Angelika Mader Veri cation of Modal Properties Using Boolean Equation Systems EDITION VERSAL 8



Similar documents
Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance )

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain


Analysis of Software Variants

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

Logic in general. Inference rules and theorem proving

Chapter Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

UNIVERSITY OF WARWICK. Academic Quality and Standards Committee

Left-Handed Completeness

Rigorous Software Development CSCI-GA

Software Modeling and Verification


International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013

Fixed Point Theory. With 14 Illustrations. %1 Springer

A Propositional Dynamic Logic for CCS Programs

Randomized algorithms

calculating the result modulo 3, as follows: p(0) = = 1 0,

Sect Greatest Common Factor and Factoring by Grouping


Activity Networks And Gantt Charts

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Research Note. Bi-intuitionistic Boolean Bunched Logic

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Real-TimeVericationofStatemateDesigns. applicationsraisesthedemandforprovingtheircorrectness.becauseverication

MEZZANINE DEBT TERM SHEET HEADINGS

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Bachelor of Science in Marketing Curriculum

Linear Regression. Guy Lebanon

Algorithm Design and Analysis

Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer

Non-deterministic Semantics and the Undecidability of Boolean BI


2.3. Finding polynomial functions. An Introduction:

How To Understand The Theory Of Algebraic Functions

p: I am elected q: I will lower the taxes

How To Prove The Dirichlet Unit Theorem

University of Ostrava. Fuzzy Transforms

AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and

SUPPORTI PER VETRO SUPPORT FOR GLASS. ACCESSORI PARAPETTI / Supporti per vetro FITTINGS FOR RAILINGS / Support for glass COD. COD. COD.

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Model Checking: An Introduction

IVECO pag MAN pag SCANIA pag VOLVO pag GEARBOX CAMBIO

COURSE NAVIGATOR DEMO QUICK GUIDE

QMC: A Model Checker for Quantum Systems

An Introduction to AC Field Hall Effect Measurements

Software Model Checking: Theory and Practice

Introduction to Finite Fields (cont.)

OpenStax-CNX module: m Quadratic Sequences 1; 2; 4; 7; 11;... (1)

TrinityHall, Cambridge, England.

2.8.3 / (Z80 Serial I/O)

Lights and Darks of the Star-Free Star

Factorization in Polynomial Rings

Reachability in Succinct and Parametric One-Counter Automata

The Butterfly, Cube-Connected-Cycles and Benes Networks

On some Constructions of Shapeless Quasigroups

Duality of linear conic problems

Foundational Proof Certificates

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

4.5 Linear Dependence and Linear Independence

General Framework for an Iterative Solution of Ax b. Jacobi s Method

CS510 Software Engineering

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

ORIENTATIONS. Contents

3.1 Solving Systems Using Tables and Graphs

Solving Quadratic Equations by Factoring

Applied Mathematics and Computation

EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Factor analysis. Angela Montanari

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -

DNA Data and Program Representation. Alexandre David

Semester Review. CSC 301, Fall 2015

Beyond Propositional Logic Lukasiewicz s System

Board Notes on Virtual Memory

Informatique Fondamentale IMA S8

Sect Solving Equations Using the Zero Product Rule

Database Design and Normalization

On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases

Examples of Tasks from CCSS Edition Course 3, Unit 5

Abstract Algebra Cheat Sheet

Transcription:

UsingBooleanEquationSystems VericationofModalProperties AngelikaMader EDITIONVERSAL8

Band1:E.Kindler:ModularerEntwurf Herausgeber:WolfgangReisig Lektorat:RolfWalter EDITIONVERSAL Band2:R.Walter:PetrinetzmodelleverteilterAlgorithmen. verteiltersystememitpetrinetzen Band4:K.Schmidt:SymbolischeAnalysemethoden Band3:D.Gomm:ModellierungundAnalyse mitpetrinetzen verzogerungs-unabhangigerschaltungen BeweistechnikundIntuition Band5:M.Kohn:FormaleModellierung Band6:D.Barnard:TemporalLanguageofTransitions furalgebraischepetrinetze asynchronersysteme Band8:A.Mader:VericationofModalProperties Band7:U.Jaeger:EventDetectionin UsingBooleanEquationSystems ActiveDataBases andclient-serversystems

UsingBooleanEquationSystems VericationofModalProperties AngelikaMader DieterBertzVerlag

Systems/AngelikaMader.{Berlin:Bertz,1997 Mader,Angelika: VericationofModalPropertiesUsingBooleanEquation (EditionVersal;Bd.8) Zugl.:Munchen,Techn.-Univ.,Diss.,1997 DieDeutscheBibliothek{CIPEinheitsaufnahme NE:GT ISBN3-929470-5n-x AlleRechtevorbehalten GorlitzerStr.37, c1996bydieterbertzverlag,berlin

