ASTR 380 Habitable Zone

Similar documents
Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

Teaching Time: One-to-two 50-minute periods

Lesson 6: Earth and the Moon

CHARACTERISTICS OF THE SOLAR SYSTEM

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

UNIT V. Earth and Space. Earth and the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Related Standards and Background Information

FACTS ABOUT CLIMATE CHANGE

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

CHAPTER 6 THE TERRESTRIAL PLANETS

Introduction and Origin of the Earth

Lecture 10 Formation of the Solar System January 6c, 2014

The Greenhouse Effect. Lan Ma Global Warming: Problems & Solutions 17 September, 2007

Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption

The Inner Solar System by Leslie Cargile

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

Earth Sciences -- Grades 9, 10, 11, and 12. California State Science Content Standards. Mobile Climate Science Labs

Solar System Fact Sheet

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Astro 102 Test 5 Review Spring See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

4He--during ~ few minutes of big bang, ~10% (by number) produced. [Note: some helium is made in stars, but only ~1%.]

A Solar System Coloring Book

Section 1 The Earth System

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

Comparing Planets: Is Earth Unique?

STUDY GUIDE: Earth Sun Moon

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Solar System Formation

1 A Solar System Is Born

The Earth, Sun, and Moon

ATM S 111, Global Warming: Understanding the Forecast

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

Solar System Overview

Summary: Four Major Features of our Solar System

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Our Planetary System. Earth, as viewed by the Voyager spacecraft Pearson Education, Inc.

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

Introduction to the Greenhouse Effect

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

THE SOLAR SYSTEM - EXERCISES 1

ASTR 1010 Astronomy of the Solar System Professor Caillault Fall 2009 Semester Exam 3 Answers

Lab 7: Gravity and Jupiter's Moons

Planets beyond the solar system

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

The Three Heat Transfer Modes in Reflow Soldering

Unit 8 Lesson 2 Gravity and the Solar System

Name Period 4 th Six Weeks Notes 2015 Weather

Earth Egg Model Teacher Notes

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

Teacher s Guide For. Glaciers and Ice Caps The Melting

The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Study Guide due Friday, 1/29

Clouds and the Energy Cycle

CHAPTER 2 Energy and Earth

A SOLAR SYSTEM COLORING BOOK

1. You are about to begin a unit on geology. Can anyone tell me what geology is? The study of the physical earth I.

A: Planets. Q: Which of the following objects would NOT be described as a small body: asteroids, meteoroids, comets, planets?

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Georgia Performance Standards Framework for Science Grade 6. Unit Organizer: UNIVERSE AND SOLAR SYSTEM (Approximate Time 3 Weeks)

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

The scale of the Universe, and an inventory

Class 2 Solar System Characteristics Formation Exosolar Planets

Energy Pathways in Earth s Atmosphere

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.

CHAPTER 3 Heat and energy in the atmosphere

SGL 101 MATERIALS OF THE EARTH Lecture 1 C.M.NYAMAI LECTURE ORIGIN, STRUCTURE AND COMPOSITION OF THE EARTH

The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of

Physics 1010: The Physics of Everyday Life. TODAY Black Body Radiation, Greenhouse Effect

1. The diagram below shows a cross section of sedimentary rock layers.

8.1 Radio Emission from Solar System objects

FORMATION OF EARTH. Today we are going to talk about the earth.how it was formed.

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Global Warming and Greenhouse Gases Reading Assignment

The atmospheres of different planets

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

The Sun and Solar Energy

L3: The formation of the Solar System

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

4 HOW OUR SOLAR SYSTEM FORMED 750L

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Science 9 Worksheet 13-1 The Solar System

The Sun. Solar radiation (Sun Earth-Relationships) The Sun. The Sun. Our Sun

The most interesting moons in our solar system

Teacher notes for activity: What is global warming?

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Introduction to the Solar System

Geol 116 The Planet Class 7-1 Feb 28, Exercise 1, Calculate the escape velocities of the nine planets in the solar system

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

Pre-lab Homework Lab 10: Global Warming Prior to lab, answer the following questions to help you become prepared for the lab.

