design longer spans with heavier loads. The most important advantage is a more economical design, as material and labor costs are greatly reduced. The following example is a comparison of a standard pultruded section to a Pultex SuperStructural profile. Example 1.0 Reference Creative Pultrusions former Design Guide, Volume, Revision 1, Uniform Load Tables, page 3-17. The allowable uniform load of a standard 6" x 6" x 3/8" Wide Flange Section at a span of 10 and L/D ratio of 360 is 149 lbs./ft. Referencing The New and Improved Pultex Pultrusion Design Manual, the allowable uniform load for the same loading, span and deflection criteria is 0 lbs./ft. The difference is a 48% increase in E-Modulus. The graph below demonstrates the difference between the Pultex SuperStructural 6" x 6" x 3/8" Wide Flange Section and a standard pultruded 6" x 6" x 3/8" Wide Flange Section. The graph demonstrates the allowable uniform loads for each beam at various spans with the deflection limit of L/D 360. Comparison of Standard Structural Profiles and Pultex SuperStructural Profiles Project example: Plating Tank Cover Design (Uniform Load (lbs./ft 400 300 00 100 0 Pultex SuperStructural vs Pultex Standard Structural Uniform Load Comparison 48% increase in E-Modulus 8 9 10 11 1 13 14 15 (ft) Pultex SuperStructural Profiles 6" x 6" x 3/8" Wide Flange Section Pultex Standard Structural Profiles 6" x 6" x 3/8" Wide Flange Section 14

1. Standard Structural Project Design s Description: Plating tank Design load: 80 psf Maximum deflection: L/180 or.67" Service temperature: 80 F 5% concentration of Chromic Acid Step 1. Based on the 80 psf + the 3.46 psf DL of Flowgrip, determine the allowable beam spacing. Step. Reference Creative Pultrusions former Design Guide, Volume, Revision 1. For a 6"x6"x3/8" Wide Flange Beam, the allowable uniform load at L/180 is 98 lbs/ft. Step 3. Determine the allowable spacing by dividing the allowable load by the design load, i.e., (98 lbs/ft)/83.46lbs/ft 3.57' O.C. Step 4. Space the beams @ 3.5' O.C. (Note: beam weight excluded) Bill of Materials for Standard Structural Project Design Item Quantity Price $ Total 6"x6"x3/8" W-Section; 165; Spaced 3.5' O.C. 19 pcs. @11' $4.8/ft $5,074.5 Flowgrip Solid Panel 1 pcs. @0' $33.14/ft $13,918.80 Misc., i.e., fasteners, adhesive Total Material Price $18,993.3 Pultex SuperStructural Profiles Pultex Standard Structural Profiles. Pultex SuperStructural Project Design s Description: Plating tank cover 10' x 60' Design load: 80 psf Maximum deflection: L/180 or.67" Service temperature: 80 F 5% concentration of Chromic Acid Step 1. Determine the maximum span of Flowgrip Solid Floor Panel. a. Reference page 7 of the Solutions that Work---The Most Complete Line of Grating and Access Structure Products in the Industry Note: The Flowgrip Solid Floor Panel will span 60" and satisfy the above design criteria. (The beam spacing is based on 5' O.C.) 15

Step. Determine which Wide Flange Section profile will satisfy the loading condition above. a. 80 psf x 5' panel width 400 lbs/ft live load on the beams. b. Calculate the dead load. Assume that a 6" x 6" x 3/8" Wide Flange Section profile is sufficient. c. The weight of the 6" x 6" x 3/8" section is 4.9 lbs/ft. d. Calculate the weight of the Flowgrip 3.46 psf x 5' 17.3 lbs/ft. Step 3. Determine the total live load (LL) and dead load (DL) combination. a. 400 lbs/ft LL + 4.9 lbs/ft DL + 17.3 lbs/ft DL 4. lbs./ft. Step 4. Determine if the 6" x 6" x 3/8" Wide Flange Section profile is adequate. a. Reference the 6" x 6" x 3/8" Wide Flange Section in the Uniform Load Tables. b. Locate the 10' span row and look across to the l/180 deflection column. c. The Pultex SuperStructural 6" x 6" x 3/8" Wide Flange Section will hold 441 lbs/ft and deflect less than L/180; therefore, the 6" x 6" x 3/8" Wide Flange Section profile is adequate. Step 5. Space all beams at 5' O.C. across the 10' section of the span. Bill of Materials for Pultex SuperStructural Project Design Item Quantity Price $ Total 6"x6"x3/8" W-Section; 165; Spaced 5' O.C. 13 pcs. @11' $4.8/ft $3,47.04 Flowgrip Solid Floor Panel 1 pcs. @ 0' $33.14/ft $13,918.80 Misc., i.e., fasteners, adhesives Total Material Price $17,390.84 Pultex SuperStructural vs Pultex Standard Structural Profiles Price Advantage Comparison $19,000 $18,993 $18,500 $18,000 $17,500 $17,000 $16,500 $17,391 Pultex SuperStructural Pultex Standard Profiles Structural Strucural Profiles Total Material Cost 16