Abstract expressionscontainingleastandgreatestxpoints.fixpoint-equation model-checking. Themodal-calculuscontainsxpoint-operatorswhichgivegreatexbraicallyweintroducexpoint-equationsystemsasanextensionopressivepower.Inordertotreatthemodel-checkingproblemalge- systemsexpressedinthemodal-calculus.thisapproachiscalled Thethesisisconcernedwithvericationofpropertiesofconcurrent and presentanewalgorithm,similartogaueliminationforlinearequationsystems. BooleanlatticesarecalledBooleanequationsystems.Modelcheck- solvingnitebooleanequationsystems.wediscussexistingmodelcheckingalgorithmsfromtheperspectiveofbooleanequationsystems systemsinterpretedoverthebooleanlatticeoraninniteproductof Asanapplicationweinvestigatealgorithmssolvingtheproblemof ingforsystemswithnitestatespacesisshowntobeequivalentto mutualexclusion,constructformulaeforlivenesspropertiesandverify lencetoanautomata-theoreticproblembygoingviabooleanequa- tionsystems.thereexistedareductionofmodel-checkingtoagame wepresentanalgorithm,similartothegaueliminationalgorithmfor equivalence. Forthecaseofinnitestatespaceswealsoshowthatmodel-checkingis thenitecase. equivalenttosolvinginnitebooleanequationsystems.additionally, themwithanimplementationofthegaueliminationalgorithm. Model-checkinginthemodal-calculushasalreadybeentreatedin automatatheoryandgametheory.weareabletoshowanewequiva- theoreticproblem.usingbooleanequationsystemswecanprovethe

environmentheprovidedforus,andhisliberalattitudes,whichmade acarefreeandconcentratedwayofworkingpossible. fortheconstantsupportofmyallactivitieshere,thecomfortable IamindebtedtomyproofreadersJulianBradeld,EdBrinksmaand EkkartKindler.Theircommentsandcarefulcriticismwereofgreat Acknowledgement helpformeinndingoutwhatiwasdoing,inimprovingmywork, Intherstplace,IwouldliketothankmysupervisorWilfriedBrauer ereeandformostlyilluminatingdiscussions,julianbradeldforhis commentsonpartsofthethesis. IamverygratefultopeopleinEdinburgh:ColinStirlingforbeingref- and,whatisperhapsevenmorevaluable,theyincreasedthefuni hadwhenwritingup.thanksalsotochristinerocklwhogaveuseful EdBrinksmaandPeterRossmanithsupportedmeinndinganexponentialexampleformyversionoftheGaualgorithmanddelivered scienticatmosphereandthegreatvarietyofsinglemaltscontributed enormouslytomyenjoymentofmyvisitstoedinburgh. Kaivolaforclarifyingautomata-theoreticconcepts.Theimpressive forhertheoreticalandpracticalhelpconcerninggames,androope hisinsightinbooleanequationsystemswithme,perditastevens friendshipandpleasantcooperation,kyriakoskalorkoti,whoshared sharptongueofdominikgomm. liketoacknowledgeallpeopleofthegrouphere,andthosewholeftto Berlin.Ispentagoodtimewiththem.Particularly,Iammissingthe Gaualgorithmwasextremlyhelpfultome.Furthermore,Iwould pleasuretome.hisneverendingengagementinimplementingthe mefromalong-termpassion.infrankwallnerifoundacolleague ManythanksgotoBarbaraRoemerwhogavevaluablehintsconcerninglayout. whowasnotafraidofxpointsanddiscussionswithhimwereagreat WithoutGerhard'ssupportIcouldnothavedonethisworkandmany (Sonderforschungsbereich342)forfundingmypositionattheTU. IthankFa.Siemens,ZFE,andtheDeutscheForschungsgemeinschaft otherthingsatthesametimewhilehavingachild.manythanksalso

todavidforconsistentlyrelativizingallupsanddownsconcerningmy workandforallthenightshesleptthrough. >FromEd,myparents,familyandfriendsIreceivedvaluablesupport ofvariouskindsduringallthetime,forwhichiowethemgreatthanks.

Contents 2Basics. 1Introduction. 2.2Fixpointsandtheirproperties.::::::::::::::22 1.1Generalintroduction.::::::::::::::::::::11 2.1Ordersandlattices.:::::::::::::::::::::19 1.2Synopsis.::::::::::::::::::::::::::16 2.2.1Simplexpoints.::::::::::::::::::22 19 11 4Themodal-calculus. 3Fixpoint-equationsystems. 3.1Fixpoint-equationsystemsforcompletelattices.::::28 4.1Syntaxandsemantics.:::::::::::::::::::45 3.2Booleanequationsystems.:::::::::::::::::39 2.2.2Nestedxpoints.::::::::::::::::::24 4.3Propertiesofthemodal-calculus.::::::::::::51 4.2Basicformulae.:::::::::::::::::::::::49 45 27 6SolvingBooleanequationsystems. 5Booleanequationsystemsformodelchecking. 5.3ReductionofBooleanequationsystems.:::::::::62 5.1Reductionofthemodelcheckingproblem.::::::::56 5.2Representationandcomplexity.::::::::::::::59 6.1PlainBooleanequationsystems.:::::::::::::70 69 55

