Physics Notes for Class 12 Chapter 13 Nuclei

Similar documents
Nuclear Physics. Nuclear Physics comprises the study of:

Objectives 404 CHAPTER 9 RADIATION

Nuclear Physics and Radioactivity

Masses in Atomic Units

1. In the general symbol cleus, which of the three letters. 2. What is the mass number of an alpha particle?

Basic Nuclear Concepts

[2] At the time of purchase of a Strontium-90 source, the activity is Bq.

Structure and Properties of Atoms

Basics of Nuclear Physics and Fission

Main properties of atoms and nucleus

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

2 ATOMIC SYSTEMATICS AND NUCLEAR STRUCTURE

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Introduction to Nuclear Physics

22.1 Nuclear Reactions

Physics 1104 Midterm 2 Review: Solutions

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

PHYA5/1. General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

Radioactivity & Particles

NOTES ON The Structure of the Atom

NUCLEI. Chapter Thirteen. Physics 13.1 INTRODUCTION 13.2 ATOMIC MASSES AND COMPOSITION OF NUCLEUS

3 Atomic Structure 15

Plutonium vs. Uranium: The Road Less Traveled. In a world where nuclear proliferation may no longer be held back by the guise of antiproliferation

Chapter 18: The Structure of the Atom

Chapter Five: Atomic Theory and Structure

For convenience, we may consider an atom in two parts: the nucleus and the electrons.

Unit 1 Practice Test. Matching

MCQ - ENERGY and CLIMATE

Solar Energy Production

MASS DEFECT AND BINDING ENERGY

PHYA5/1. General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

Lesson 6: Earth and the Moon

Radioactivity III: Measurement of Half Life.

Chapter NP-1. Nuclear Physics. Atomic Nature of Matter TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 PROPERTIES OF SUBSTANCES

(b) find the force of repulsion between a proton at the surface of a C nucleus and the remaining five protons.

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Particle Soup: Big Bang Nucleosynthesis

Nuclear Energy: Nuclear Energy

thermal history of the universe and big bang nucleosynthesis

Instructors Guide: Atoms and Their Isotopes

Nuclear ZPE Tapping. Horace Heffner May 2007

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Chapter 17: Radioactivity and Nuclear Chemistry

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

WHERE DID ALL THE ELEMENTS COME FROM??

Lecture 09 Nuclear Physics Part 1

Modern Physics 9p ECTS

ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( an atom )

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

CHEM 1411 Chapter 5 Homework Answers

The Physics of Energy sources Nuclear Reactor Practicalities

Lesson 43: Alpha, Beta, & Gamma Decay

2 The Structure of Atoms

Radiation and the Universe Higher Exam revision questions and answers

Decay of Radioactivity. Radioactive decay. The Math of Radioactive decay. Robert Miyaoka, PhD. Radioactive decay:

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Atoms, Ions and Molecules The Building Blocks of Matter

GCE Physics A. Mark Scheme for June Unit G485: Fields, Particles and Frontiers of Physics. Advanced GCE. Oxford Cambridge and RSA Examinations

47374_04_p25-32.qxd 2/9/07 7:50 AM Page Atoms and Elements

Chem 1A Exam 2 Review Problems

( + and - ) ( - and - ) ( + and + ) Atoms are mostly empty space. = the # of protons in the nucleus. = the # of protons in the nucleus

Nuclear Fusion and Radiation

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

Environmental Health and Safety Radiation Safety. Module 1. Radiation Safety Fundamentals

EXPERIMENT 4 The Periodic Table - Atoms and Elements

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Atomic Theory Part 1

HOW DOES A NUCLEAR POWER PLANT WORK?

Atomic Structure Chapter 5 Assignment & Problem Set

Level 3 Achievement Scale

EARLY ATOMIC THEORY AND STRUCTURE

IONISATION ENERGY CONTENTS

Science Tutorial TEK 6.9C: Energy Forms & Conversions

Lecture 2 Macroscopic Interactions Neutron Interactions and Applications Spring 2010

Stellar Evolution: a Journey through the H-R Diagram

The Birth of the Universe Newcomer Academy High School Visualization One

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Daytona State College (Science 120, Page 1 of 39)

2, 8, 20, 28, 50, 82, 126.

The Existence of a Neutron

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

The Structure of the Atom

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Chapter Test B. Chapter: Measurements and Calculations

Multiple Choice Identify the choice that best completes the statement or answers the question.

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

CST Practice Test. Multiple Choice Questions

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

Homework #10 (749508)

Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Topic 3. Evidence for the Big Bang

The Physics of Energy sources Nuclear Fusion

History of the Atom & Atomic Theory

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

Transcription:

1 P a g e Physics Notes for Class 12 Chapter 13 Nuclei Nucleus The entire positive charge and nearly the entire mass of atom is concentrated in a very small space called the nucleus of an atom. The nucleus consists of protons and neutrons. They are called nucleons. Terms Related to Nucleus (i) Atomic Number The number of protons in the nucleus of an atom of the element is called atomic number (Z) of the element. (ii) Mass Number The total number of protons and neutrons present inside the nucleus of an atom of the element is called mass number (A) of the element. (iii) Nuclear Size The radius of the nucleus R A 1/3 R = R o A 1/3 where, R o = 1.1 * 10-15 m is an empirical constant. (iv) Nuclear Density Nuclear density is independent of mass number and therefore same for all nuclei. ρ = mass of nucleus / volume of nucleus ρ = 3m / 4π R 3 o where, m = average mass of a nucleon. (v) Atomic Mass Unit It is defined as 1 / 12th the mass of carbon nucleus. It is abbreviated as arnu and often denoted by u. Thus 1 amu = 1.992678 * 10-26 / 12 kg = 1.6 * 10-27 kg = 931 Me V Isotopes The atoms of an element having same atomic number but different mass numbers. are called isotopes. e.g., 1 H 1, 1 H 2, 1 H 3 are isotopes of hydrogen.