/Deflection Ratio Conversion Table (Metric) L/D80 L/D100 L/D150 L/D180 L/D40 L/D360 L/D500 meter mm Deflection (mm) 0.5 50 3.13.50 1.67 1.39 1.04 0.69 0.50 0.50 500 6.5 5.00 3.33.78.08 1.39 1.00 0.75 750 9.38 7.50 5.00 4.17 3.13.08 1.50 1.00 1000 1.50 10.00 6.67 5.56 4.17.78.00 1.5 150 15.63 1.50 8.33 6.94 5.1 3.47.50 1.50 1500 18.75 15.00 10.00 8.33 6.5 4.17 3.00 1.75 1750 1.88 17.50 11.67 9.7 7.9 4.86 3.50.00 000 5.00 0.00 13.33 11.11 8.33 5.56 4.00.5 50 8.13.50 15.00 1.50 9.38 6.5 4.50.50 500 31.5 5.00 16.67 13.89 10.4 6.94 5.00.75 750 34.38 7.50 18.33 15.8 11.46 7.64 5.50 3.00 3000 37.50 30.00 0.00 16.67 1.50 8.33 6.00 3.5 350 40.63 3.50 1.67 18.06 13.54 9.03 6.50 3.50 3500 43.75 35.00 3.33 19.44 14.58 9.7 7.00 3.75 3750 46.88 37.50 5.00 0.83 15.63 10.4 7.50 4.00 4000 50.00 40.00 6.67. 16.67 11.11 8.00 4.5 450 53.13 4.50 8.33 3.61 17.71 11.81 8.50 4.50 4500 56.5 45.00 30.00 5.00 18.75 1.50 9.00 4.75 4750 59.38 47.50 31.67 6.39 19.79 13.19 9.50 5.00 5000 6.50 50.00 33.33 7.78 0.83 13.89 10.00 5.5 550 65.63 5.50 35.00 9.17 1.88 14.58 10.50 5.50 5500 68.75 55.00 36.67 30.56.9 15.8 11.00 5.75 5750 71.88 57.50 38.33 31.94 3.96 15.97 11.50 6.00 6000 75.00 60.00 40.00 33.33 5.00 16.67 1.00 6.5 650 78.13 6.50 41.67 34.7 6.04 17.36 1.50 6.50 6500 81.5 65.00 43.33 36.11 7.08 18.06 13.00 6.75 6750 84.38 67.50 45.00 37.50 8.13 18.75 13.50 7.00 7000 87.50 70.00 46.67 38.89 9.17 19.44 14.00 7.5 750 90.63 7.50 48.33 40.8 30.1 0.14 14.50 7.50 7500 93.75 75.00 50.00 41.67 31.5 0.83 15.00 7.75 7750 96.88 77.50 51.67 43.06 3.9 1.53 15.50 8.00 8000 100.00 80.00 53.33 44.44 33.33. 16.00 8.5 850 103.13 8.50 55.00 45.83 34.38.9 16.50 8.50 8500 106.5 85.00 56.67 47. 35.4 3.61 17.00 8.75 8750 109.38 87.50 58.33 48.61 36.46 4.31 17.50 9.00 9000 11.50 90.00 60.00 50.00 37.50 5.00 18.00 9.5 950 115.63 9.50 61.67 51.39 38.54 5.69 18.50 9.50 9500 118.75 95.00 63.33 5.78 39.58 6.39 19.00 17