106.4Gauelimination.::::::::::::::::::::::81 6.3Tableaux.::::::::::::::::::::::::::76 6.2Approximation.:::::::::::::::::::::::72 6.4.2Complexityforthegeneralcase.:::::::::87 6.4.3Complexityforsubclasses.:::::::::::::92 6.4.1Globalandlocalalgorithm.::::::::::::82 CONTENTS 7Peterson'smutexalgorithm. 8Equivalenttechniques. 6.5Complexity.:::::::::::::::::::::::::94 7.2FairnessandLiveness.:::::::::::::::::::100 8.2Graphgames.::::::::::::::::::::::::116 8.1Alternatingautomata.:::::::::::::::::::109 7.3ExperimentalResults.:::::::::::::::::::106 7.1Modellingthealgorithm.::::::::::::::::::98 109 97 9InniteBooleanequationsystems. 9.6Conclusion.:::::::::::::::::::::::::136 9.5Examples.::::::::::::::::::::::::::133 9.4Eliminationmethod.::::::::::::::::::::130 9.2Equivalencetothemodelcheckingproblem.:::::::125 9.1Denitions.:::::::::::::::::::::::::122 9.3SetbasedBooleanequationsystems.:::::::::::127 121 AAppendix 10Conclusion. A.3ProofsofChapter8.::::::::::::::::::::161 A.2ProofsofChapter5.::::::::::::::::::::158 A.1ProofsofChapter3.::::::::::::::::::::145 10.2Innitestatespacemodelchecking::::::::::::142 10.1Finitestatespacemodelchecking:::::::::::::139 145 139 Bibliography A.4ProofsofChapter9.::::::::::::::::::::166 173

Chapter1 Introduction. 1.1Generalintroduction. be,itispossiblethatitshouldbe... Yet,fromtheproposition`itmaybe' Whenitisnecessarythatathingshould fromthatitfollowsthatitisnotnecessary;itcomesaboutthereforethatthe itfollowsthatitisnotimpossible,and ianstoicsalsodealtwithmodallogics,introducingatimebasedinter- pretation:possibleisjustwhateitherisorwillbe;athingisnecessary onlyifitisnowtrueandalwayswillbetrue. Leibnizgaveasemanticmodelforlogicsincludingthemodalities`nec- Aristotle,Hermeneia1 ThebeginningofmodallogicdatesbacktoAristotlewhowasalready concernedwiththelogicofnecessityandpossibility.later,themegar- be;whichisabsurd... thingwhichmustnecessarilybeneednot essarily'and`possibly':heassumedasetofworldsanddeneda propositionbeingnecessarilytrueifitistrueinallworlds,andbeing possiblytrueifthereexistssomeworldwhereitistrue.inaddition, 1see[Boc70]

tury.nowadaysphilosophers,logicians,linguistsandcomputerscien- tistsshareaninterestinthesubject,andvarioussystemsofmodal Formalmathematicaltreatmentofmodallogicstartedinthiscen- logichavebeendeveloped. 12 Infurtherdevelopment,morestructurewasgiventothemodelof heprovedthatweliveinthebestofallpossibleworlds. Chapter1.Introduction. worlds.whendecidingwhethersomepropositionpisnecessaryin areorderedlinearlyintime. oneworldonlyaspeciedsetofworldsmayberelevant,whichneed Incomputersciencemodalandtemporallogicplayaroleinthevericationofsystems.Here,thetaskistoshowthatasystemmeets itsspecicationwhichmayconsistofsetofpropertiesexpressedas systems.theyconsistofasetofstates(representingtheworlds)and formulaeofalogic. ModelsformodallogicareKripkestructures,alsocalledtransition transitionsbetweenthestates(theaccessibilityrelation).atransition pinballmachine.transitionsmaycarryalabelidentifyinganaction (write1toamemorycell,shootthepinball)ormodellingjustthe systemmodelsthedierentstatesanarbitrarysystemcanenter,and actionsleadingfromonestatetoanother.astatecanrepresente.g. on-goingofasystemastimepasses.thelattercaseprovidesamodel fortemporallogic. Propositionsareaboutstatesorpathsofamodel,e.g.forthepinball thecontentofamemory,thevalueofaprogramcounter,astateofa machineinitiallytheonlypossibleactionistoinsertacoin;thereexists arunofthepinballmachine,whereialwaysgetafreegame,or,ifi rolldown. oneworldmeansthatpbeingtrueinallworldsaccessiblefromthe currentone.temporallogicisthendenedasamodallogic,where accessibilitybetweenworldsrepresentstimepassingby,andtheworlds anaccessibilityrelationbetweenworlds,andpisnecessarilytruein notincludeeveryworldinthemodel.thisfeatureisrepresentedby hitthepinballmachineinnitelyoftenthentheballwilleventually

tiveprograms.provingcorrectnessforaprogramwastoshowthat [MP69],Park[Par70]andHoare[Hoa69]wereimportantdevelopments givenaspeciedinputtheprogramwouldterminateandproduce aspeciedoutput.theworksoffloyd[flo67],mannaandpnueli Intherstperiod,objectsofvericationweresequentialandimpera- inthiscontext. 1.1.Generalintroduction. 13 Therstmodallogicsforvericationweredynamiclogicsintroduced bypratt[pra76],andmostlyusedinthepropositionalversion.propositionaldynamiclogic(pdl)isbuiltupfrompropositionallogic extendedbythemodalitieshi,whereaprogramisaregularexpressionoverasetofatomicprograms.theformulahipistrueata state,whereitispossiblefortheprogramtoexecuteandresultin astatesatisfyingp.variousrestrictionsandextensionsofpdlhave acteristicsofprograms:terminationandresultsproducedwerenot longernecessaryfeatures,buton-goingandinteractionwithanenvironmentbecamerelevant.pnuelicalledthem\reactivesystems". andpdl-[str81]whereaninniteloop-operatorisaddedtopro- beeninvestigated.themostfamousonesarepdlwithtestprogams, gramexpressions. Theintroductionofconcurrencycausedchangeconcerningthechar- Clarke,EmersonandSistla[CES86],andothersstartedwithanew approach,calledmodel-checking.here,vericationfornitestatesystemsisperformedautomaticallyand,incontrasttoderivingaproof, Pnueli[MP83]foundthattemporallogicissuitableinthiscontext. Theyappliedaproof-theoreticstyleofverication:foragivenprogramtheyderivedasetoftemporalpropertiesandshowedthatthe Provingcorrectnesshererequiredmoreexpressivelogics.Mannaand specifyingpropertywasaconsequenceofthisset(orwasnot). pinballmachinetheninnitelyoftenitwillbeinthestate\tilt"). relevantpropertiesarenot(e.g.ifinnitelyoftenaplayerhitsthe ifthepinballisshotthenitwilleventuallyrolldownagain),butsome (CTL).Inthislogicanumberofusefulpropertiesisexpressible(e.g. analgorithmreceivingaformulaandamodelasinputgivestheresult trueorfalse.thetemporallogictheyusediscomputationtreelogic

