Genetics. Mendel and Meiosis. DNA and Genes. Patterns of Heredity and Human Genetics. Genetic Technology

Similar documents
PRACTICE TEST QUESTIONS

Molecular Facts and Figures

Gene Finding CMSC 423

a. Ribosomal RNA rrna a type ofrna that combines with proteins to form Ribosomes on which polypeptide chains of proteins are assembled

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

Coding sequence the sequence of nucleotide bases on the DNA that are transcribed into RNA which are in turn translated into protein

Provincial Exam Questions. 9. Give one role of each of the following nucleic acids in the production of an enzyme.

Mutation. Mutation provides raw material to evolution. Different kinds of mutations have different effects

DNA, RNA, Protein synthesis, and Mutations. Chapters

Hands on Simulation of Mutation

RNA and Protein Synthesis

Molecular Genetics. RNA, Transcription, & Protein Synthesis

From DNA to Protein. Proteins. Chapter 13. Prokaryotes and Eukaryotes. The Path From Genes to Proteins. All proteins consist of polypeptide chains

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure enzymes control cell chemistry ( metabolism )

Structure and Function of DNA

( TUTORIAL. (July 2006)

13.2 Ribosomes & Protein Synthesis

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

Transcription and Translation of DNA

Name Class Date. Figure Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Protein Synthesis Simulation

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Thymine = orange Adenine = dark green Guanine = purple Cytosine = yellow Uracil = brown

Page 1. Name:

Genetics Module B, Anchor 3

DNA Bracelets

From DNA to Protein

Protein Synthesis. Page 41 Page 44 Page 47 Page 42 Page 45 Page 48 Page 43 Page 46 Page 49. Page 41. DNA RNA Protein. Vocabulary

Multiple Choice Write the letter that best answers the question or completes the statement on the line provided.

12.1 The Role of DNA in Heredity

UNIT (12) MOLECULES OF LIFE: NUCLEIC ACIDS

Concluding lesson. Student manual. What kind of protein are you? (Basic)

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Mutations and Genetic Variability. 1. What is occurring in the diagram below?

Hiding Data in DNA. 1 Introduction

1 Mutation and Genetic Change

Gene and Chromosome Mutation Worksheet (reference pgs in Modern Biology textbook)

Translation Study Guide

CCR Biology - Chapter 8 Practice Test - Summer 2012

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Protein Synthesis How Genes Become Constituent Molecules

Problem Set 3 KEY

Academic Nucleic Acids and Protein Synthesis Test

Insulin mrna to Protein Kit

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Chapter 11: Molecular Structure of DNA and RNA

ISTEP+: Biology I End-of-Course Assessment Released Items and Scoring Notes

The Steps. 1. Transcription. 2. Transferal. 3. Translation

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

Biological One-way Functions

Lecture 26: Overview of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) structure

Bio 102 Practice Problems Genetic Code and Mutation

Review Packet- Modern Genetics

Proteins and Nucleic Acids

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Nucleotides and Nucleic Acids

Sample Questions for Exam 3

The Molecules of Cells

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Replication Study Guide

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Shu-Ping Lin, Ph.D.

Basic Concepts of DNA, Proteins, Genes and Genomes

The sequence of bases on the mrna is a code that determines the sequence of amino acids in the polypeptide being synthesized:

Lab # 12: DNA and RNA

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

DNA. Discovery of the DNA double helix

RNA & Protein Synthesis

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

Chapter 17: From Gene to Protein

Translation. Translation: Assembly of polypeptides on a ribosome

BioBoot Camp Genetics

SEAC 2012 Medical Director Potpourri BANNER. WILLIAM PENN. YOUR COMPANY FOR LIFE

The Puzzle of Life A Lesson Plan for Life S cien ce Teach ers From: The G reat Lakes S cien ce C ent er, C lev elan d, OH

Chapter 6 DNA Replication

BCH401G Lecture 39 Andres

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

MCAS Biology. Review Packet

Genetics Test Biology I

Module 3 Questions. 7. Chemotaxis is an example of signal transduction. Explain, with the use of diagrams.

Control of Gene Expression

Problem Set 1 KEY

Biochemistry of Cells

Ribosomal Protein Synthesis

Lecture Series 7. From DNA to Protein. Genotype to Phenotype. Reading Assignments. A. Genes and the Synthesis of Polypeptides

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Respiration occurs in the mitochondria in cells.