/Deflection Ratio Conversion Tables (Metric) - Cont d L/D80 L/D100 L/D150 L/D180 L/D40 L/D360 L/D500 meter mm Deflection (mm) 9.75 9750 11.88 97.50 65.00 54.17 40.63 7.08 19.50 10.00 10000 15.00 100.00 66.67 55.56 41.67 7.78 0.00 10.5 1050 18.13 10.50 68.33 56.94 4.71 8.47 0.50 10.50 10500 131.5 105.00 70.00 58.33 43.75 9.17 1.00 10.75 10750 134.38 107.50 71.67 59.7 44.79 9.86 1.50 11.00 11000 137.50 110.00 73.33 61.11 45.83 30.56.00 11.5 1150 140.63 11.50 75.00 6.50 46.88 31.5.50 11.50 11500 143.75 115.00 76.67 63.89 47.9 31.94 3.00 11.75 11750 146.88 117.50 78.33 65.8 48.96 3.64 3.50 1.00 1000 150.00 10.00 80.00 66.67 50.00 33.33 4.00 1.5 150 153.13 1.50 81.67 68.06 51.04 34.03 4.50 1.50 1500 156.5 15.00 83.33 69.44 5.08 34.7 5.00 1.75 1750 159.38 17.50 85.00 70.83 53.13 35.4 5.50 13.00 13000 16.50 130.00 86.67 7. 54.17 36.11 6.00 13.5 1350 165.63 13.50 88.33 73.61 55.1 36.81 6.50 13.50 13500 168.75 135.00 90.00 75.00 56.5 37.50 7.00 13.75 13750 171.88 137.50 91.67 76.39 57.9 38.19 7.50 14.00 14000 175.00 140.00 93.33 77.78 58.33 38.89 8.00 14.5 1450 178.13 14.50 95.00 79.17 59.38 39.58 8.50 14.50 14500 181.5 145.00 96.67 80.56 60.4 40.8 9.00 14.75 14750 184.38 147.50 98.33 81.94 61.46 40.97 9.50 15.00 15000 187.50 150.00 100.00 83.33 6.50 41.67 30.00 15.5 1550 190.63 15.50 101.67 84.7 63.54 4.36 30.50 15.50 15500 193.75 155.00 103.33 86.11 64.58 43.06 31.00 15.75 15750 196.88 157.50 105.00 87.50 65.63 43.75 31.50 16.00 16000 00.00 160.00 106.67 88.89 66.67 44.44 3.00 16.5 1650 03.13 16.50 108.33 90.8 67.71 45.14 3.50 16.50 16500 06.5 165.00 110.00 91.67 68.75 45.83 33.00 16.75 16750 09.38 167.50 111.67 93.06 69.79 46.53 33.50 17.00 17000 1.50 170.00 113.33 94.44 70.83 47. 34.00 17.5 1750 15.63 17.50 115.00 95.83 71.88 47.9 34.50 17.50 17500 18.75 175.00 116.67 97. 7.9 48.61 35.00 17.75 17750 1.88 177.50 118.33 98.61 73.96 49.31 35.50 18.00 18000 5.00 180.00 10.00 100.00 75.00 50.00 36.00 18.5 1850 8.13 18.50 11.67 101.39 76.04 50.69 36.50 18.50 18500 31.5 185.00 13.33 10.78 77.08 51.39 37.00 18.75 18750 34.38 187.50 15.00 104.17 78.13 5.08 37.50 19.00 19000 37.50 190.00 16.67 105.56 79.17 5.78 38.00 19.5 1950 40.63 19.50 18.33 106.94 80.1 53.47 38.50 19.50 19500 43.75 195.00 130.00 108.33 81.5 54.17 39.00 19.75 19750 46.88 197.50 131.67 109.7 8.9 54.86 39.50 18

Uniform Load Tables (Metric) Pultex SuperStructural Profiles Wide Flange Sections 76. x 76. x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 77.7 I x 1.34E6 mm 4 S x 3.5E4 mm 3 Simply Supported with a Uniform Load Maximum L b.61 m A w 4.83E Wt..4 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.00 051 3196 565 15569 13037 9778 6519 1.5 8903 009 16417 1456 8551 716 5345 3563 1.50 467 13909 11401 10380 7706 5137 481 311 141 1.75 695 1019 8376 8897 4967 3311 759 070 1380.00 1703 784 6413 7785 3379 53 1877 1408 939.5 1145 618 5067 690 399 1599 1333 999 666.50 806 5007 4104 68 176 1175 979 734 489 Note: Bold numbers in the ed Load Tables represent the governing load 101.6 x 101.6 x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 156. I x 3.35E6 mm 4 S x 6.60E4 mm 3 Simply Supported with a Uniform Load Maximum L b.76 m A w 6.45E Wt. 3.6 kg/lm Laterally Supported beams L/D ratio load, local load, load, load, laterally compression flexural In-plane shear unsupported beam buckling of the web global buckling.5x.5x Safety 3x.5x 100 150 180 40 360 1.5 4389 1118 30773 16607 16081 1061 8041 1.50 1157 14665 1370 13839 11907 993 744 4961 1.75 6805 10775 15700 1186 7810 6509 488 354.00 4148 849 101 10380 8066 5378 4481 3361 41.5 697 6518 9498 96 5775 3850 308 406 1604.50 1845 580 7693 8304 469 846 37 1779 1186.75 1315 4363 6358 7549 341 161 1801 1351 900 3.00 969 3666 534 690 517 1678 1398 1049 699 3.5 734 314 455 6387 199 138 1107 830 553 Note: Bold numbers in the ed Load Tables represent the governing load 19