AnextensionofCTLthatcanexpressthe\tilt"-propertycitedabove thetacklingofthesizeofproblemsandthedenitionofmoreexpressivelogics.ofcourse,theproblemsarenotmutuallyindependentof isvericationandthesmalleristhesizeofsolvableproblems. 14 eachother;roughly,themoreexpressivealogicis,themorecomplex Insubsequentdevelopment,workwascenteredmainlyontwoissues: Chapter1.Introduction. iscalledctl*.forthistemporallogicemersonandlei[el86]presentedamodel-checkingalgorithm. MeanwhilealsovariousextensionsofCTLandCTL*havebeeninves- andthexpointoperatorsand.themodalitiesallowonetoexpresspropertiesforonenext-step,whilebymeansofleast(anddually additiontopropositionallogicitcontainsthemodalities[a]andhai modalandtemporallogicsmentionedabove:themodal-calculus.in tigatedwhicharemoreexpressive,butstillsimpleenoughformodel- checking. greatest)xpointimmediatelypropertiesoverniteandinnitepaths Kozen[Koz83]introducedaverypowerfullogic,subsumingallother canbemodelled.thebeautyofthislogicliesinitsexpressivenessin combinationwithitssimplicity.therstmodel-checkingalgorithm forthemodal-calculuswasdevelopedbyemersonandlei[el86]. However,thecomplexityoftheiralgorithmishigherthanthatforless expressivelogicssuchasctl:itisofexponentialcomplexityinthesize byso-called\symbolicmodel-checking".forearlieralgorithmsthe Concerningthesizeofproblemsconsiderableprogresshasbeenachieved thecomplexityofthisproblemhavenotyetbeendetected. -calculushavebeensuggested,yettherehasnotbeenanyessential algorithmsforctl.sincethenanumberofalgorithmsforthemodal improvementconcerningcomplexitysofar,andthelowerboundsfor oftheformulaincontrasttopolynomialcomplexityofmodel-checking model,atransitionsystem,hadtoberepresentedexplicitly.ina newapproachforctlmodel-checkingburch,clarkeandmcmillan [BCM+92]choseBinaryDecisionDiagrams(BDDs)asdata-structure, sizeofproblemsthatcouldbetreatedgrewenormously. whichallowedaverycompactencodingoftransitionsystems,andthe

However,thesizeofthetransitionsystemsisstillthemostlimiting probleminthisarea.especiallyforconcurrentsystemstheso-called \statespaceexplosion"makesvericationdicultorevenimpossi- 1.1.Generalintroduction. ble.reductiontechniquesfortransitionsystemshavebeeninvesti- gatedincludinge.g.abstractionsandsymmetries,whichrelativize thepurelyautomaticapproachandreintroduceelementsofproofto 15 ornoteventhesetofreachablestates,buta(hopefullysmall)subset whetherapropertyholdsofpathsstartingfromtheinitialstateofa system.showingitscorrectnessmaynotrequirethewholestatespace, setofallstatessatisfyingaproperty.usually,weareinterestedin model-checking. Themethodofmodel-checkingdescribedaboveis\global"inthesense thatthealgorithmstraversethewholestatespaceanddeterminethe StirlingandWalker[SW89]informofatableausystem. ofit.algorithmsbasedonthisideaarecalled\local".alocalmodelcheckingalgorithmforthemodal-calculuswasrstintroducedby grammars. sistanceisapossibility.bradeldandstirling[bs90,bra92]developed modelsdenede.g.bysomepetri-netclasses[en94],orcontext-free automaticmethods.however,provingpropertieswithcomputeras- atableaumethodallowingcomputer-aidedvericationforformulaeof themodal-calculus.otherworkhasbeendoneinthisareaforinnite Inthecaseofgeneralinnitestate-spacesthereisnohopeforfully Booleanequationsystems.Infact,wecanshowthatthetwoproblems formedtotheproblemofsolvingaclassofequationsystems,called -calculus.theapproachisanalgebraicone:model-checkingistrans- showtheirrelationstoothertechniques,inautomatatheoryandgame areequivalent,forthecaseofnitesystemsaswellasforinniteones. Basedonthisequivalencewediscussmodel-checkingalgorithmsand Alsointhiswork,weareconcernedwithmodel-checkingforthemodal theory.thefollowingsectiongoesontooutlinethisinmoredetail.