How Cancer Begins???????? Chithra Manikandan Nov 2009

Name: Date: Period: DNA Unit: DNA Webquest

The Nucleus: DNA, Chromatin And Chromosomes

Chapter 5. The Structure and Function of Macromolecule s

How To Understand The Chemistry Of Organic Molecules

TRANSCRIPTION TRANSLATION - GENETIC CODE AND OUTLINE OF PROTEIN SYNTHESIS

Appendix C DNA Replication & Mitosis

To be able to describe polypeptide synthesis including transcription and splicing

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Biology Final Exam Study Guide: Semester 2

Modeling DNA Replication and Protein Synthesis

Complex multicellular organisms are produced by cells that switch genes on and off during development.

Transcription:

Genetics Mendel and Meiosis DNA and Genes Patterns of Heredity and Human Genetics Genetic Technology

Chapter 11 DNA and Genes 11.1: DNA: The Molecule of Heredity 11.1: Section Check 11.2: From DNA to Protein 11.2: Section Check 11.3: Genetic Changes 11.3: Section Check Chapter 11 Summary Chapter 11 Assessment

What You ll Learn You will relate the structure of DNA to its function. You will explain the role of DNA in protein production. You will distinguish among different types of mutations.

Section Objectives: Analyze the structure of DNA Determine how the structure of DNA enables it to reproduce itself accurately.

What is DNA? Although the environment influences how an organism develops, the genetic information that is held in the molecules of DNA ultimately determines an organism s traits. DNA achieves its control by determining the structure of proteins.

What is DNA? All actions, such as eating, running, and even thinking, depend on proteins called enzymes. Enzymes are critical for an organism s function because they control the chemical reactions needed for life. Within the structure of DNA is the information for life the complete instructions for manufacturing all the proteins for an organism.

DNA as the genetic material In 1952 Alfred Hershey and Martha Chase performed an experiment using radioactively labeled viruses that infect bacteria. These viruses were made of only protein and DNA.

DNA as the genetic material Hershey and Chase labeled the virus DNA with a radioactive isotope and the virus protein with a different isotope. By following the infection of bacterial cells by the labeled viruses, they demonstrated that DNA, rather than protein, entered the cells and caused the bacteria to produce new viruses.

The structure of nucleotides DNA is a polymer made of repeating subunits called nucleotides. Phosphate group Nitrogenous base Sugar (deoxyribose) Nucleotides have three parts: a simple sugar, a phosphate group, and a nitrogenous base.

The structure of nucleotides The simple sugar in DNA, called deoxyribose (dee ahk sih RI bos), gives DNA its name deoxyribonucleic acid. The phosphate group is composed of one atom of phosphorus surrounded by four oxygen atoms.

The structure of nucleotides A nitrogenous base is a carbon ring structure that contains one or more atoms of nitrogen. In DNA, there are four possible nitrogenous bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine (A) Guanine (G) Cytosine (C) Thymine (T)

The structure of nucleotides Thus, in DNA there are four possible nucleotides, each containing one of these four bases.

The structure of nucleotides Nucleotides join together to form long chains, with the phosphate group of one nucleotide bonding to the deoxyribose sugar of an adjacent nucleotide. The phosphate groups and deoxyribose molecules form the backbone of the chain, and the nitrogenous bases stick out like the teeth of a zipper.

The structure of nucleotides In DNA, the amount of adenine is always equal to the amount of thymine, and the amount of guanine is always equal to the amount of cytosine.

The structure of DNA In 1953, Watson and Crick proposed that DNA is made of two chains of nucleotides held together by nitrogenous bases. Watson and Crick also proposed that DNA is shaped like a long zipper that is twisted into a coil like a spring. Because DNA is composed of two strands twisted together, its shape is called double helix.

The importance of nucleotide sequences Chromosome The sequence of nucleotides forms the unique genetic information of an organism. The closer the relationship is between two organisms, the more similar their DNA nucleotide sequences will be.

The importance of nucleotide sequences Scientists use nucleotide sequences to determine evolutionary relationships among organisms, to determine whether two people are related, and to identify bodies of crime victims.

