EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

Size: px
Start display at page:

Download "EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES"

Transcription

1 EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic of China Chun-Ho Hua Lecturer Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic of China ABSTRACT. Due to the use of computer technique and the use of high strength material. The span lengths of cable-stayed bridges have been increased. Compared with continuous and suspension bridges, cable-stayed bridge deck has subjected to much stronger axial force caused by the horizontal component of cable reactions. The axial forces make the geometric nonlinearity for the bridges. Cable-stayed bridge is supported by cables instead of internal piers. Therefore, the prestress of the cable, inclined angle between the cable and the bridge's deck as well as the cross section areas of the cables are the most important features for this type of structure. With various number of cables, the cablestayed bridges may have different prestress, inclined angles and the cable cross section areas. The stiffness of the bridge deck may be changed due to the axial forces. In this paper, the three dimensional finite element model of the bridge having the similar geometry with Quincy Bayview Bridge has been built. The modal analysis has been carried out by using different number of cables. The natural frequencies and their corresponding mode shapes are found and compared with those obtained from ambient test. The important effects on the number of cables have been drawn. The numerical results have been presented in tabular and graphical forms. Keywords: Cable-Stayed Bridge, Cable, Modal Analysis NOMENCLATURE M C K U U U F Mass Matrix Damping Matrix Stiffness Matrix Nodal Displacement Vector Nodal Velocity Vector Nodal Acceleration Vector External Force Vector 1. INTRODUCTION Cable-stayed bridges have been more interesting in the recent years due to increasing span length and their aesthetics. Cable-stayed bridges have subjected to strong axial force due to thecable reactions compared with those of suspensions and conventional continuous bridges. In order to reduce the cable tension and the axial force acting on the bridge deck, Agrawal 1 proposed that the cable tension can be reduced rapidly by using more number of cables. In the field of dynamic analysis such as aerodynamic analysis due to wind loading, transient dynamic analysis due to traffic loading and the bridge subjected to seismic loading, these analyses are getting important for this type of bridge. No matter what kind of dynamic analysis is ap- 1374

2 plied, the natural frequency of the bridge is necessary to be studied. In this paper, cable-stayed bridges having the geometry similar to a realistic cable-stayed bridge supported by different number of cables are analyzed. This type of cablestayed bridges has been investigated 2 ' 3 ' 4 ' 5 by finite element method and ambient test 6. The natural frequencies and their corresponding mode shapes are found and presented in tabular and graphical forms. 2. PROBLEM IDEALIZATION In order to effectively model and solve the problem, the following idealizations are made: Members were initially straight and piecewise prismatic. The material behavior was linearly elastic and the moduli of elasticity E in tension and compression are equal. The effects of residual stresses was negligibly small. Bayview Bridge crossing Mississippi River is studied in this paper. Quincy Bayview Bridge is designed 7 in 1983 and completed in The bridge has three spans. It consists of a main span of 900 ft and two equal side spans of 440 ft for total span length of 1780 ft. The structure is described as the following sections; 3.1 Cables The Quincy Bayview Bridge has 25 different cross section areas of 56 cables ranging from in 2 to in 2 constructed of 0.25 in diameter wires with an ultimate strength of 240 psi. The inclined angles between the deck and the cables are different ranging from 38 to The cables are 7-wire cables. Twenty-eight of them support the main span and 14 of them support each side span. The cables are connected at the bottom flange of the main girder. The first interval from the supports is 62 ft. The other intervals on the side span are 63 ft and the interval on main span is 60 ft. The cables are attached to the pylons at 9 ft intervals beginning at 6 ft from the top of the pylon. The cables have the The cable element is a straight, tension-only same cross section areas which are symmetric in element with uniform properties from end to the longitudinal direction. end. The modus of elasticity of the steel and cable is 30 x 10 6 psi, and the poisson's ratio, v, is 0.3 and the unit weight is 490 lb/ft 3. The modulus of elasticity of concrete is equal to 4.47 x 10 6 psi, Poisson's ratio, v, is 0.25 and the unite weight is 150 lb/ft 3. The end supports are attached to the ground with a pinned connection. The pylon and the deck are also connected with a pinned connection and the bridge deck remains continuous. 3.2 Bridge Deck Figure 1 represents the typical cross section of the deck. The deck consists of a nine inch precast slab with two precast traffic barriers, five longitudinal steel stringers with equal spacing of 7.25 ft and floor beams transverse the main girder with spacing from 17 ft to 24 ft which transfers stringer loads to the main girder. 3. STRUCTURAL DESCRIPTION In order to investigate the realistic bridge, a bridge having similar geometry to that of Quincy Figure 1 The Typical Cross Section of the Bridge Deck 1375