16 1.2Synopsis. Inthebeginningwegiveabriefcollectionofrelevantdenitionsand factsfromlatticetheoryandthexpointtheoremswhicharestructures Incomputersciencemainlyleastxpointshavebeenconsidered.Propositionsforexpressionscontainingleastandgreatestxpointoperators donotgobeyonddualityargumentssofar.chapter3containstherst contributionofthiswork:anintroductionofxpoint-equationsystems entailsanextensivecollectionofpropertiesofxpoint-equationsystems.thedierencebetweenmoretraditionalequationsystemsand xpoint-equationsystemsconsistsoftheadditionalstructuregivento thelatter:thereisanorderdenedontheequationsandeachequationisequippedwithaminimalityormaximalitycondition.because ofthisstructureknownresultsforsolutionsofequationsystemsover latticesdonotapplyforthexpoint-equationsystems.inthiswork xpoint-equationsystemswillbeinterpretedoverthebooleanlattice fornitestatespacemodel-checkingaswellasoveraninniteproduct ofbooleanlatticesformodel-checkingofinnitestatespaces.section 3.2containsdenitionsandpropertiesforthenitecase,extending Booleanequationsystems. Chapter4containsanintroductiontothemodal-calculus,including propertiesforxpoint-equationsystemsoverarbitrarylattices.the interpretedinthiswayarecalledbooleanequationsystemsandinnite syntax,semantics,basicnotationsandfacts. Themainpointofchapter5istheequivalenceofthemodel-checking innitecasewillbetreatedinchapter9.fixpoint-equationsystems problemfornitestatespacesandtheproblemofsolvingboolean equationsystems.reductionstobooleanequationsystemsforthecase ofnon-alternating-calculusexpressionshavealreadybeentreatedby applyingdirectlytothegeneralcase.thesizeofabooleanequation otherpeople.theextensiontothegeneralcasecouldbedonebythe andfactsbasicforthewholework. Chapter1.Introduction. asageneralizationofnestedandalternatingxpoint-expressions.it well-knownxpointtheorems.here,insection5,wegiveareduction

equationsystem,weconstructaformulaofthemodal-calculusanda Section5.2showsthereductionintheotherdirection.GivenaBoolean simpleformforequationshastobedenedfollowingknowntechniques. systemlinearinthesizeoftheoriginalmodel-checkingproblemaa 1.2.Synopsis. systemderivedislinearinthesizeofthemodelandlinearinthesize oftheformula.inordertogetarepresentationofabooleanequation 17 relatingittothe\classical"versionofbooleanequationsystemswithoutorderontheequationsandwithoutsideconditionsforxpoints. thethemodelsatisestheformula.thesizeofthemodelisquadratic inthesizeofthebooleanequationsystem,thesizeoftheformulais linear. Chapter6dealswithmethodsforsolvingBooleanequationsystems, localaswellasglobalones.westartwithadiscussionoftheproblem, model,suchthatthebooleanequationsystemhasthesolutiontruei inationforlinearequationsystems.itleadstoboth,alocalanda BooleanequationsystemsbeinginNP\co-NP,andaccordingtothe techniqueforbooleanequationsystemswhichissimilartogauelim- Theknownmethodssolvingthemodel-checkingproblemaretheapproximationtechniqueandatableaumethod.Weinterpretethem equivalenceresultsalsothemodel-checkingproblemiscontainedin globalalgorithm.thelastsectioncontainsasimpleproofforsolving onbooleanequationsystems.inadditionwepresentanewsolving thisclass,whichisaknownresult. Examplesforapplicationarepresentedinchapter7.Here,wefocus inotherframeworks:thereexistreductionstoproblemsinautomata- algorithmsolvingtheproblemofmutualexclusion.theseproperties providenon-trivialexamplesfor-calculusformulae.theyareveri- edwithanimplementationofgaueliminationforbooleanequation systems. Themodel-checkingproblemforthemodal-calculushasbeentreated oncomposingandprovingdierentlivenesspropertiesforpeterson's andgame-theory.intherstcaseallautomataderivedaretree- automata.insection8.1weshowtheequivalenceofmodel-checking andthenon-emptiness-problemofalternatingautomataoninnite

playerhasawinningstrategyforagameandsolvingabooleanequationsystem.thereductionofbooleanequationsystemstomodelcheckinggivesimmediatelyareductionfromamodel-checkinggame games.insection8.2,weshowtheequivalenceofdecidingwhethera Themodel-checkingproblemhasalsobeenreducedtomodel-checking wordsoverasingle-letteralphabetwithaparityacceptancecondition. Chapter1.Introduction. 18 xpoint-equationsystemsinterpretedovera(possiblyinnite)productofbooleanlattices.theequivalenceofinnitebooleanequation systemsandthemodel-checkingproblemforinnitestatespacesis Sofarwehaveonlybeenconsideringnitestatespaces.Inchapter toamodel-checkingproblem,whichhasbeenanopenquestion. case.booleanequationsystemsastheyareusedherearederivedfrom provedbyreductionsinbothdirections.theseresultsareonlyuseful whenhavinganiterepresentationoftheproblemwhichisgivenby 9,thetheoryofBooleanequationsystemsisextendedtotheinnite setbasedequationsystems.wepresentaneliminationmethodusing ideasfromgaueliminationforthenitecaseandfromthetableau examplesdemonstratethetechnique. Thethesisendswithconcludingremarksputtingourresultsinageneralframework. methodofbradeldandstirling.itsolvessetbasedequationsystemsandalsothemodel-checkingproblemfortheinnitecase.small