Pultex SuperStructural Profiles Wide Flange Sections 15.4 x 15.4 x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 69.4 I x 1.19E7 mm 4 S x 1.56E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.07 m A w 9.67E3 Wt. 4.94 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.75 30684 1134 3718 17794 998.00 18167 8670 846 15569 7078.5 11468 6850 460 13839 5179.50 7615 5549 18193 1456 3891.75 570 4586 15035 1133 4488 99 3.00 3773 3853 1634 10380 3519 346 3.5 780 383 10765 9581 807 1871 3.50 099 831 98 8897 73 1516 3.75 1618 466 8086 8304 1865 144 4.00 171 168 7106 7785 065 1549 1033 4.5 1014 190 695 737 1733 1300 866 4.50 81 1713 5615 690 1468 1101 734 4.75 673 1537 5039 6556 1504 154 940 67 Note: Bold numbers in the ed Load Tables represent the governing load 0

Pultex SuperStructural Profiles Wide Flange Sections 15.4 x 15.4 x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 156. I x 1.69E7 mm 4 S x.e5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.07 m A w 1.45E3 Wt. 7.34 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.75 47707 36334 5945 6690 1604 14403.00 8545 7818 40536 3354 0380 1585 10190.5 18 1980 308 0759 17863 14886 11165 7443.50 143 17804 5943 18683 13406 1117 8379 5586.75 8574 14714 1440 16985 1097 8580 6435 490 3.00 614 1364 18016 15569 1101 8068 673 504 336 3.5 4634 10535 15351 1437 9648 643 5360 400 680 3.50 3541 9084 1336 13345 7809 506 4338 354 169 3.75 763 7913 11530 1456 6405 470 3558 669 1779 4.00 196 6955 10134 11677 5316 3544 953 15 1477 4.5 177 6160 8977 10990 4459 973 477 1858 139 4.50 1451 5495 8007 10380 3776 517 098 1573 1049 4.75 10 493 7186 9833 35 150 1791 1344 896 5.00 1007 4451 6486 934 775 1850 154 1156 771 Note: Bold numbers in the ed Load Tables represent the governing load 1

Pultex SuperStructural Profiles Wide Flange Sections 03. x 03. x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 87.9 I x 4.18E7 mm 4 S x 4.11E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.5 m A w 1.93E3 Wt. 9.85 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360.50 35405 18489 47896 4911 1431.75 4417 1580 39584 646 14538 969 3.00 17419 1840 3361 0759 1159 7686 3.5 1787 10940 8341 1916 1375 981 6188 3.50 9618 9433 4437 17794 10097 7573 5048 3.75 7388 817 187 16607 8337 653 4169 4.00 5780 7 18709 15569 6958 519 3479 4.5 4596 6398 16573 14654 5864 4398 93 4.50 3707 5706 14783 13839 4985 3739 493 4.75 308 51 1368 13111 47 304 136 5.00 50 46 11974 1456 445 3687 765 1844 5.5 089 4193 10861 1186 3845 304 403 160 5.50 1760 380 9896 1133 3361 801 100 1400 5.75 1496 3495 9054 10831 954 46 1846 131 6.00 181 310 8315 10380 610 175 1631 1088 6.5 1105 958 7663 9964 317 1931 1448 966 6.50 960 735 7085 9581 066 17 19 861 6.75 838 536 6570 96 1850 154 1156 771 7.00 736 358 6109 8897 1663 1386 1039 693 7.5 650 198 5695 8590 1500 150 938 65 Note: Bold numbers in the ed Load Tables represent the governing load

