ELECTROCHEMICAL EQUILIBRIUM



Similar documents
K + Cl - Metal M. Zinc 1.0 M M(NO

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

REVIEW QUESTIONS Chapter 8

Chem 1721 Brief Notes: Chapter 19

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

Useful charge on one mole of electrons: 9.64 x 10 4 coulombs/mol e - = F F is the Faraday constant

forza horizon manual

The Mole x 10 23

5.111 Principles of Chemical Science

CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT

User Guide Thank you for purchasing the DX90

Ions cannot cross membranes. Ions move through pores

WORKSHEET: CHEMICAL EQUILIBRIUM

Neurophysiology. 2.1 Equilibrium Potential

Lab 1: Simulation of Resting Membrane Potential and Action Potential

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

How To Understand The Distributed Potential Of A Dendritic Tree

Chemistry Diagnostic Questions

Cell Transport and Plasma Membrane Structure

Galvanic cell and Nernst equation

Name AP CHEM / / Collected Essays Chapter 17 Answers

Chemistry Post-Enrolment Worksheet

Discovering Electrochemical Cells

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Nuovi domini di primo livello - Registra nuove estensioni con FabsWeb_HOST

Body Fluids. Physiology of Fluid. Body Fluids, Kidneys & Renal Physiology

Guide: How to fill out your Enrollment Application form for Master Degree courses

Chemistry B11 Chapter 4 Chemical reactions

Simulation of an Action Potential using the Hodgkin-Huxley Model in Python. Nathan Law Medical Biophysics 3970

Chapter 1. Introduction of Electrochemical Concepts

MEMBRANE FUNCTION CELLS AND OSMOSIS

ELECTROLYTE SOLUTIONS (Continued)

Calculating Atoms, Ions, or Molecules Using Moles

Chapter 11 Properties of Solutions

Preliminary Concepts. Preliminary Concepts. Class 8.3 Oxidation/Reduction Reactions and Electrochemistry I. Friday, October 15 Chem 462 T.

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Cell Biology - Part 2 Membranes

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

1332 CHAPTER 18 Sample Questions

Balancing Chemical Equations

Redox and Electrochemistry

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

The Mole Concept. The Mole. Masses of molecules

Name Electrochemical Cells Practice Exam Date:

Electric Current and Cell Membranes

Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15

Chapter 13: Electrochemistry. Electrochemistry. The study of the interchange of chemical and electrical energy.

Sample Test 1 SAMPLE TEST 1. CHAPTER 12

LEAD-ACID STORAGE CELL

Statistics Jobs. La mia esperienza nell industria farmaceutica Silvia Barbi, Statistician at Novartis Vaccines Bologna, 9 Maggio 2014

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

Bi 360: Midterm Review

CHEM N-2 November 2006

Dynamics in nanoworlds

Corso: Mastering Microsoft Project 2010 Codice PCSNET: MSPJ-11 Cod. Vendor: Durata: 3

Acid/Base Homeostasis (Part 3)

Milliequivalents, Millimoles,, and Milliosmoles

Name period Unit 9: acid/base equilibrium

MOLARITY = (moles solute) / (vol.solution in liter units)

Potassium ion charge would be +1, so oxidation number is +1. Chloride ion charge would be 1, so each chlorine has an ox # of -1

Answers and Solutions to Text Problems

Chapter 5. Chapter 5. Naming Ionic Compounds. Objectives. Chapter 5. Chapter 5

Equations for Primary FRCA

EADAP Presidente Corso di Studi: Prof. Stefania Servalli Nuovi Orizzonti

F321 MOLES. Example If 1 atom has a mass of x g 1 mole of atoms will have a mass of x g x 6.02 x = 7.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

1. How many hydrogen atoms are in 1.00 g of hydrogen?

ATOMS. Multiple Choice Questions

E U R O P E A N C U R R I C U L U M V I T A E F O R M A T PERSONAL INFORMATION

Corso: Supporting and Troubleshooting Windows 10 Codice PCSNET: MW10-3 Cod. Vendor: Durata: 5

