Capturing Solar Energy: Photosynthesis. Photosynthesis. Earth s Timeline. Pre-Biotic Earth

Similar documents
Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2

Photosynthesis (Life from Light)

Photosynthesis and Cellular Respiration. Stored Energy

Equation for Photosynthesis

Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis?

> C 6 H 12 O 6 + 6O 2

VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Review Questions Photosynthesis

Photosynthesis Practice. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best.

AP Bio Photosynthesis & Respiration

8-3 The Reactions of Photosynthesis Slide 1 of 51

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O O 2

Lecture 7 Outline (Ch. 10)

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy

CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

Jan Baptisa van Helmont (1648)

b. What is/are the overall function(s) of photosystem II?

2. 1. What are the three parts of an ATP molecule? (100 points)

Photosynthesis: Harvesting Light Energy

MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!!

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis Part I: Overview & The Light-Dependent Reactions

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Green pigment that absorbs solar energy and is important in photosynthesis

Biology Slide 1 of 51

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages ) Chapter 8. Name Class Date

Chapter 10: Photosynthesis

A B C D. Name Class Date

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Name Class Date. Figure 8-1

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Electron Transport Generates a Proton Gradient Across the Membrane

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

Photosynthesis Reactions. Photosynthesis Reactions

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Question. Which of the following are necessary in order for photosynthesis to occur? A. water B. light energy C. carbon dioxide D.

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

ATP & Photosynthesis Honors Biology

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

3. In what part of the chloroplast do the light-dependent reactions of photosynthesis take place? Chloroplast. Name Class Date

Unit 5 Photosynthesis and Cellular Respiration

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

Bioenergetics Module A Anchor 3

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

Chapter 10. Photosynthesis

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

4.2 Overview of Photosynthesis

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

8.3 The Process of Photosynthesis

Overview of Photosynthesis

Chapter 9 Review Worksheet Cellular Respiration

Chloroplasts and Mitochondria

Chapter 10. Photosynthesis. Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

CELERY LAB - Structure and Function of a Plant

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63

Topic 3: Nutrition, Photosynthesis, and Respiration

Ch. 4 ATP & Photosynthesis

pathway that involves taking in heat from the environment at each step. C.

Metabolism Poster Questions

(e) i. 22. (a) ii (b) iv (c) v (d) iii

Biology I. Chapter 8/9

Visualizing Cell Processes

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

The chemical energy used for most cell processes is carried by ATP.

BCOR 011 Exam 2, 2004

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS

A. Incorrect! No, while this statement is correct, it is not the best answer to the question.

Summary of Metabolism. Mechanism of Enzyme Action

Cell. (1) This is the most basic unit of life inside of our bodies.

CELERY LAB - Structure and Function of a Plant

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

A level workbook. A2 level student guide. Brian Banks

Photosynthesis. Monday March 30. Announcements. Agenda

ecture 16 Oct 7, 2005

Cellular Respiration: Practice Questions #1

While reading these chapters, constantly ask yourself, How is this information helping me to understand how cells get energy from food?

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

Anatomy and Physiology of Leaves

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips

Multiple Choice Identify the choice that best completes the statement or answers the question.

Leaf Structure and Transpiration

Photosynthesis takes place in three stages:

What is Photosynthesis? Measuring Air Pressure Inside an Active Photosynthetic System (Teacher s Guide)

Photosynthesis. Grade-Level Expectations The exercises in these instructional tasks address content related to the following grade-level expectations:

Exemplar for Internal Achievement Standard. Biology Level 2

Impressions of a Stoma

Figure 10.1 How does sunlight help build the trunk, branches, and leaves of this broadleaf tree? photosynthesis Autotrophs (Figure 10.

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

10B Plant Systems Guided Practice

Transcription:

Capturing Solar Energy: Photosynthesis Chapter 7 Photosynthesis The process of converting light energy into chemical energy. Nourish most living organisms directly or indirectly. Plants are autotrophs, self feeders, producers of organic molecules from CO 2. Earth s Timeline Humans have only existed for 1 second of Earth s 24 hour clock. Phototrophic bacteria (and photosynthesis) evolved close to the beginning of life. Pre-Biotic Earth age of earth Carbon Dioxide Hydrogen oldest rocks banded iron formations (with reduced iron) oldest stromatolites oldest "red beds" earliest bacteria first green algae (Eukaryotic) earliest biogenic carbon oldest chemical evidence of complex cells earliest photosynthetic bacteria red beds abundant stromatolites abundant Nitrogen Oxygen The very early atmosphere of the earth contained mostly CO 2, about 80%. The concentration of CO 2 gradually dropped to about 20% by 3,500 Ma (million years ago). The evolution of the first bacteria occurred about 3,500 Ma.