3 The deck is supported by anchor piers at each end nite element model used in this paper is referred with pinned connections. The piers are concrete to Hua's model. The number of supporting of columns whose bases are fixed at the bed rock cables are modified based on the model. under the water level. 4. SOLUTION PROCEDURES 3.3 Pylons There are two pylons of Quincy Bayview Bridge. Each of the two pylons consists of two concrete columns and two struts. The upper strut connects with the two columns at the level of 78 ft from the top of the pylon and the lower strut supports the bridge deck. The modal analysis is used to extract the natural frequencies and mode shapes of a linear elastic structure. In the modal analysis, free, undamped vibrations are assumed, i.e. F=O and C=O. The governing equation is expressed as; MU+GU+KU=F(x,t) (1) 3.4 Boundary Conditions The boundary of the bases of the pylons are constrained in all of the translation and rotation directions. The both end of the side spans are con::;trained in the vertical direction. It is considered by pinned connection. The bridge deck and the lower strut::; of the pylons are coupling together in longitudinal and vertical direction. All of the boundary condition::; considered are made in the finite element model of the bridge. 3.5 Finite Element Model The numerical analysis i::; feasible to solve this type of structure. The structure is modeled as a three dimensional finite element model. The cables are discretized a::; a three dimensional tension-only truss element. Each node of the element has three degree of freedom, i.e. translation in x-, y- and z-direction. As the truss element subjected to compre::>sive forces, its modulus of elasticity, E, will be considered as it is approaching to zero. The pylons and the stringers are considered as three dimensional beam elements. Each node of the beam element has six degrees of freedom, i.e., translation in x-, y- and z-direction as well as the rotation about x-, y and z-direction. The bridge deck and the composite girder were modeled as a plate element. Each node of the plate element also has six degrees of freedom which are the same as those of beam element. Hua 2 et. al. provided the global model of this cable-stayed bridge. This fi- Substituting F=O and C=O, the Equation (1) becomes; MU +KU = 0 (2) For linear system, free vibrations will be harmonic of the form, U = U 0 coswt (3) Substituting U and U in the governing equation gives, (4) For non-trial solution, [K - w 2 M] must be zero; the determinant of IK-.\MI = 0 (5) where >. = w 2. If n is the order of the matrices, then the equation results in a polynomial of order n, which should have n roots; wi, w,, w. This is an eigenvalue problem, whose solution are the eigenvalues, >.i, and the corresponding eigenvectors Ui. The eigenvalues represent the natural frequencies of the system ( wi = v:\) and the eigenvectors represent their corresponding mode shapes. 5. NUMERICAL RESULTS Based on the finite element model and the solution procedure, the numerical results were found. Figure 2 represents the axial force due to the cable reactions acting on the bridge deck. The horizontal axis of the figure represents the location along the bridge deck. The vertical axis of 1376