Pultex SuperStructural Profiles Wide Flange Sections 03. x 03. x 1.7 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.8 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 154.8 I x 5.36E7 mm 4 S x 5.8E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.5 m A w.58e3 Wt. 13.04 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360.50 47633 41805 61469 3315 3150 3640 15760.75 33067 34550 50801 30195 9436 4530 18398 165 3.00 3754 9031 4687 7679 3308 1944 14568 971 3.5 17560 4737 3637 5550 18741 15618 11713 7809 3.50 13303 139 3136 375 1575 179 9547 6365 3.75 1093 18580 730 143 160 1050 7877 551 4.00 811 16330 4011 0759 15766 10511 8759 6569 4380 4.5 6497 14465 170 19538 1379 8853 7377 5533 3689 4.50 577 1903 1897 18453 1183 75 668 4701 3134 4.75 434 11580 1707 17481 9664 6443 5369 407 685 5.00 361 10451 15367 16607 8338 5559 463 3474 316 5.5 3036 9480 13939 15817 74 488 404 3018 01 5.50 576 8637 1700 15098 639 419 3516 637 1758 5.75 03 7903 1160 14441 556 3708 3090 318 1545 6.00 1899 758 1067 13839 4913 376 730 047 1365 6.5 1648 6689 9835 1386 4361 907 43 1817 111 6.50 1439 6184 9093 1775 3888 59 160 160 1080 6.75 165 5735 843 130 3481 31 1934 1450 967 7.00 1117 533 7840 1186 319 086 1738 1304 869 7.5 991 4971 7309 11453 8 1881 1568 1176 784 7.50 884 4645 6830 1107 554 170 1419 1064 709 7.75 79 4350 6396 10714 318 1546 188 966 644 8.00 71 4083 6003 10380 111 1407 1173 880 586 8.5 64 3839 5645 10065 198 185 1071 803 535 Note: Bold numbers in the ed Load Tables represent the governing load 3

Pultex SuperStructural Profiles Wide Flange Sections 54 x 54 x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 56. I x 8.34E7 mm 4 S x 6.75E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.83 m A w.4e3 Wt. 1.37 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 3.50 335 9647 39046 4 9413 3.75 17043 8403 34014 0759 7833 4.00 1343 7386 9895 1946 6580 4.5 10456 654 6481 18317 5577 4.50 8373 5836 361 1799 4764 4.75 6790 537 100 16389 4099 5.00 5570 477 19133 15569 3551 5.5 4616 487 17354 1488 3095 5.50 3861 3906 1581 14154 713 5.75 357 3574 14467 13539 390 6.00 769 383 1387 1974 3175 117 6.5 371 305 145 1456 84 1883 6.50 044 797 1131 11976 53 168 6.75 1773 594 10498 11533 63 1508 7.00 1546 41 976 1111 037 1358 7.5 1356 48 9100 10738 1839 16 7.50 1195 101 8503 10380 1667 1111 7.75 1057 1967 7964 10045 1515 1010 8.00 940 1846 7474 9731 1841 1381 91 Note: Bold numbers in the ed Load Tables represent the governing load 4

Pultex SuperStructural Profiles Wide Flange Sections 54 x 54 x 1.7 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.8 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 99.1 I x 1.08E8 mm 4 S x 8.5E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.83 m A w 3.E3 Wt. 16.40 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 3.00 54350 9930 68763 34599 6910 17940 3.5 39798 550 58591 31937 1870 14580 3.50 9857 1989 5050 9656 17985 11990 3.75 874 19155 44008 7679 14950 9967 4.00 17847 16836 38679 5949 16731 1548 8365 4.5 14151 14913 346 443 14168 1066 7084 4.50 11381 1330 30561 3066 1094 9071 6047 4.75 971 11939 749 185 10401 7801 500 5.00 7639 10775 4755 0759 9005 6754 4503 5.5 6360 9773 453 19771 9415 7845 5884 393 5.50 5344 8905 0458 1887 849 6874 5156 3437 5.75 4530 8147 18718 18051 767 6056 454 308 6.00 3869 748 17191 1799 6433 5361 400 680 6.5 339 6896 15843 16607 570 4767 3575 384 6.50 883 6376 14648 15969 5109 457 3193 19 6.75 51 591 13583 15377 4580 3817 863 1909 7.00 01 5497 1630 1488 41 3435 576 1718 7.5 1938 515 11774 14317 37 310 37 1551 7.50 1716 4789 1100 13839 3373 810 108 1405 7.75 155 4485 10304 13393 3065 554 1916 177 8.00 136 409 9670 1974 4190 793 38 1746 1164 8.5 11 3958 9093 1581 389 553 17 1595 1064 8.50 1098 378 8566 111 3508 339 1949 146 975 8.75 99 3518 8083 1186 3 148 1790 1343 895 9.00 898 336 7640 11533 966 1977 1648 136 84 Note: Bold numbers in the ed Load Tables represent the governing load 5