age of earth oldest rocks banded iron formations (with reduced iron) oldest "red beds" red beds abundant Earliest Evidence of Microbial Life Carbon Dioxide oldest stromatolites stromatolites abundant earliest bacteria first green algae earliest biogenic carbon (Eukaryotic) oldest chemical evidence of complex cells earliest photosynthetic bacteria Nitrogen No Oxygen present in the early atmosphere. Graphite bands found 3.8 billion years ago. Graphite is a material that can be produced when organic carbon, found in all living organisms, is altered by heat and pressure over time. (i.e. evidence of Biogenic Carbon) Hydrogen Oxygen Oxygen generated after life began. age of earth oldest rocks banded iron formations (with reduced iron) oldest "red beds" red beds abundant Earliest Evidence of Microbial Life Carbon Dioxide oldest stromatolites stromatolites abundant earliest bacteria first green algae earliest biogenic carbon (Eukaryotic) oldest chemical evidence of complex cells earliest photosynthetic bacteria Nitrogen Stromatolites found 2.7 billion years ago. Stromatolites formed when sediments accumulated over sticky colonies of underwater cyanobacteria. - After buried by sediment, the bacteria moved upward toward needed sunlight. - The cycle begins again with the accumulation of more sediment, forming layers over time. Hydrogen Bands of Graphite made from compressed organic carbon. Oxygen Earliest Evidence of Life

age of earth oldest rocks banded iron formations (with reduced iron) oldest "red beds" red beds abundant Earliest Evidence of Microbial Life Carbon Dioxide oldest stromatolites stromatolites abundant earliest bacteria first green algae earliest biogenic carbon (Eukaryotic) oldest chemical evidence of complex cells earliest photosynthetic bacteria Nitrogen Banded iron formations (BIFs) found between 3.5 billion and two billion years ago. BIFs are formed when oxygen released by photosynthetic bacteria create rust, oxidized iron, in shallow ocean shores. Stromatolite formation indicates cyanobacteria, photosynthetic organisms striving for sunlight. Hydrogen Oxygen Earliest Evidence of Photosynthesis Earliest Evidence of Life age of earth oldest rocks banded iron formations (with reduced iron) oldest "red beds" red beds abundant Earliest Evidence of Microbial Life oldest stromatolites stromatolites abundant earliest bacteria first green algae earliest biogenic carbon (Eukaryotic) oldest chemical evidence of complex cells earliest photosynthetic bacteria The Cambrian Explosion, 543 million years ago Nearly all the major animal groups we are familiar with first appeared in this period. Carbon Dioxide Banded Iron Formations Hydrogen indicate the presence of an oxidizing environment: Oxygen is present locally! Nitrogen Oxygen Evidence for High Concentrations of Oxygen in the Atmosphere Earliest Evidence of Photosynthesis Earliest Evidence of Life

Photosynthetic Photosynthesis Organisms 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 Photosynthetic Adaptations Leaves Designed to Capture Sunlight Thin (only a few cells thick) Large surface area (to expose all cells to the sun) Designed to Prevent Water Loss and allow Gas Exchange Mesophyll Cells Chloroplasts Leaf Adaptations 1. Capturing Sunlight 2. Prevention of Water Loss Cuticle Waxy waterproof covering that reduces evaporation Upper & Lower Epidermis

Leaf Adaptations Leaf Adaptations 1. Capturing Sunlight 2. Prevention of Water Loss 3. Gas Exchange Stoma -Pores, open & close Guard Cells - Move to open & close the stoma Stoma open when humidity is high. Guard cells absorb water and swell. Open stoma let CO 2 in and O 2 out. Stoma deflate and close when humidity is low to prevent loss of water.

Veins of plants. Vascular Bundle and Sheath Supply water and minerals to mesophyll cells. Carry sugar from mesophyll cells to other parts of the plant. Mesophyll Cells Middle of the Leaf Major site of photosynthesis in the leaf. A single cell contains 40-200 chloroplasts. Palisade Mesophyll (carry-out photosynthesis) Spongy Mesophyll (allow for gas exchange) Chloroplasts Organelles where photosynthesis takes place. Contain dish-shaped, interconnected membranous sacs called thylakoid disks where the lightdependent photosynthetic reactions take place. Light-independent photosynthetic reactions take place in the stroma. Chloroplasts Light Dependent Reaction Light Independent Reaction