Chapter2 Basics. xpointoperatorsofmodallogichavetobedenedviacontinuous interpretedasanorderpreservingfunctionbetweentwolattices.the functions.therefore,wecollectheretherelevantdenitionsandfacts. iscompletelattice.thesemanticofaformulaofmodallogiccanbe 2.1Ordersandlattices. Thebasicstructureinthisworkarelattices;formulaeofmodallogic withimplicationorderformalattice,thepowersetofastatespace Adetailedintroductionintolatticesandorderscanbefound[DP90]. Asetequippedwithapartialorderiscalledanorderedset. (transitivity)xyandyzimplyxz (antisymmetry)xyandyximplyx=y ifforallx;y;z2p: (reexivity) Denition2.1AbinaryrelationonasetPisapartialorder greatestelementofqisa2qifaxforallx2q.dually,the Denition2.2GivenanorderedsetPandasubsetQofPthe xx leastelementofqisa2qifaxforallx2q.

20Denition2.3LetPbeanorderedset.Thegreatestelementof P,ifitexists,iscalledthetopelementofPandwritten>.Dually, Proposition2.4GivenanorderedsetPanysubsetQPisan Pandwritten?. theleastelementofp,ifitexists,iscalledthebottomelementof Chapter2.Basics. orderedset. Proposition2.5Let(P1;1);:::;(Pn;n)beorderedsets.Their productp1:::pncanbeequippedwithapartialorderbypointwisedenition:(x1;:::;xn)(y1;:::;yn)ixiiyifor1in. Denition2.6LetPandQbeorderedsets.Thesetoffunctions fromptoqisdenotedby(p!q).foreachfunctionf2(p!q) Onthesetoffunctions(P!Q)anorderisinheritedfromthe p1p2itisthecasethatf(p1)f(p2). thedomainispandthecodomainisq. Afunctionf2(P!Q)ismonotone,ifforallp1;p22Pwith ThesetofallmonotonefunctionsisdenotedbyhP!Qi. f(a)g(a)foralla2a. orderontheircodomainq:letf;g2(p!q).thenfgif Denition2.7LetPbeanorderedsetandSbeasubsetofP. Thenx2PisanupperboundofS,ifsxforalls2S.Dually x2pisalowerboundofs,ifxsforalls2s. AllupperboundsofSarecollectedinaset"S,thelowerbounds TinsteadofWandV,and[and\insteadof_and^. inmumvfx;yg.whenspeakingaboutpowersetswewillusesand Notation:ForthesupremumWfx;ygwewritex_y,andx^yforthe VS.TheyarealsocalledthesupremumandinmumofS. upperboundofs,anddenotedbyws.thegreatestelementof #Sifitexists,iscalledgreatestlowerboundofS,anddenotedby inaset#s.theleastelementof"s,ifitexists,iscalledleast

2.1.Ordersandlattices. Denition2.8LetPbeanon-emptyorderedset.Pisalattice, ifx_yandx^yexistforallx;y2p.pisacompletelattice,if WSandVSexistforallsubsetsSP. Proposition2.9 21 (5)IfPandQare(complete)latticesthenalsothesetsoffunctions (4)ForanysetXitspowersetP(X)equippedwiththesetinclusion (1)InalatticeWSandVSexistforallnitesubsetsSP. (2)Everynitelatticeiscomplete. (3)Inacompletelatticethebottomelement?andthetopelement inmumareobtainedpointwise. (P!Q)andhP!Qiare(complete)lattices.Supremumand orderisacompletelattice. >exist. fop(k1) theoperationssupremum_andinmum^,andasetofoperators sions.thesearebuiltupbyvariablesxfromasetofvariablesx, theoperatorop(ki) Inmostcaseswethinkoffunctionsasrepresentedbyfunctionexpres- f::=xjf_fjf^fjop(ki) monotonefunction,andspsuchthatwsandvsexistin Proposition2.10LetPandQbeorderedsets,f:P!Qa 1;:::;Op(kn) P,andWf(S),Vf(S)existinQ.Thenf(WS)Wf(S)and ngforsomen2in,wherekidenotesthearityof f(vs)wf(s). i. i(f;:::;f) directed,ifeverynitesubsetfofshasanupperboundins. Proposition2.11Productsofcompletelatticesequippedwitha partialorderasinproposition2.5arecompletelattices. Denition2.12Anon-emptysubsetSofanorderedsetPis

22Thenf:P!QiscontinuousifforeverydirectedsetinPitisthe casethatf(wd)=wf(d). Denition2.13LetPandQbecompletelattices. Afunctionthatpreserves?,i.e.f(?)=?iscalledstrict. Chapter2.Basics. Proposition2.14LetPandQbecompletelattices.Thenevery 2.2Fixpointsandtheirproperties. Denition2.15GivenalatticePandafunctionf:P!P.An elementx2pisaxpointoffiff(x)=x. monotonefunctionf:p!qisalsocontinuous. TheverybasictheoremcomesfromTarski[Tar55](seealso[LNS82]). Thissectionisacollectionofvariouspropertiesofxpointswhichcan befoundintheliterature.itstartswithpropertiesofsimplexpoints, bothleastandgreatest.thenwelookatthemoregeneralcasewhere xpointoperatorsofpossiblydierenttypearenested. Itguaranteestheexistenceofaleastandgreatestxpointforamonotonefunctionoveracompletelattice. 2.2.1Simplexpoints. Wewillusewhenreferringtoeitheror. Thenextproperties(formonotonef)canbefounde.g.in[Koz83]. notemptyandthesystem(p;)isacompletelattice;inparticular theleastxpointisx:f(x)=vfa2ajf(a)agandthe monotonefunction,andpthesetofallxpointsoff.thenpis Theorem2.16Let(A;)beacompletelattice,f:A!Aa greatestxpointisx:f(x)=wfa2ajf(a)ag.