Our Solar System, Our Galaxy, then the Universe

Tidal Forces and their Effects in the Solar System

Transcription:

1

Summary of best chances for life in Solar System What is meant by habitable? What distances from the Sun could the Earth be and still be habitable? What can we learn from Earth s temperature history, distant past and current? Relevance of mass of planet Relevance of mass of star Relevance of age of star. 2

The habitable zone around a star is the range of locations around a star where life based on liquid water could exist. By this definition, the habitable zone is based on an Earth-like planet, Earth-like life and water. We will stretch this a little by allowing for modest changes in the CO 2 content of the atmosphere. Note the habitable zone is not the same as the human comfort zone. Worlds with average temperatures of 1 C or 30 C, compared to our 14 C, are allowed. 3

Continuously A refinement: as we will see, stars change their luminosity with time Therefore, a more restrictive requirement that has been suggested is that a planet must be in the habitable zone for its entire history, not just at one point Is this reasonable? 4

The only planet in the habitable zone in the current Solar System is the Earth. How much closer or farther from the Sun could the Earth be and still be habitable? 5

Background: Radiation Intensity The intensity of light diminishes like the inverse square of the distance from source Why? Same light, but spread over area that goes like the square of the distance from the source http://www.e-radiography.net/radtech/i/inverse%20square%20law.jpg 6

Examples of Intensity Mercury s average distance from Sun is 0.39 times Earth s Average intensity 1/(0.39) 2 =6.6 times Earth s Mars s average distance from Sun is 1.52 times Earth s Average intensity 1/(1.52) 2 =0.43 times Earth s But how does this translate into temperature? 7

Temperature vs. Intensity http://www.goiit.com/upload/2009/9/5/2669bfc0a49e880f2dabd261bca06506_1418968.png 8

Temperature vs. Intensity If all else is equal (which it isn t), the radiated luminosity is proportional to the temperature to the fourth power: L~T 4 Therefore, if a planet radiates away all the energy it gets from its star, the temperature of the planet should scale as T~L 1/4 Let s see how this works for Earth... 9

Calculation for the Earth Putting in the right numbers, we predict an average surface temperature of 281 K Real value: 287 K. Pretty close; is this the right track? http://www.toonpool.com/user/997/files/solar_energy_earth_sun_twerps_234435.jpg 10

Combining Distance, Temperature Recall that the luminosity absorbed by a planet scales as 1/d 2 (d is the distance) The luminosity radiated scales as T 4, if the planet absorbs all the luminosity Thus T 4 ~1/d 2, or T~1/d 1/2, i.e., T~d -1/2 How does this prediction compare with what we see? 11

Predicted vs. Actual Temperature http://physics.lakeheadu.ca/courses/astro/2310/planetgraphs/temp.jpg 12

How Did We Do? Pretty well, right, except for Venus? Yes, but there are two effects that we have not yet included that can play a major role What are they? 13

How Did We Do? Pretty well, right, except for Venus? Yes, but there are two effects that we have not yet included that can play a major role What are they? Albedo: planets can reflect some fraction of radiation back into space without absorbing Greenhouse effect: atmosphere can trap radiation, heating further (Venus!!) 14

The inner boundary for the Earth is set by overheating. As you move the Earth inward -- it receives more solar energy -- which increases the temperature -- which increases water vapor -- which is a greenhouse gas -- which traps the heat -- which increases the temperature A positive feedback loop which pushes the temperature up and up 15

The inner boundary for the Earth is set by overheating. The most liberal estimate allows the Earth to be as close as 0.84 AU. The more conservative estimate allows the Earth to only be as close as 0.95 AU. 16

The inner boundary for the Earth might also be set by the early CO 2 rich atmosphere of the Earth If the Earth was too close at that time, perhaps liquid water would never have formed, so the CO 2 in the atmosphere would never have been locked into rocks. The inner boundary for this is likely around 0.9 AU. 17

The outer boundary for the Earth is set by the need to keep the temperature high enough for liquid water. The temperature of a planet is set by the balance between the energy received from the Sun and the energy emitted by the planet by virtue of being warm. Energy in = Energy out Energy in decreases with distance squared from the Sun Energy out decreases as planet temperature to the fourth power -- roughly. 18

The outer boundary for the Earth is set by the need to keep the temperature high enough for liquid water. Freezing temp: 273 K Current global average temperature = 14 C = 287 K Distance from Sun 1 AU 1.05 AU 1.1 AU 1.15 AU Solar energy 100 % 90.6% 83% 75% Temperature 287 280 274 267 Clearly there is a problem with freezing by 1.15 AU 19

Albedo Also note that the temperature depends on the reflectivity, or albedo, of Earth Ice reflects most light, so lots of ice means colder temperatures One might think this would result in a runaway (Snowball Earth), but Earth also has internal heat sources 20