2 P a g e Isobars The atoms of different elements having same mass numbers but different atomic numbers, are called isobars. e.g., 1 H 3, 2 He 3 and 10 Na 22, 10 Ne 22 are isobars. Isotones The atoms of different elements having different atomic numbers and different mass numbers but having same number of neutrons, are called isotones. e.g., 1 H 3, 2 He 4 and 6 C 14, 8 O 16 are isobars. Isomers Atoms having the same mass number and the same atomic number but different radioactive properties are called isomers, Nuclear Force The force acting inside the nucleus or acting between nucleons is called nuclear force. Nuclear forces are the strongest forces in nature. It is a very short range attractive force. It is non-central. non-conservative force. It is neither gravitational nor electrostatic force. It is independent of charge. It is 100 times that of electrostatic force and 10 38 times that of gravitational force. According to the Yukawa, the nuclear force acts between the nucleon due to continuous exchange of meson particles. Mass Defect The difference between the sum of masses of all nucleons (M) mass of the nucleus (m) is called mass defect. Mass Defect (Δm) = M m = [Zm p + (A Z)m n m n ] Nuclear Binding Energy The minimum energy required to separate the nucleons up to an infinite distance from the nucleus, is called nuclear binding energy.

3 P a g e Nuclear binding energy per nucleon = Nuclear binding energy / Total number of nucleons Binding energy, E b = [Zm p + (A Z) m n m N ]c 2 Packing Fraction (P) p = (Exact nuclear mass) (Mass number) / Mass number = M A / M The larger the value of packing friction. greater is the stability of the nucleus. [The nuclei containing even number of protons and even number of neutrons are most stable. The nuclei containing odd number of protons and odd number of neutrons are most instable.] Radioactivity The phenomena of disintegration of heavy elements into comparatively lighter elements by the emission of radiations is called radioactivity. This phenomena was discovered by Henry Becquerel in 1896. Radiations Emitted by a Radioactive Element Three types of radiations emitted by radioactive elements (i) α-rays (ii) β-rays (iii) γ rays α-rays consists of α-particles, which are doubly ionised helium ion. β-rays are consist of fast moving electrons. γ rays are electromagnetic rays. [When an α particle is emitted by a nucleus its atomic number decreases by 2 and mass number decreases by 4. When a β -particle is emitted by a nucleus its atomic number is Increases by one and mass number remains unchanged.

4 P a g e When a γ particle is emitted by a nucleus its atomic number and mass number remain unchanged Radioactive Decay law The rate of disintegration of radioactive atoms at any instant is directly proportional to the number of radioactive atoms present in the sample at that instant. Rate of disintegration ( dn / dt) N dn / dt = λ N where λ is the decay constant. The number of atoms present undecayed in the sample at any instant N = N o e -λt where, N o is number of atoms at time t = 0 and N is number of atoms at time t. Half-life of a Radioactive Element The time is which the half number of atoms present initially in any sample decays, is called half-life (T) of that radioactive element. Relation between half-life and disintegration constant is given by T = log 2 e / λ = 0.6931 / λ Average Life or Mean Life(τ) Average life or mean life (τ) of a radioactive element is the ratio of total life time of all the atoms and total number of atoms present initially in the sample. Relation between average life and decay constant τ = 1 / λ Relation between half-life and average life τ = 1.44 T The number of atoms left undecayed after n half-lifes is given by N = N o (1 / 2) n = N o (1 / 2) t/t where, n = t / T, here t = total time. Activity of a Radioactive Element

5 P a g e The activity of a radioactive element is equal to its rate of disintegration. Activity R = ( dn / dt) Activity of the sample after time t, R = R o e -λt Its SI unit is Becquerel (Bq). Its other units are Curie and Rutherford. 1 Curie = 3.7 * 10 10 decay/s 1 Rutherford = 10 6 decay/s Nuclear Fission The process of the splitting of a heavy nucleus into two or more lighter nuclei is called nuclear fission. When a slow moving neutron strikes with a uranium nucleus ( 92 U 235 ), it splits into 56 Ba 141 and 36 Kr 92 along with three neutrons and a lot of energy. Nuclear Chain Reaction If the particle starting the nuclear fission reaction is produced as a product and further take part in the nuclear fission reaction, then a chain of fission reaction started, which is called nuclear chain reaction. Nuclear chain reaction are of two types (i) Controlled chain reaction (ii) Uncontrolled chain reaction Nuclear Reactor The main parts of a nuclear reactor are following

6 P a g e (i) Fuel Fissionable materials like 92 U 235, 92 U 238, 94 U 239 are used as fuel. (ii) Moderator Heavy water, graphite and beryllium oxide are used to slower down fast moving neutrons. (iii) Coolant The cold water, liquid oxygen, etc. are used to remove heat generated in the fission process. (iv) Control rods Cadmium or boron rods are good absorber of neutrons and therefore used to control the fission reaction. Atom bomb working is based on uncontrolled chain reaction. Nuclear Fusion The process of combining of two lighter nuclei to form one heavy nucleus, is called nuclear fusion. Three deuteron nuclei ( 1 H 2 ) fuse, 21.6 MeV is energy released and nucleus of helium ( 2 He 4 ) is formed. In this process, a large amount of energy is released.

7 P a g e Nuclear fusion takes place at very high temperature approximately about 10 7 K and at very high pressure 10 6 atmosphere. Hydrogen bomb is based on nuclear fusion. The source of Sun s energy is the nuclear fusion taking place at sun. Thermonuclear Energy The energy released during nuclear fusion is know as thermonuclear energy. Protons are needed for fusion while neutrons are needed for fission process.