Pultex SuperStructural Profiles Wide Flange Sections 304.8 x 304.8 x 1.7 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.8 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 68.8 I x 1.90E8 mm 4 S x 1.5E6 mm 3 Simply Supported with a Uniform Load Maximum L b.13 m A w 3.87E3 Wt. 19.75 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 3.50 59885 436 746 35587 19579 3.75 45668 19544 64659 3315 16407 4.00 35463 17178 5689 31139 13868 4.5 7980 1516 50340 9307 11814 4.50 391 1357 4490 7679 1506 10138 4.75 18146 1181 40300 6 13137 8758 5.00 14873 10994 36371 4911 11419 7613 5.5 1316 997 3989 375 9984 6656 5.50 1094 9086 30058 646 8775 5850 5.75 8678 8313 750 166 7751 5167 6.00 737 7634 557 0759 6878 4585 6.5 6308 7036 377 1999 6130 4087 6.50 5433 6505 151 1916 5485 3657 6.75 4708 603 19957 18453 497 384 7.00 4103 5609 18556 17794 4441 960 7.5 3595 59 1799 17180 4016 677 7.50 3165 4886 16165 16607 4858 3643 49 7.75 799 4576 15139 1607 440 3315 10 8.00 486 494 1407 15569 4033 304 016 8.5 17 4038 13359 15098 3689 767 1844 8.50 1985 3804 1585 14654 3383 537 169 8.75 1783 3590 11876 1435 3110 33 1555 9.00 1607 3393 116 13839 865 149 143 9.5 1454 31 1067 13465 3174 645 1984 133 9.50 1318 3045 10075 13111 936 447 1835 13 9.75 1199 891 9565 1775 7 68 1701 1134 10.00 1094 748 9093 1456 57 106 1579 1053 10.5 1000 616 8655 115 351 1959 1469 979 10.50 917 493 847 1186 190 185 1369 913 10.75 84 378 7868 11587 044 1703 178 85 11.00 776 71 7515 1133 1910 159 1194 796 Note: Bold numbers in the ed Load Tables represent the governing load 6

Pultex SuperStructural Profiles I-Sections 76. x 38.1 x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 1,009.1 I x 7.51E5 mm 4 S x 1.97E4 mm 3 Simply Supported with a Uniform Load Maximum L b.30 m A w 4.84E mm Wt. 1.58 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 0.75 9938 11847 5453 0759 0700 1750 1937 865 1.00 3731 63476 14317 15569 1418 9455 7879 5909 3939 1.5 1791 4065 9163 1456 7550 5033 4194 3146 097 1.50 997 81 6363 10380 4466 977 481 1861 140 1.75 61 077 4675 8897 850 1900 1583 1188 79.00 403 15869 3579 7785 196 184 1070 803 535 Note: Bold numbers in the ed Load Tables represent the governing load 101.6 x 50.8 x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 567.6 I x 1.89E6 mm 4 S x 3.71E4 mm 3 Simply Supported with a Uniform Load Maximum L b.38 m A w 6.45E mm Wt..14 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.5 3954 437 17333 16607 11919 9933 7449 4966 1.50 104 30019 1037 13839 10759 7173 5977 4483 989 1.75 150 055 8844 1186 6943 468 3857 893 198.00 803 16886 6771 10380 477 3151 66 1969 1313.5 547 1334 5350 96 3357 38 1865 1399 933.50 389 10807 4333 8304 467 1645 1371 108 685.75 87 8931 3581 7549 1865 143 1036 777 518 Note: Bold numbers in the ed Load Tables represent the governing load 7

Pultex SuperStructural Profiles I-Sections 15.4 x 76. x 6.3 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 5.3 I x 6.73E6 mm 4 S x 8.83E4 mm 3 Simply Supported with a Uniform Load Maximum L b.53 m A w 9.68E mm Wt. 3.6 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.5 15504 45618 41157 4911 664 15109 1.50 7739 31679 858 0759 18963 143 948 1.75 4338 375 0999 17794 15099 158 9437 691.00 648 1780 16077 15569 10480 8733 6550 4367.5 174 14080 1703 13839 1130 7547 689 4717 3145.50 1181 11405 1089 1456 8405 5603 4669 350 335.75 843 945 8504 1133 640 468 3557 668 1778 3.00 6 790 7145 10380 4984 333 769 077 1384 3.5 47 6748 6088 9581 3953 635 196 1647 1098 3.50 366 5819 550 8897 3186 14 1770 137 885 3.75 90 5069 4573 8304 604 1736 1447 1085 73 Note: Bold numbers in the ed Load Tables represent the governing load 8