4 the figure represents the normalized axial force. The unity is considered as the horizontal component of the anchor cable reaction of the bridge supported by 56 cables (the original bridge). The center-dash line represents the axial forces acting on the original bridge supported by 56 cables. The solid line represents the axial force acting on the bridge deck supported by 168 cables. The dash line represents the axial forces acting on the bridge supported by 280 cables. Figure 2 indicates that the original bridge has the strongest axial forces acting on the main span bridge deck < " 6-5 " 0. "' " 3 E "'2 " c z' Cable Nurnb<"r bb-, Bridge Deck Figure 2 The Axial force Acting on the Bridge Deck for Various Number of Cables In side spans, as the number of cable increased, the axial force acting on the bridge deck is increasing. As the cable number of 280, the axial force in side span is greater than that of main span created by the original bridge's supporting cables. The bridge deck around the pylon is always subjected to stronger compressive axial forces. On the other hand the midpoint of main span is always subjected to tensile axial forces. It is hard to conclude that the bridge is dominated by the compressive axial force of by the tensile axial forces. Even though the axial force changes the natural frequency of the structural system, it is not easy to find the location dominating the bridge behavior. Table 1 represents the frequencies of the bridges supported by various number of cables. As the number of cables increased the natural frequency is also increased. It means that the structural stiffness is enhanced. Based on Figure 2, as the number of cables increased, the bridge deck around the pylon is subjected to stronger axial force than that of the original bridge. On the other hand, the bridge deck at midpoint of the main span is subjected to stronger tensile axial force than those of the original bridge. Table 1 The Frequencies of the Cable-Stayed Bridges Having Various Numbers of Supporting Cables Number of Cables Mode Number Freq. Mode Freq. Mode Freq. Mode (Hz) Shape (Hz) Shape (Hz) Shape F L F L F L F F F F T p T T p F T T F: Flexural Mode L: Lateral Mode T: Torsional Mode P: Pylon Buckling Mode 1377

5 Therefore, the natural frequency of this type of bridge will be increased as the number of cable increased. Regarding the mode shape corresponding to the natural frequency, the first flexural mode of the bridge supporting by 168 cables is missing. The first mode of the original bridge is flexural but this mode is missing and the lateral mode is instead for the bridge supported by 168 cables. The corresponding frequencies of these two modes have an excellent agreement. Compared with the second flexural mode of the original bridge and the first flexural mode of the bridge supporting by 280 cables, the frequencies have also a good agreement. The difference between these two modes is less than 5%. If the number of cable increases, the cables take more load. Not only the bridge deck takes care of more loads but also the pylons take care of more loads. The pylons are only subjected to compression. The stiffness of the pylon will be reduced by compressive cable reactions. Table 1 indicates that the fifth and sixth modes are pylon flexural even though the moment of inertia of the pylon is as 94 times as much as that of the bridge deck. In order to present the mode shape of the natural vibration, Figure 3 shows the lateral mode of the bridge supported by 168 cables. The free vibration modes of the original bridge are referred to Hua's et. al. paper. and 5, respectively. The fourth and sixth modes, i.e. the first and the second torsional modes, are presented in Figures 6, 8, respectively. The fifth mode, i.e. the first pylon buckling mode, is represented in Figure 7. Figure 4. The First Flexural Mode of the Top View Figure 3. The First Lateral Mode of the Bridge Supported by 168 Cables. The second and third modes, i.e. the first and second flexural modes, are presented in Figures 4 Figure 5. The Second Flexural Mode of the If it is disregarding the agreement of mode shape, the natural frequencies is only considered. Figure 9 represents the comparison of the first three frequencies for the bridges supported by 56, 168 and 280 cables. The horizontal axis of Figure 9 represents the mode number of the bridge. The vertical axis represents the corresponding frequencies of the first three modes in Hz. 1378

6 0.9 r-.-56al-.1-ce-s cab: I L , I 0.8 Figure 6. The First Torsional Mode of the Figure 7. The First Pylon Flexural Mode of the,.-... N '-" u z a first mode second mode third mode MODE NUMBER Figure 9. The Comparison of Natural Frequencies of the First Three Modes of the Bridge Having Various umber of Cables. As discussed in the previous, if the number of cables is increased. the frequencies are also m creased but the increments are not linear. 6. CONCLUSIONS Based on the previous work, the important conclusions can be drawn as the following: Figure 8. The Second Torsional Mode of the For realistic bridges. as the supporting cables increased. the bridge deck around the pylon subjected to stronger compressive axial force than that of the bridge supported by less number of cables. The axial forces will reduce the stiffness of the bridge deck. On the other hand, the midpoint of the main span subjected to stronger tensile force which enhances the stiffness of bridge deck. In global analysis, it is hard to determine that the location subjected to compressive axial force or the location subjected to tensile forces will dominate the structural behavior. 1379