Replication of DNA Before a cell can divide by mitosis or meiosis, it must first make a copy of its chromosomes. The DNA in the chromosomes is copied in a process called DNA replication. Without DNA replication, new cells would have only half the DNA of their parents.

DNA Replication of DNA Replication Replication

Replication of DNA Click this image to view movie

Copying DNA DNA is copied during interphase prior to mitosis and meiosis. It is important that the new copies are exactly like the original molecules.

Copying DNA New DNA molecule Original DNA Strand New DNA Strand Free Nucleotides New DNA molecule Original DNA Strand Original DNA

Section Objectives Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved in protein synthesis.

Genes and Proteins The sequence of nucleotides in DNA contain information. This information is put to work through the production of proteins. Proteins fold into complex, threedimensional shapes to become key cell structures and regulators of cell functions.

Genes and Proteins Some proteins become important structures, such as the filaments in muscle tissue. Other proteins, such as enzymes, control chemical reactions that perform key life functions breaking down glucose molecules in cellular respiration, digesting food, or making spindle fibers during mitosis.

Genes and Proteins In fact, enzymes control all the chemical reactions of an organism. Thus, by encoding the instructions for making proteins, DNA controls cells.

Genes and Proteins You learned earlier that proteins are polymers of amino acids. The sequence of nucleotides in each gene contains information for assembling the string of amino acids that make up a single protein.

RNA RNA like DNA, is a nucleic acid. RNA structure differs from DNA structure in three ways. First, RNA is single stranded it looks like one-half of a zipper whereas DNA is double stranded.

RNA The sugar in RNA is ribose; DNA s sugar is deoxyribose. Ribose

RNA Both DNA and RNA contain four nitrogenous bases, but rather than thymine, RNA contains a similar base called uracil (U). Uracil Hydrogen bonds Adenine Uracil forms a base pair with adenine in RNA, just as thymine does in DNA.

RNA DNA provides workers with the instructions for making the proteins, and workers build the proteins. The workers for protein synthesis are RNA molecules.

RNA DNA provides workers with the instructions for making the proteins, and workers build the proteins. The workers for protein synthesis are RNA molecules. They take from DNA the instructions on how the protein should be assembled, then amino acid by amino acid they assemble the protein.

RNA There are three types of RNA that help build proteins. Messenger RNA (mrna), brings instructions from DNA in the nucleus to the cell s factory floor, the cytoplasm. On the factory floor, mrna moves to the assembly line, a ribosome.

RNA The ribosome, made of ribosomal RNA (rrna), binds to the mrna and uses the instructions to assemble the amino acids in the correct order.

RNA Transfer RNA (trna) is the supplier. Transfer RNA delivers amino acids to the ribosome to be assembled into a protein. Click image to view movie

Transcription In the nucleus, enzymes make an RNA copy of a portion of a DNA strand in a process called transcription.

Transcription

Transcription The main difference between transcription and DNA replication is that transcription results in the formation of one singlestranded RNA molecule rather than a doublestranded DNA molecule.

RNA Processing Not all the nucleotides in the DNA of eukaryotic cells carry instructions or code for making proteins. Genes usually contain many long noncoding nucleotide sequences, called introns, that are scattered among the coding sequences.

RNA Processing Regions that contain information are called exons because they are expressed. When mrna is transcribed from DNA, both introns and exons are copied. The introns must be removed from the mrna before it can function to make a protein.

RNA Processing Enzymes in the nucleus cut out the intron segments and paste the mrna back together. The mrna then leaves the nucleus and travels to the ribosome.

The Genetic Code The nucleotide sequence transcribed from DNA to a strand of messenger RNA acts as a genetic message, the complete information for the building of a protein. As you know, proteins contain chains of amino acids. You could say that the language of proteins uses an alphabet of amino acids.

The Genetic Code A code is needed to convert the language of mrna into the language of proteins. Biochemists began to crack the genetic code when they discovered that a group of three nitrogenous bases in mrna code for one amino acid. Each group is known as a codon.

The Genetic Code Sixty-four combinations are possible when a sequence of three bases is used; thus, 64 different mrna codons are in the genetic code.