April 18, 2008 Dr. Alan H. Stephenson Pharmacological and Physiological Science

public class neurale extends JFrame implements NeuralNetListener {

CELL MEMBRANE & CELL TRANSPORT (PASSIVE and ACTIVE) Webquest

Electrochemistry Revised 04/29/15

Chemical Calculations

Soil Suction. Total Suction

CHAPTER 13: SOLUTIONS

AP FREE RESPONSE QUESTIONS ACIDS/BASES

PhD Student Marco Maggiali

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

Study Guide For Chapter 7

The Mole Concept and Atoms

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Cellular Membranes I. BACKGROUND MATERIAL

Electrical Conductivity of Aqueous Solutions

Modes of Membrane Transport

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More

8Q PRQGR GL FRQWHQLWRUL $ ZRUOG RI HQFORVXUHV

WRITING CHEMICAL FORMULA

Transcription:

Laurea Magistralis Corso di in Laurea MEDICINE Specialistica and SURGERY in MEDICINA HARVEY e CHIRURGIA corso integrato FISICA - disciplina FISICA Integrated Course/Discipline: PHYSICS ELECTROCHEMICAL EQUILIBRIUM - ELECTRO-CHEMICAL EQUILIBRIUM (Δµ 0) - DONNAN-GIBBS RELATION - ONCOTIC PRESSURE - ELECTRO-CHEMICAL EQUILIBRIUM (J S total 0) D. SCANNICCHIO 009 01/1

ELECTRO-CHEMICAL POTENTIAL n moli n moles / n / gr-ioni n g-ion 1 1 energia chemical potenziale potential chimica energy µ RT ln C + µo energia electric potenziale potential elettrica energy U q V energia electro-chemical potenziale elettro-chimica potential energy µ RT ln C + q V + µo Ze No electric carica elettrica di un g-ione charge of one µ RT ln C + Ze NoV + µo potenziale elettrochimico (relativo a n 1 g-ione) electro-chemical potential energy for 1 g-ion D. SCANNICCHIO 009 0/1

ELECTRO-CHEMICAL EQUILIBRIUM: NERNST EQUATION potenziale elettrochimico electro-chemical potential stato di equilibrium: equilibrio µ 1 µ 0 µ RT ln C + Ze No V + µo RT ln C 1 + Ze NoV 1 RT ln C Ze NoV 0 RT ln C 1 RT ln C + Ze NoV 1 Ze NoV 0 Ze NoV 1 Ze NoV RT ln C RT ln C 1 ZNo e (V 1 V ) RT ln C C 1 No e F 96487 C D. SCANNICCHIO 009 03/1

ELECTRO-CHEMICAL EQUILIBRIUM: NERNST EQUATION ZNo e (V 1 V ) RT ln C C 1 No e F 96487 C V 1 V RT FZ ln C C 1 Nernst s equazione di Nernst equation equilibrium relazione condition equilibrio D. SCANNICCHIO 009 04/1

ELECTRO-CHEMICAL EQUILIBRIUM: NERNST EQUATION equazione Nernst s equation di Nernst V 1 V RT FZ ln C C 1 membrana permeable permeabile membrane equilibrium: equilibrio : C 1 C V 1 V membrana semipermeable semipermeabile membrane equilibrium: equilibrio : C 1 C V 1 V (equazione (Nernst s equation) di Nernst) symbol new definition of solute s concentration definizione formale concentrazione di soluto s C {s} D. SCANNICCHIO 009 05/1

ELECTRO-CHEMICAL EQUILIBRIUM: NERNST EQUATION oppure : otherwise: dynamic equilibrio equilibrium dinamico J EsM + J DsM 0 go vedi to # slide 14 #15 Nernst s equazione di equation Nernst V 1 V RT FZ ln C C 1 D. SCANNICCHIO 009 06/1