7 As tht> number of cables increased, the pylon will subjected to stronger compressive axial force. It will also reduce the stiffness of the pylon. For the global analysis, as the number of cables increased, the free vibration frequency will increase for this type of bridge. 8. REFERENCES [1] T.P. Agrawal," Cable-Stayed Bridges- Parametric Study", Journal of Bridge Engineering, Vol.2, No.2, 1997, pp [2] Chun-Ho Hua and Yang-Cheng Wang, "Modeling of a Cable-Stayed Bridge for Dynamic Analysis", Proceeding of 12nd International Modal Analysis Conference, Vol.II, pp [3] John C. Wilson and Wayne Gravelle," Modelling of a Cable-Stayed Bridge for Dynamic Analysis", Earthquake Engineering and Structural Dynamics, Vol. 20, pp , [4] Ermopoulos, J. CH., Vlahinos, A.S., and Wang, Yang-Cheng "Stability Analysis of Cable-Stayed Bridges", International Journal of Computers & Structures, Vol. 22 No. 12, pp June [5] Vlahinos, A.S. and Wang, Yang-Cheng "Nonlinear Dynamic Behavior of Cable Stayed Bridges", in the Proceedings of the 12th International Modal Analysis Conference, Vol.II, pp.l , [6] John C. Wilson and Tao Lin," Ambient. Vibration Measurements on a Cable-St.ayeG. Bridge", Earthquake Engineering and Structural Dynamics, Vol. 20, pp , [7] Mojeski and Master, "Structural Drawings of Quincy Bayview Bridge", Mojeski and Master Consulting Engineering, Marrisburg, Pennsylvania,

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

How To Write An Analysis System For Bridge Test

How To Write An Analysis System For Bridge Test Study of Analysis System for Bridge Test Chen Ke, Lu Jian-Ming, Research Institute of Highway, 100088, Beijing, China (chenkezi@163.com, lujianming@263.net) Summary Analysis System for Bridge Test (Chinese

More information

Solved with COMSOL Multiphysics 4.3

Solved with COMSOL Multiphysics 4.3 Vibrating String Introduction In the following example you compute the natural frequencies of a pre-tensioned string using the 2D Truss interface. This is an example of stress stiffening ; in fact the

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE A.Rito Proponte, Lda, Lisbon, Portugal J. Appleton A2P Consult, Lda, Lisbon, Portugal ABSTRACT: The Figueira da Foz Bridge includes a 405 m long cable stayed

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Tower Cross Arm Numerical Analysis

Tower Cross Arm Numerical Analysis Chapter 7 Tower Cross Arm Numerical Analysis In this section the structural analysis of the test tower cross arm is done in Prokon and compared to a full finite element analysis using Ansys. This is done

More information

NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES

NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1552 NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES Charles B. CHADWELL

More information

Analysis of seismic response control for long-span cable-stayed. bridge under traveling wave input *

Analysis of seismic response control for long-span cable-stayed. bridge under traveling wave input * Analysis of seismic response control for long-span cable-stayed bridge under traveling wave input * QI ing-jun, LI iao-jun 2 ( Associate Professor, School of Civil Engineering, Shandong Jianzhu University,

More information

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Spon Press PRESTRESSED CONCRETE DESIGN EUROCODES. University of Glasgow. Department of Civil Engineering. Prabhakara Bhatt LONDON AND NEW YORK

Spon Press PRESTRESSED CONCRETE DESIGN EUROCODES. University of Glasgow. Department of Civil Engineering. Prabhakara Bhatt LONDON AND NEW YORK PRESTRESSED CONCRETE DESIGN TO EUROCODES Prabhakara Bhatt Department of Civil Engineering University of Glasgow Spon Press an imprint of Taytor & Francfe LONDON AND NEW YORK CONTENTS Preface xix Basic

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE ÖZDEMİR Y. I, AYVAZ Y. Posta Adresi: Department of Civil Engineering, Karadeniz Technical University, 68 Trabzon, TURKEY E-posta: yaprakozdemir@hotmail.com