Albedo Values for planets run from 0.11 (Mercury; only 11% of light is reflected back) to 0.65 for Venus (65% of light reflected back) If albedo is α, equilibrium temperature should scale as (1-α) 1/4 Over 0.11 to 0.65 range, would imply a range of 20% in temperature; big! Equivalent of factor of 1.6 in distance 21

But this really underestimates the problem for precisely Earth-like conditions because it does not account for changes in the Earth in response to the temperature. Fortunately the Earth s historical record provides evidence of how our planet reacts to global changes. And we are doing more experiments today with CO 2 emission! We can estimate global temperature in the distant past from geological records, measurements of 18 O content in sediments, and other chemical tracers. 22

23

Artic and Antarctic ice cores provide valuable records of the atmospheric composition and average temperature over several 100,000 years. Sediments can stretch back millions of years. 24

25

26

The actual temperature of the Earth depends on: -- CO 2 content of atmosphere -- ice coverage -- continental location -- ocean currents -- Sun s brightness 27

There is a global feedback loop that acts on geological timescales. Too hot? -- more rain means more CO 2 locked into rock -- decreases greenhouse effect Too cold? -- more ice cover kills plants and decreases rain -- natural CO 2 from volcanoes not removed -- increased greenhouse effect But these regulating mechanisms act on 100,000 year timescales and only within limits. 28

Runaway greenhouse: -- too much CO 2 or increase solar energy -- temperature increases increasing water vapor -- more greenhouse effect -- higher temperature and more greenhouse effect Runaway snowball -- too little greenhouse effect or dimmer Sun -- ice cover increases reflecting light -- reduced heating -- more ice and more reflected light less heating 29

Our current experiment with CO 2 increases! 30

31

So we are in the loop of. More CO 2 gives more heating.. Which melts ice which increases the heating which may also release methane and CO 2 locked in permafrost.. More greenhouse 32

33

How does the Earth deal with this? Humans die. CO 2 production decreases. Excess CO 2 is gradually locked back into rocks and sequestered in plant matter temperature drops 34

Returning to our habitable zone question. For the Earth, increasing the CO 2 by 60 parts per million increases the global temperature by 0.6 C If we want Earth-like conditions at 1.15 AU, we need to increase the global temperature by 20 C using greenhouse gases so going from 380 parts per million currently to about 2500 parts per million would likely do it! That is an abundance of only 0.25%. The atmosphere is still mostly N 2 and O 2 It is estimated that one could retain Earth-like conditions with a strong CO 2 atmosphere out to 1.4 to 1.7 AU. 35

In summary: ASTR 380 The strict habitable zone for the Earth (as is) is roughly 0.9 to 1.1 AU. If we allow different CO 2 abundance to control the greenhouse effect, the range likely extends from 0.85 to 1.4 AU and maybe even 1.7 AU. 36

Mass of the planet also matters: -- mass controls the amount of atmosphere retained -- affects amount of continuing volcanic activity -- may change the amount of water retained. Too small mass: -- too thin atmosphere -- core solidifies so volcanic activity gone Too big mass: -- retains hydrogen atmosphere extremely thick Likely happy mass: 0.5 to a few Earth masses 37

Mass of Star matters: ASTR 380 More massive stars are brighter: -- habitable zone moves out from star to larger radius because energy in = energy out Less massive stars are dimmer: -- habitable zone moves to small radius. 38

Tidal effects ASTR 380 If a planet is close enough to its host star, then the gravity of the star tends to: Make the planet s orbit more circular Make the planet rotate with the same period it orbits This latter is called tidal locking, and happens only for planets very close to their star. But that s required if the star is very low mass 39

The Age of the Star matters: Younger stars are dimmer: -- zone is closer to star Older stars are brighter: ASTR 380 -- zone is farther from star A given planet may change between being habitable and non-habitable as the star ages 40

41 http://www.redorbit.com/modules/reflib/article_images/6_dac4e7d6b8fb5cf3a1458d796b90d7a9.jpg

Habitable Worlds We can also think of habitable worlds which exist beyond the formal habitable zone -- ice covered worlds which have sub-surface oceans heated by tidal heating or volcanic activity. Europa, Ganymede? -- methane oceans on cold planets or moons --???? 42

My addition with CO 2 Tailored to best case 43

Debate: How important is the habitable zone? First point of view: habitable zone is essential for at least the development of complex life Second point of view: not true; even complex life could develop far outside the traditional habitable zone 44

Summary As always, we are limited by the one example we know But if liquid water in quantity is needed, there is a relatively narrow region that will suffice Can be extended by greenhouse effects or internal heat caused by tidal stresses or cooling, or by albedo 45