The stoma are pores in the lower epidermis that allow gas exchange. They are regulated by guard cells which open and close according to local humidity and gas needs. The cuticle is a waxy layer that prevents water loss. The upper and lower epidermis are thicker cells that protect the interior leaf structure and prevent water and gas exchange with the atmosphere. The Vascular Bundle transports water to the leaves and sugars away from the leaves to other parts of the plant. Bundle Sheath cells protect the vascular bundle and regulate water and sugar movement from the vascular bundle. Mesophyll cells make up most of the interior of the leaf. Palisades mesophyll cells (top) carryout most of the photosynthesis. Spongy mesophyll cells (bottom) store gasses and water for palisades cells. Chloroplasts are the eukaryotic organelles where photosynthesis takes place within the plant cell. The Thylakoid disks are packed full of chlorophyll (or other photosynthetic pigment). The location of the light dependent reaction of photosynthesis. The Stroma makes up the remaining interior space. The location of the light independent reaction of photosynthesis. Reactions of Photosynthesis 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 Light-Dependent Reaction Takes place within the thylakoid membrane. Generates energy-carrier molecules (ATP, NADPH) H 2 O + light + ADP O 2 + H + + ATP Light-Independent Reaction Takes place in the stroma. CO 2 + H + + ATP C 6 H 12 O 6 + ADP

Light Captured by Pigments The visible spectra of energy is quite narrow. Light is composed of individual packets of energy, photons. The shorter the wavelength, the more energetic the light. Light Captured by Pigments Photosynthetic pigments absorbs light energy in the very high and low wavelengths. Light that is not absorbed is reflected and gives the object its color. Not all light is the same color or wavelength. Chlorophyll a absorbs in the violet and red wavelengths. Chlorophyll b absorbs in the blue and orange wavelengths. Carotenoids absorb in the violet to green wavelengths. Most photosynthesis utilizes the violet, blue, and red wavelengths of light. Photosynthetic Pigments Chlorophyll absorbs violet, blue, and red light. Two types of chlorophyll: Chlorophyll A, absorbs violet and red. Chlorophyll B, absorbs blue and orange. Additional accessory pigments, carotenoids, absorb blue and green light while reflecting red and yellow. Chlorophyll breaks down in the cold before carotenoids, giving leaves red and yellow hues in autumn.

Photosystems of Photosynthesis Photosynthetic pigment proteins, chlorophyll and carotenoids, cluster together along the thylakoid membrane creating photosystems. Two photosystems, PS I and PS II, contain clusters of chlorophyll and carotenoids at reaction centers. Photosystems of Photosynthesis Electrons generated from light energy are passed from the reaction center along an electron transport chain (ETC), a series of electron-carrying molecules in the membrane, to proteins to generate ATP and NADPH. Photosystems of Photosynthesis Photosystems of Photosynthesis Light energy (1) excites electrons in the reaction center of chloroplasts (2) sending them down an electron transport chain (3,4) to generate ATP (5). Excited electrons are further excited (6) and sent down a second ETC (7,8) to form NADPH (9).

Excitation of PS II generates H + and electrons. Excitation of PS II generates H + and electrons. High H + concentration is used to synthesize ATP. High H + concentration is used to synthesize ATP.

Excitation of PS I generates electrons for NADPH synthesis. Energy-carrier molecules (ATP and NADPH) are used to drive light independent reactions. Photosynthetic Light-Dependent Reaction ATP Synthesis in Chloroplasts A gradient of H + ions is built up through active transport across the ETC of PS II. Generates a lot of ATP.

ATP Synthesis in Chloroplasts A gradient of H + ions is built up through active transport across the ETC of PS II. Passive transport of H + across the membrane is coupled with ATP synthesis. Light-Independent Reactions of Photosynthesis Generation of glucose and other large carbon-storage molecules from CO 2 and energy generated in PS II and PS I is called the Calvin-Bensen cycle. Carbon fixation is the process of capturing CO 2 from the atmosphere and incorporating (fixing) it into larger molecules. Light-Independent Reactions of Photosynthesis Key: RuBP: ribulose bisphosphate PGA: phosphoglyceric acid G3P: glyceraldehyde-3-phosphate

Adaptations of the Calvin Cycle Bioflix on Photosynthesis Cells require CO 2 to gain energy from the Calvin Cycle. To minimize evaporative loss of H 2 O, cells close their stomata in hot, dry weather. CO 2 cannot get in, O 2 cannot get out. Adaptations of the Calvin Cycle Rubisco, the enzyme that catalyzes the reaction of RuBP and CO 2 is not selective. Photorespiration occurs when O 2 is combined with RuBP instead of CO 2, generating CO 2 and no additional energy. Plants in hot, dry climates have adapted a two-stage carbon-fixation pathway, the C 4 pathway. C 3 Pathway used by most plants

Photosynthetic Light Independent Reaction C 4 Pathway used by Grasses Takes place in the stroma of the chloroplast. Stores the energy generated in the light reaction in the form of glucose. Rubisco requires CO 2. Because of the non-specificity of rubisco, cells undergo wasteful photorespiration when CO 2 is not available. Key: PEP: phosphoenolpyruvate Homework Chapter 7 Thinking Through the Concepts, Review Questions 1 and 5.