Pultex SuperStructural Profiles I-Sections 15.4 x 76. x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 567.6 I x 9.55E6 mm 4 S x 1.5E5 mm 3 Simply Supported with a Uniform Load Maximum L b.53 m A w 1.45E3 mm Wt. 4.8 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.50 13098 101033 40513 31139 7176 038 13588 1.75 7543 748 9764 6690 1586 17988 13491 8994.00 47 56831 788 3354 436 14957 1464 9348 63.5 3147 44904 18006 0759 16137 10758 8965 674 448.50 01 3637 14585 18683 11970 7980 6650 4988 335.75 1600 30059 1053 16985 9111 6074 506 3796 531 3.00 100 558 1018 15569 7089 476 3938 954 1969 3.5 94 15 8630 1437 560 3747 31 34 1561 3.50 77 18557 7441 13345 458 3019 516 1887 158 3.75 58 16165 648 1456 3700 467 056 154 108 4.00 474 1408 5697 11677 306 041 1701 176 851 4.5 391 1585 5047 10990 56 1708 143 1067 71 4.50 36 116 4501 10380 164 1443 10 90 601 Note: Bold numbers in the ed Load Tables represent the governing load 9

Pultex SuperStructural Profiles I-Sections 03. x 101.6 x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.9 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 319.3 I x.36e7 mm 4 S x.3e5 mm 3 Simply Supported with a Uniform Load Maximum L b.76 m A w 1.93E3 mm Wt. 6.50 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360 1.75 197 77495 5543 35587 9765 19843.00 1199 5933 496 31139 8131 1098 14066.5 7699 46880 33419 7679 469 0577 1543 1088.50 530 37973 7069 4911 18551 15459 11594 779.75 370 3138 371 646 1390 1460 11883 891 594 3.00 711 6370 18798 0759 16771 11181 9317 6988 4659 3.5 04 469 16017 1916 13377 8918 743 5574 3716 3.50 1575 19374 13811 17794 1083 71 6018 4513 3009 3.75 140 16877 1031 16607 8888 595 4938 3703 469 4.00 994 14833 10574 15569 7379 490 4100 3075 050 4.5 809 13139 9367 14654 6191 418 3440 580 170 4.50 667 1170 8355 13839 544 3496 913 185 1457 4.75 556 10519 7498 13111 4479 986 488 1866 144 5.00 469 9493 6767 1456 3855 570 14 1606 1071 5.5 399 8611 6138 1186 3341 8 1856 139 98 5.50 343 7846 5593 1133 915 1943 1619 114 810 5.75 96 7178 5117 10831 557 1705 141 1066 710 Note: Bold numbers in the ed Load Tables represent the governing load 30

Pultex SuperStructural Profiles I-Sections 03. x 101.6 x 1.7 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.9 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 56.7 I x 3.0E7 mm 4 S x.97e5 mm 3 Simply Supported with a Uniform Load Maximum L b.76 m A w.58e3 mm Wt. 8.57 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360.00 17098 13363 54048 41518 35495 661 17748.5 111 105579 4704 36905 31087 5906 1949 1953.50 773 85519 34591 3315 3315 1949 1457 9715.75 5551 70677 8587 30195 6848 17899 14916 11187 7458 3.00 4118 59388 401 7679 108 14019 1168 876 5841 3.5 3139 50603 0468 5550 16759 11173 9311 6983 4655 3.50 448 4363 17648 375 13561 9041 7534 5650 3767 3.75 1946 38008 15374 143 1111 7414 6179 4634 3089 4.00 1573 33406 1351 0759 99 6153 517 3845 564 4.5 191 9591 11969 19538 7740 5160 4300 35 150 4.50 107 6395 10676 18453 6553 4369 3641 731 180 4.75 900 3689 958 17481 5596 3731 3109 33 1554 5.00 764 1380 8648 16607 4815 310 675 006 1338 5.5 653 1939 7844 15817 4173 78 318 1739 1159 5.50 564 17669 7147 15098 3639 46 0 1516 1011 5.75 490 16166 6539 14441 319 18 1774 1330 887 6.00 48 14847 6005 13839 816 1877 1564 1173 78 6.5 377 13683 5534 1386 496 1664 1387 1040 693 6.50 333 1651 5117 1775 148 135 96 617 Note: Bold numbers in the ed Load Tables represent the governing load 31