The Genetic Code First Letter U C A G The Messenger RNA Genetic Code Second Letter U C A G Phenylalanine (UUU) Phenylalanine (UUC) Leucine (UUA) Leucine (UUG) Leucine (CUU) Leucine (CUC) Leucine (CUA) Leucine (CUG) Isoleucine (AUU) Isoleucine (AUC) Isoleucine (AUA) Methionine; Start (AUG) Valine (GUU) Valine (GUC) Valine (GUA) Valine (GUG) Serine (UCU) Serine (UCC) Serine (UCA) Serine (UCG) Proline (CCU) Proline (CCC) Proline (CCA) Proline (CCG) Threonine (ACU) Threonine (ACC) Threonine (ACA) Threonine (ACG) Alanine (GCU) Alanine (GCC) Alanine (GCA) Alanine (GCG) Tyrosine (UAU) Tyrosine (UAC) Stop (UAA) Stop (UAG) Histadine (CAU) Histadine (CAC) Glutamine (CAA) Glutamine (CAG) Asparagine (AAU) Asparagine (AAC) Lysine (AAA) Lysine (AAG) Aspartate (GAU) Aspartate (GAC) Glutamate (GAA) Glutamate (GAG) Cysteine (UGU) Cysteine (UGC) Stop (UGA) Tryptophan (UGG) Arginine (CGU) Arginine (CGC) Arginine (CGA) Arginine (CGG) Serine (AGU) Serine (AGC) Arginine (AGA) Arginine (AGG) Glycine (GGU) Glycine (GGC) Glycine (GGA) Glycine (GGG) Third Letter U C A G U C A G U C A G U C A G

The Genetic Code Some codons do not code for amino acids; they provide instructions for making the protein. More than one codon can code for the same amino acid. However, for any one codon, there can be only one amino acid.

The Genetic Code All organisms use the same genetic code. This provides evidence that all life on Earth evolved from a common origin.

Translation: From mrna to Protein The process of converting the information in a sequence of nitrogenous bases in mrna into a sequence of amino acids in protein is known as translation. Translation takes place at the ribosomes in the cytoplasm. In prokaryotic cells, which have no nucleus, the mrna is made in the cytoplasm.

Translation: From mrna to Protein In eukaryotic cells, mrna is made in the nucleus and travels to the cytoplasm. In cytoplasm, a ribosome attaches to the strand of mrna like a clothespin clamped onto a clothesline.

The role of transfer RNA For proteins to be built, the 20 different amino acids dissolved in the cytoplasm must be brought to the ribosomes. This is the role of transfer RNA.

The role of transfer RNA Each trna molecule attaches to only one type of amino acid. Chain of RNA nucleotides Amino acid Transfer RNA molecule Anticondon

Translation

The role of transfer RNA Ribosome mrna codon

The role of transfer RNA Usually, the first codon on mrna is AUG, which codes for the amino acid methionine. AUG signals the start of protein synthesis. When this signal is given, the ribosome slides along the mrna to the next codon.

The role of transfer RNA Methionine trna anticodon

The role of transfer RNA A new trna molecule carrying an amino acid pairs with the second mrna codon. Alanine

The role of transfer RNA The amino acids are joined when a peptide bond is formed between them. Methionine Alanine Peptide bond

The role of transfer RNA A chain of amino acids is formed until the stop codon is reached on the mrna strand. Stop codon

Section Objectives: Categorize the different kinds of mutations that can occur in DNA. Compare the effects of different kinds of mutations on cells and organisms.

Mutations Organisms have evolved many ways to protect their DNA from changes. In spite of these mechanisms, however, changes in the DNA occasionally do occur. Any change in DNA sequence is called a mutation. Mutations can be caused by errors in replication, transcription, cell division, or by external agents.

Mutations in reproductive cells Mutations can affect the reproductive cells of an organism by changing the sequence of nucleotides within a gene in a sperm or an egg cell. If this cell takes part in fertilization, the altered gene would become part of the genetic makeup of the offspring.

Mutations in reproductive cells The mutation may produce a new trait or it may result in a protein that does not work correctly. Sometimes, the mutation results in a protein that is nonfunctional, and the embryo may not survive. In some rare cases a gene mutation may have positive effects.

Mutations in body cells What happens if powerful radiation, such as gamma radiation, hits the DNA of a nonreproductive cell, a cell of the body such as in skin, muscle, or bone? If the cell s DNA is changed, this mutation would not be passed on to offspring. However, the mutation may cause problems for the individual.