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width

Numerical Analysis of the Moving Formwork Bracket Stress during Construction of a Curved Continuous Box Girder Bridge with Variable Width Modern Applied Science; Vol. 9, No. 6; 2015 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Numerical Analysis of the Moving Formwork Bracket Stress during Construction

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Roberto Gómez, Raul Sánchez-García, J.A. Escobar and Luis M. Arenas-García Abstract In this paper we study the

More information

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

More information

New Troja Bridge in Prague Concept and Structural Analysis of Steel Parts

New Troja Bridge in Prague Concept and Structural Analysis of Steel Parts Available online at www.sciencedirect.com Procedia Engineering 00 (2012) 000 000 www.elsevier.com/locate/procedia Steel Structures and Bridges 2012 New Troja Bridge in Prague Concept and Structural Analysis

More information

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated. Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

Statics of Structural Supports

Statics of Structural Supports Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

Bridging Your Innovations to Realities

Bridging Your Innovations to Realities Graphic User Interface Graphic User Interface Modeling Features Bridge Applications Segmental Bridges Cable Bridges Analysis Features Result Evaluation Design Features 02 07 13 17 28 34 43 48 2 User Interface

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Structural Performance of Highway Bridges under Given Foundation Settlements

Structural Performance of Highway Bridges under Given Foundation Settlements ASEE 2014 Zone I Conference, April 3-5, 2014, University of Bridgeport, Bridgeport, CT, USA. Structural Performance of Highway Bridges under Given Foundation Settlements Zhan Su*; Qian Wang, PhD, PE, Assistant

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

Vehicle-Bridge Interaction Dynamics

Vehicle-Bridge Interaction Dynamics Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways Y. B. Yang National Taiwan University, Taiwan J. D. Yau Tamkang University, Taiwan Y. S. Wu Sinotech Engineering Consultants,

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

Figure 5-11. Test set-up

Figure 5-11. Test set-up 5.5. Load Procedure A uniform load configuration was used for the load tests. An air bag, placed on the top surface of the slab, was used for this purpose, and the load was applied by gradually increasing

More information

Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift

Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Performance-based Evaluation of the Seismic Response of Bridges with Foundations Designed to Uplift Marios Panagiotou Assistant Professor, University of California, Berkeley Acknowledgments Pacific Earthquake

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS

CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS 1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the

More information

A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE

A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE 81 Raymond W. Wolfe Hany J. Farran A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE Civil Engineering Civil Engineering Given the

More information

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6)

AASHTOWare Bridge Design and Rating Training. STL8 Single Span Steel 3D Example (BrDR 6.6) AASHTOWare Bridge Design and Rating Training STL8 Single Span Steel 3D Example (BrDR 6.6) Last Modified: 4/28/2015 STL8-1 AASHTOWare BrDR 6.5 AASHTOWare Bridge Design and Rating Training STL8 Single Span

More information

Reinforced Concrete Slab Design Using the Empirical Method

Reinforced Concrete Slab Design Using the Empirical Method Reinforced Concrete Slab Design Using the Empirical Method BridgeSight Solutions for the AASHTO LRFD Bridge Design Specifications BridgeSight Software TM Creators of effective and reliable solutions for

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

More information

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.

Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3. Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Weight Measurement Technology

Weight Measurement Technology Kistler-Morse (KM) introduced bolt-on weight measuring systems three decades ago. These devices featured Walter Kistler s invention, the Microcell. Over the years, many improvements were made to the Microcell

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Structural Analysis of the Sutong Bridge

Structural Analysis of the Sutong Bridge Structural Analysis of the Sutong Bridge Dorian Janjic VP Bridge Engineering Software Bentley Systems, Incorporated 685 Stockton Drive Exton, PA 19341 USA www.bentley.com/brim Summary The Sutong cable-stayed

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Safe & Sound Bridge Terminology

Safe & Sound Bridge Terminology Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

FOOTING DESIGN EXAMPLE

FOOTING DESIGN EXAMPLE County: Any Design: BRG Date: 10/007 Hwy: Any Ck Dsn: BRG Date: 10/007 FOOTING DESIGN EXAMPLE Design: Based on AASHTO LRFD 007 Specifications, TxDOT LRFD Bridge Design Manual, and TxDOT Project 0-4371