Pultex SuperStructural Profiles I-Sections 54 x 17 x 9.5 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 7.5 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 04.3 I x 4.73E7 mm 4 S x 3.7E5 mm 3 Simply Supported with a Uniform Load Maximum L b.91 m A w.4e3 mm Wt. 8.17 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360.50 1136 389 43353 31139 870 157 14351.75 7908 3167 3589 8308 6777 314 16735 11157 3.00 5696 709 30106 5949 1185 17654 1341 887 3.5 4 3031 5653 3953 170 14185 10639 7093 3.50 307 19858 119 4 13867 11556 8667 5778 3.75 488 1799 1968 0759 1715 11435 959 7147 4765 4.00 1966 1504 16935 1946 14300 9533 7944 5958 397 4.5 1578 13468 15001 18317 1040 807 6689 5017 3344 4.50 185 1013 13380 1799 107 6818 568 461 841 4.75 1060 1078 1009 16389 8758 5839 4866 3649 433 5.00 884 9730 10838 15569 7555 5036 4197 3148 099 5.5 745 886 9831 1488 6561 4374 3645 734 18 5.50 633 804 8957 14154 573 38 3185 388 159 5.75 54 7358 8195 13539 5037 3358 798 099 1399 6.00 468 6757 757 1974 4449 966 47 1854 136 6.5 407 67 6936 1456 3948 63 194 1645 1097 6.50 356 5758 6413 11976 350 347 1956 1467 978 6.75 314 5339 5947 11533 3151 101 1751 1313 875 7.00 77 4965 5530 1111 83 1888 1573 1180 787 7.5 47 468 5155 10738 554 1703 1419 1064 709 7.50 0 435 4817 10380 311 1541 184 963 64 Note: Bold numbers in the ed Load Tables represent the governing load 3

Pultex SuperStructural Profiles I-Sections 54 x 17 x 1.7 Ultimate In-Plane Shear Strength (MPa) 48.3 Simply Supported beam with Uniform 1500/155/165 Series Ultimate Flexural Strength (MPa) 7.6 Loads at various L/D ratios E 6.9 GPa G 3.4 GPa Ultimate Local Buckling Strength (MPa) 360.1 I x 6.10E7 mm 4 S x 4.80E5 mm 3 Simply Supported with a Uniform Load Maximum L b 1.07 m A w 3.E3 mm Wt. 10.81 kg/lm Laterally Supported beams L/D ratio load, laterally unsupported beam global buckling.5x load, local compression buckling.5x Safety load, flexural.5x Safety load, In-plane shear of the web 3x 100 150 180 40 360.50 1588 8847 55914 41518 36495 7371 1847.75 11135 73117 4610 37744 3399 836 145 14163 3.00 8105 61439 3889 34599 6858 38 16786 11191 3.5 6071 5350 33085 31937 1558 17965 13474 8983 3.50 4658 45139 857 9656 6319 17546 146 10966 7311 3.75 3649 3931 4851 7679 1688 14459 1049 9037 604 4.00 910 34559 1841 5949 18070 1047 10039 759 500 4.5 358 30613 19347 443 1506 10138 8448 6336 44 4.50 1936 7306 1757 3066 191 8608 7173 5380 3587 4.75 1610 4507 15489 185 1105 7368 6140 4605 3070 5.00 1353 118 13978 0759 9531 6354 595 3971 647 5.5 1148 006 1679 19771 874 5516 4597 3448 98 5.50 98 1879 1155 1887 78 4819 4015 301 008 5.75 847 1674 10570 18051 6350 433 358 646 1764 6.00 736 15360 9707 1799 5607 3738 3115 336 1558 6.5 643 14155 8946 16607 4976 3317 764 073 138 6.50 566 13088 871 15969 4435 957 464 1848 13 6.75 500 1136 7670 15377 3970 646 05 1654 1103 7.00 445 1185 713 1488 3567 378 198 1486 991 7.5 397 1050 6648 14317 317 144 1787 1340 893 7.50 356 9830 613 13839 911 1940 1617 113 808 7.75 30 906 5818 13393 64 1761 1468 1101 734 8.00 89 8640 5460 1974 405 1604 1336 100 668 Note: Bold numbers in the ed Load Tables represent the governing load 33