DONNAN-GIBBS CONDITION Nernst s equation applied to each solute: equazione di Nernst applicata per ogni soluto : Na +, K +, Ca ++, Cl, CO3H V 1 V RT F ln {Na + } {Na + } 1 RT {K + } ln F {K + } RT 1 F RT {Cl } ln 1 ln {CO3H } 1 F {Cl } RT {CO3H F } {Na + } {Ca ++ } {Ca ++ {Na + {K+ } {Cl } 1 } 1 {K + } 1 } 1 {Cl {CO3H } 1 } {CO3H } ln {Ca ++ } {Ca ++ } 1 {Na + } {Cl } 1 {Na + } {Cl } {Na + } 1 {Cl } {Na + } 1 {Cl } 1 condizione di equilibrio di Donnan-Gibbs Donnan-Gibbs equilibrium condition D. SCANNICCHIO 009 07/1

DONNAN-GIBBS CONDITION equazione Nernst s di equation Nernst V 1 V RT FZ ln C C 1 {Na + } {Cl } {Na + } 1 {Cl } 1 condizione Donnan-Gibbs di equilibrio equilibrium di Donnan-Gibbs condition {Cl } V 1 V 1 {Cl } {Na + } 1 {Na + } D. SCANNICCHIO 009 08/1

ONCOTIC PRESSURE π mmhg 5 19 oncotic pressione oncotica pressure π nrt V π kc RTC o 1 mm litro concentrazione concentration C dipendenza real dependence reale : : π C proteine proteins D. SCANNICCHIO 009 09/1

ONCOTIC PRESSURE memb PNa k P k( ) Na + π M HO (Na + ) (Cl ) compartimento COMPARTMENT 11 HO Na + Cl compartimento COMPARTMENT EXPERIMENTAL TEST membrane M: permeable for ions Na + and Cl semipermeable for ions P k( ) compartimento 1 COMPARTMENT 1 compartimento COMPARTMENT PNa k P k( ) + k Na + NaCl Na + + Cl D. SCANNICCHIO 009 10/1

START INIZIO 1 ONCOTIC PRESSURE C 1 g-ioni P k( ) + kc 1 g-ioni Na + C g-ioni Cl + C g-ioni Na + EQUILIBRIUM EQUILIBRIO (carica neutral elettrica electric neutra) charge in each compartment 1 C 1 g-ioni P k( ) + x g-ioni Cl + (x + kc 1 ) g-ioni Na + (C x) g-ioni Cl + (C x) g-ioni Na + ions for which the membrane is permeable: ioni cui la membrana é permeabile {Cl } 1 x {Na + } 1 kc 1 + x {Cl } C x {Na + } C x condizione di equilibrio di Donnan-Gibbs : Donnan-Gibbs equilibrium condition: D. SCANNICCHIO 009 11/1

ONCOTIC PRESSURE Donnan-Gibbs condizione di equilibrio equilibrium di Donnan-Gibbs condition: : x (kc 1 + x) (C x) x kc1 + C C {Cl } 1 C kc 1 + C {Na + } 1 kc 1 + kc1 + C C Σ 1 {Cl } C {Na + } C C kc 1 + C Σ C kc 1 + C D. SCANNICCHIO 009 1/1

ONCOTIC PRESSURE {Cl } 1 + C C {Na + } 1 + kc kc 1 + C 1 + kc 1 + C C + kc 1 C + k C 1 kc 1 + C Σ 1 C C {Cl } + {Na + } C + C kc1 + C kc1 + C C + kc 1 C kc 1 + C Σ D. SCANNICCHIO 009 13/1

equilibrio : equilibrium: ONCOTIC PRESSURE k C 1 Σ 1 Σ kc1 + C solute build-up (despite the membrane is permeable to the solutes) accumulo soluti (malgrado membrana sia ad essi permeabile) in the compartment with the solute to which the membrane is not nel permeable compartimento (semipermeable) con il soluto cui la membrana non é permeabile MEMBRANA CAPILLARE : aggiunta addition to di the pressione osmotic osmotica pressure pressione oncotica del plasma CAPILLARY MEMBRANE: plasma oncotic pressure C >> C 1 π RT C 1 + C 1 C proteine proteins k C 1 C π effettiva real π proteine proteins + π ΔΣ π oncotica D. SCANNICCHIO 009 14/1