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections. Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

Overhang Bracket Loading. Deck Issues: Design Perspective

Overhang Bracket Loading. Deck Issues: Design Perspective Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

Introduction. Background

Introduction. Background Introduction Welcome to CFS, the comprehensive cold-formed steel component design software. The endless variety of shapes and sizes of cold-formed steel members, combined with the complex failure modes

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam

Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge

More information

Magnetic / Gravity Loading Analysis

Magnetic / Gravity Loading Analysis Magnetic / Gravity Loading Analysis 2 ELEMENTS JUL 7 2006 ELEMENTS MAT NUM 2:5:0 MAT NUM POR Design JUL 7 2006 2:5:0 L2 L L q Assumed Location of Gap Encoder(s) ELEMENTS MAT NUM JUL 7 2006 2:5:0 Materials:

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K.

SMIP05 Seminar Proceedings VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE. Robert K. VISUALIZATION OF NONLINEAR SEISMIC BEHAVIOR OF THE INTERSTATE 5/14 NORTH CONNECTOR BRIDGE Robert K. Dowell Department of Civil and Environmental Engineering San Diego State University Abstract This paper

More information

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses

STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses STEEL BUILDIGS I EUROPE Single-Storey Steel Buildings Part 5: Detailed Design of Trusses Single-Storey Steel Buildings Part 5: Detailed Design of Trusses 5 - ii Part 5: Detailed Design of Trusses FOREWORD

More information

Dynamics of Offshore Wind Turbines

Dynamics of Offshore Wind Turbines Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 19-24, 2011 Copyright 2011 by the International Society of Offshore and Polar Engineers

More information

S03: Tier 1 Assessment of Shear in Concrete Short Span Bridges to AS 5100 and AS 3600

S03: Tier 1 Assessment of Shear in Concrete Short Span Bridges to AS 5100 and AS 3600 Annexure S03: Tier 1 Assessment of Shear in Concrete Short Span Bridges to AS 5100 and AS 3600 April 2014 Copyright http://creativecommons.org/licenses/by/3.0/au/ State of Queensland (Department of Transport

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

DISTRIBUTION OF LOADSON PILE GROUPS

DISTRIBUTION OF LOADSON PILE GROUPS C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 7-1. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned

More information

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.

PRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim. CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental

More information

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA 1 REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA Verners Straupe, M.sc.eng., Rudolfs Gruberts, dipl. eng. JS Celuprojekts, Murjanu St. 7a, Riga, LV 1024, Latvia e-mail:

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Finite Element Model Calibration of a Full Scale Bridge Using Measured Frequency Response Functions

Finite Element Model Calibration of a Full Scale Bridge Using Measured Frequency Response Functions Finite Element Model Calibration of a Full Scale Bridge Using Measured Frequency Response Functions Masoud Sanayei 1 and Jesse D. Sipple 2 1 Professor, Department of Civil and Environmental Engineering,

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering

More information

Structural Analysis of the Sutong Bridge Dorian Janjic

Structural Analysis of the Sutong Bridge Dorian Janjic Structural Analysis of the Sutong Bridge Dorian Janjic Summary The SuTong cable-stayed bridge is the Primary Fairway Bridge of the Suzhou-Nantong Yangtze River Bridge Project. It will be the most important

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -) Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

More information

Deflections. Question: What are Structural Deflections?

Deflections. Question: What are Structural Deflections? Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

More information

ARCH 331 Structural Glossary S2014abn. Structural Glossary

ARCH 331 Structural Glossary S2014abn. Structural Glossary Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

A comparative study of two models for the seismic analysis of buildings

A comparative study of two models for the seismic analysis of buildings INGENIERÍA E INVESTIGACIÓN VOL. No., DECEMBER 0 (-) A comparative study of two models for the seismic analysis of buildings Estudio comparativo de dos modelos para análisis sísmico de edificios A. Luévanos

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

Canadian Standards Association

Canadian Standards Association S6S1-10 10.10.2.2 Laterally supported members When continuous lateral support is provided to the compression flange of a member subjected to bending about its major axis, the factored moment resistance,

More information