2.2.Fixpointsandtheirproperties. Proposition2.17 (1)f(X:f(X))=X:f(X) (2)Iff(a)athenX:f(X)a. (3)Iff(a)athenX:f(X)a. (4)Iff(a)g(a)foralla2AthenX:f(X)X:g(X). 23 Thefollowingpropertyisknownasthereductionlemma,seeforexample[Koz83],[Win89]. Lemma2.18aX:f(X)iaf(X:(f(X)_a)) (6)X:f(X)=X:f(f(X)) (5)Iff(a)=f(b)foralla;b2AthenX:f(X)=f(X). generalversion,usingtransniteiteration(see[lns82]). butnoconstructivemethodtoyieldit.thisisthesubjectofthenext Tarski'stheoremshowstheexistenceofaleastandgreatestxpoint, well-knowntheorembasedonapproximants.itispresentedhereinits Denition2.19Let(A;)beacompletelatticeand or,dually,ax:f(x)iaf(x:(f(x)^a)). term,whereisanordinal.theapproximanttermsaredenedby +1X:f(X)def transniteinduction: f:a!aamonotonefunction.thenx:fisanapproximant X:f(X)def X:f(X)def 0X:f(X)def 0X:f(X)def =^<X:f(X) =_<X:f(X) => =f(x:f(x)) =? whereisalimitordinal.

24X:f(X)=^ X:f(X)=_ functionf:a!a Proposition2.20Foracompletelattice(A;)andamonotone 2OrdX:f(X) 2OrdX:f(X) Chapter2.Basics. and,dually, thatofasuchthatfor: X:f(X)=X:f(X) Moreoverthereexistsanordinalofcardinalitylessorequalto whereordistheclassofallordinals. andgaremonotoneinbotharguments.asarststepwewilldene wherexandyarevariablesoverlattices(a;)and(b;),andf 2.2.2Nestedxpoints. Wenowwanttoconsidernestedxpoints,suchasX:f(X;Y:g(X;Y)) X:f(X)=X:f(X): theirdomainsareinterpretedindierentways.fortechnicalreasons weassumefromnowonthattherearenottwodierentvariablesina nestedxpointexpressionhavingthesamenames. abusenotationanddonotintroducenewnamesforfandgwhen theinnerxpointy:g(x;y)asafunctiong0fromatob.wewill andthegreatestxpointis Y:g(X;Y)def Y:g(X;Y)def monotonefunctiononabtob.thentheleastxpointwith respecttobisafunctionfromatob Denition2.21Let(A;)and(B;)becompletelattices,ga =Wfg02(A!B)jg(X;g0(X))g0(X)g. =Vfg02(A!B)jg(X;g0(X))g0(X)g

2.2.Fixpointsandtheirproperties. Proof:straightforward g0(a)=y:g(a;y)(g0(a)=y:g(a;y))foreverya2a,where isamonotonefunctiong0:a!banditisthecasethat Proposition2.22Theleast(greatest)xpointofg:AB!B g(a;y):b!aandy:g(b;y)followsdenition2.16. 25 forwardly.intheremarkbelowg0mightbeavectoroffunctions Themonotonicityofg0impliesthatf(X;g0(X))isamonotonefunction fromatoaanditsxpointsarewelldenedaccordingtodenition (possiblyempty)productsofcompletelattices. resultingfrominnerxpointsandalldomainscouldbeinterpretedas 2.16.Theapplicationtoarbitrarynestingofxpointsworksstraight- Remark2.23Wewanttopointout,thatthereexisttwobasicallydierentinterpretationsoftheinnerxpointswhichhave g0(a)def morecommonone:g0asafunctiononatobisdenedpointwise, consequencesforalgorithmscalculatingthem.therstoneisthe canexplicitlycalculatethefunctiong0,notinapointwisemanner, functiong(a;y)onbtobandtheapplicationofaxpointoperator Yiswelldened.Thisinterpretationgivesrisetotheapproximationbasedalgorithms.Evaluationofg0ataisdonebyasimple Theotherinterpretationfocusesonthefact,thatinsomecaseswe approximationofy:g(a;y)asinproposition2.20. =Y:g(a;Y).Foreveryargumenta2Awegetthesimple howasimultaneousxpointcanbetransformedtoanestedxpoint expression. Bekic'stheorem[Bek84]foreliminationofsimultaneousxpointsshows butasafunctionexpressionwithafreevariabley.heretheevaluationofg0(a)consistsofasimplefunctionevaluationandnotofan f:ab!aandg:ab!bmonotonefunctions. Theorem2.24Let(A;)and(B;)becompletelattices, approximation. a=x:f(x;y:g(x;y)),andb=y:g(a;y): Then(X;Y):(f(X;Y);g(X;Y))=a;b,where

26 Chapter2.Basics.

Chapter3 Fixpoint-equation systems. pretedoverarbitrarycompletelattices.fortheissueofthisworkthe caseofxpoint-equationsystemsisinvestigated,wheretheyareinter- propertiesofxpoint-equationsystems.intherstsectionthegeneral nitionsofsyntaxandsemanticsitcontainsanextensivecollectionof technicalbasisfortherestofthework.therefore,apartfromde- Weintroducexpoint-equationsystemsextendingthenotionofnested requireddomainsarethebooleanlatticeandapossiblyinniteprod- xpointexpressions.theintentionofthischapteristoprovidethe uctofbooleanlattices.thesecondsectionfocusesonthexpoint- equationsystemsoverthebooleanlattice,booleanequationsystems. Forthiscasesomedenitionssimplifyandwegetanumberoffurther properties.proofsofthischapterareshiftedtotheappendix.