Mutations in body cells Damage to a gene may impair the function of the cell. When that cell divides, the new cells also will have the same mutation. Some mutations of DNA in body cells affect genes that control cell division. This can result in the cells growing and dividing rapidly, producing cancer.

The effects of point mutations A point mutation is a change in a single base pair in DNA. A change in a single nitrogenous base can change the entire structure of a protein because a change in a single amino acid can affect the shape of the protein.

The effects of point mutations Normal mrna Protein Stop Replace G with A Point mutation mrna Protein Stop

Frameshift mutations What would happen if a single base were lost from a DNA strand? This new sequence with the deleted base would be transcribed into mrna. But then, the mrna would be out of position by one base. As a result, every codon after the deleted base would be different.

Frameshift mutations Deletion of U Frameshift mutation mrna Protein

Frameshift mutations This mutation would cause nearly every amino acid in the protein after the deletion to be changed. A mutation in which a single base is added or deleted from DNA is called a frameshift mutation because it shifts the reading of codons by one base.

Chromosomal Alterations Changes may occur in chromosomes as well as in genes. Alterations to chromosomes may occur in a variety of ways. Structural changes in chromosomes are called chromosomal mutations.

Chromosomal Alterations Chromosomal mutations occur in all living organisms, but they are especially common in plants. Few chromosomal mutations are passed on to the next generation because the zygote usually dies.

Chromosomal Alterations In cases where the zygote lives and develops, the mature organism is often sterile and thus incapable of producing offspring. When a part of a chromosome is left out, a deletion occurs. A B C D E F G H A B C E F G H Deletion

Chromosomal Alterations When part of a chromatid breaks off and attaches to its sister chromatid, an insertion occurs. The result is a duplication of genes on the same chromosome. A B C D E F G H A B C B C D E F G H Insertion

Chromosomal Alterations When part of a chromosome breaks off and reattaches backwards, an inversion occurs. A B C D E F G H A D C B E F G H Inversion

Chromosomal Alterations When part of one chromosome breaks off and is added to a different chromosome, a translocation occurs. A B C D E F G H W X A B C D E F G H W X Y Z Y Z Translocation

Causes of Mutations Some mutations seem to just happen, perhaps as a mistake in base pairing during DNA replication. These mutations are said to be spontaneous. However, many mutations are caused by factors in the environment.

Causes of Mutations Any agent that can cause a change in DNA is called a mutagen. Mutagens include radiation, chemicals, and even high temperatures. Forms of radiation, such as X rays, cosmic rays, ultraviolet light, and nuclear radiation, are dangerous mutagens because the energy they contain can damage or break apart DNA.

Causes of Mutations The breaking and reforming of a doublestranded DNA molecule can result in deletions. Chemical mutagens include dioxins, asbestos, benzene, and formaldehyde, substances that are commonly found in buildings and in the environment. Chemical mutagens usually cause substitution mutations.

Repairing DNA Repair mechanisms that fix mutations in cells have evolved. Enzymes proofread the DNA and replace incorrect nucleotides with correct nucleotides. These repair mechanisms work extremely well, but they are not perfect. The greater the exposure to a mutagen such as UV light, the more likely is the chance that a mistake will not be corrected.

DNA: The Molecule of Heredity Alfred Hershey and Martha Chase demonstrated that DNA is the genetic material. Because adenine can pair only with thymine, and guanine can pair only with cytosine, DNA can replicate itself with great accuracy.

DNA: The Molecule of Heredity DNA, the genetic material of organisms, is composed of four kinds of nucleotides. A DNA molecule consists of two strands of nucleotides with sugars and phosphates on the outside and bases paired by hydrogen bonding on the inside. The paired strands form a twisted-zipper shape called a double helix.

From DNA to Protein Genes are small sections of DNA. Most sequences of three bases in the DNA of a gene code for a single amino acid in a protein. Messenger RNA is made in a process called transcription. The order of nucleotides in DNA determines the order of nucleotides in messenger RNA.

From DNA to Protein Translation is a process through which the order of bases in messenger RNA codes for the order of amino acids in a protein.

Genetic Changes A mutation is a change in the base sequence of DNA. Mutations may affect only one gene, or they may affect whole chromosomes. Mutations in eggs or sperm affect future generations by producing offspring with new characteristics. Mutations in body cells affect only the individual and may result in cancer.