dynamic equilibrio equilibrium dinamico : ELECTRO-CHEMICAL POTENTIAL J EsM + J DsM 0 Nernst s equation equazione di Nernst flusso total ionico ionic totale flux J sm out in assenza of equilibrium di equilibrio equilibrium: equilibrio : J sm 0 J (totale) sm J + J D d{s} (total) DsM µ EsM M s {s} dx ΔV Δx d{s} ZFDM V D M + {s} m ΔV V dx RT Δx m (x coordinata (coordinate attraverso x through la membrana the membrane 0 < x 0 < x Δx) < x) flusso ionic flux ionico inside nella the membrane membrana constant stazionario : J sm D. SCANNICCHIO 009 (total) constant inside the membrane (totale) costante nella membrana dj sm dx 0 15/1

ELECTRO-CHEMICAL POTENTIAL V m d{s} ZFDM J sm (total) (totale) D M + {s} dx RT Δx dj sm dx 0 d {s} ZFD M V d{s} D M dx + m 0 RT Δx dx soluzione : solution: {s} k e Ax + h sostituendo replacing we si obtain: ottiene : V m A + RT ZF Δx D. SCANNICCHIO 009 16/1

ELECTRO-CHEMICAL POTENTIAL soluzione solution: : {s} k e Ax + h sostituendo replacing we si ottiene obtain: : V m A + RT ZF Δx x 0 x Δx {s} α {s} 1 k e A0 + h k + h {s} α {s} k e AΔx + h α {s} α {s} 1 k e AΔx + h k h k (e AΔx 1) D. SCANNICCHIO 009 17/1

ELECTRO-CHEMICAL POTENTIAL k α {s} {s} 1 (e AΔx 1) h α {s} 1 k α {s} 1 eaδx {s} 1 {s} + {s} 1 (e AΔx 1) α {s} 1 eaδx {s} (e AΔx 1) {s} k e Ax + h α {s} {s} 1 (e AΔx 1) e Ax + α {s} 1 eaδx {s} (e AΔx 1) D. SCANNICCHIO 009 18/1

ELECTRO-CHEMICAL POTENTIAL {s} k e Ax + h d{s} ZFDM V J sm (total) (totale) D M + {s} m dx RT Δx D M k A e Ax + ZFD V M m (k RT Δx e Ax + h) D M ZF RT V m Δx k e Ax + ZFD M RT V m Δx (k eax + h) ZFD M RT V m Δx ( k e Ax + k e Ax + h) ZFD M V m ZFD h α {s} 1 eaδx {s} M V m RT Δx RT Δx (e AΔx 1) D. SCANNICCHIO 009 19/1

ELECTRO-CHEMICAL POTENTIAL ZFV {s} 1 e AΔx m D M α {s} RT Δx (e AΔx 1) ZFV m P RT s ZF V m RT {s} 1 e {s} ZF V m (e RT 1) (total) J sm (totale) dynamic equilibrium equilibrio dinamico ZFV m P s RT ZF V m RT {s} 1 e {s} ZF V m (e RT 1) 0 D. SCANNICCHIO 009 0/1

ELECTRO-CHEMICAL POTENTIAL dynamic equilibrio equilibrium dinamico : ZF V ZFV {s} e m RT m 1 {s} J sm (total) (totale) P RT s ZF V (e m RT 1) 0 ZF V m RT {s} e 1 {s} 0 e ZF V m RT {s} {s} 1 ZFV m RT ln {s} ln C {s} 1 C 1 V V V ΔV m 1 V 1 V RT ZF ln C C 1 equazione di Nernst Nernst s equation Q.V.D. D. SCANNICCHIO 009 1/1