3.1Fixpoint-equationsystemsfor 28 fromxpointexpressionstoxpointequationsystems.themainpart Firstsyntaxandsemantics1aredened,thenwegiveatranslation completelattices. Chapter3.Fixpoint-equationsystems. ineachfunction.insteadofperformingexplicitlythesubstitutionin environment.;1;:::willrangeoverenvironments,whereeachis equationsystems. Inthefollowingweconsidersequencesoffunctionsf1;f2;:::overalattice(A;).Often,freevariableswillbesubstitutedbythesamevalues eachfunctionwecollectthevaluesofthevariablesinavaluation,called ofthissectioncontainsanextensivecollectionofpropertiesofxpoint- fby(x).by[x=a]wedenotetheenvironmentthatcoincideswith afunction:x!a. Afunctionfcanbeappliedtoanenvironment,andtheresultf() isthevalueofthefunctionfaftersubstitutingeachfreevariablexof forallvariablesexceptx,i.e.(y)=([x=a])(y)fory6x,and Theorderonalattice(A;)extendsnaturallytoanorderonenvironmentsoverA(seeDeniton2.6).Wehave12iforallvariables latticeoperations_and^canbeappliedalsotoenvironmentswhen ments(foraxedsetofvariablesx)formsalattice.obviously,the ([X=a])(X)=a.Intheremainder[X=a]haspriorityoverallother interpretingthempointwise. operations,and[x=a]alwaysstandsfor([x=a]). X2Xitisthecasethat1(X)2(X).Thusthesetofenviron- pointedmetoitforthespecialcaseofxpoint-equationsystemsovertheboolean Axpoint-equationsystemoverAisanitesequenceofequations oftheform(x=f),wheref:an!aforsomen2inisa Denition3.1Let(A;)beacompletelattice. lattice.itturnedouttobemorecompactthanearlierversions. monotonefunction. Theemptysequenceisdenotedby. 1TheversionofnotationusedherewasinspiredfromVergauwen[Ver95]who

rightsideofanequationofearecollectedinthesetrhs(e).variables whichappearonthelefthandsideofanequationofearecollectedin thesetlhs(e),i.e.lhs((x=f)e)def equationsystemehavethesamelefthandsidevariable.variables Fortechnicalreasonsweassumethatnotwoequationsofaxpoint- 3.1.Fixpoint-equationsystemsforcompletelattices. InthefollowingE;E0;E1;:::willrangeoverxpoint-equationsystems. =fxg[lhs(e).variablesonthe 29 ofrhs(e)whicharecontainedinlhs(e)arecalledbound.variables whicharenotboundarefree,free(e)def axpoint-equationsystemeisasetofconsecutiveequationsofeall havingthesamexpointoperatorinfront. Theorderdenedbelowreectsthelinearorderofequationsina xpoint-equationsystem.itwillbeappliedtobothequationsand variables. Denition3.2Let(X=f)Ebeaxpoint-equationsystemand =rhs(e)nlhs(e).ablockin respecttoe,iffree(e0)free(e). systeme,ifforeachpairofequationswith(xx=fx)c(yy=fy) Axpoint-equationsystemE0isasubsystemofaxpoint-equation AsubsystemE0ofaxpoint-equationsystemEiscalledclosedwith ine0bothequationsarecontainedineandorderedinthesameway. AsusualXEYabbreviates(XCYorX=Y). 0Y=ganequationofE.ThenX=fC0Y=gandalsoXCY. Denition3.3Let(A;)beacompletelattice,(X=f)Ea Thesolutionofaxpoint-equationsystemrelativetoisan environmentdenedbystructuralinduction: xpoint-equationsystemovera,and:x!aanenvironment. [(X=f)E]def [(X=f)E]def []def X:f([E])=Wfajaf([E][X=a])g X:f([E])=Vfajaf([E][X=a])g where=[e][x=x:f([e])] = =[E][X=X:f([E])]

holdsforallenvironments1;2. Note,thatifallvariablesofrhs(E)arebound,then[E]1=[E]2 30Denition3.4Givenaxpoint-equationsystemEwedenea lexicographicordereonenvironments. 12i1=2 Chapter3.Fixpoint-equationsystems. Thereexistsanalternativecharacterizationofthesolutionofaxpointequationsystem,whichinsomecontextswillbemoresuitable. 1E2i1(X)>2(X)or1(X)=2(X)and1E02. LetE(X=f)E0. Proposition3.5Thesolutionof[]is. Dually,ifE(X=f)E0,then 1E2i1(X)<2(X)or1(X)=2(X)and1E02. Thesolutionof[(X=f)E]isthelexicographicallyleast(w.r.t (2)1isthesolutionof[E][X=1(X)]. (X=f)E)environment1satisfying: Denition3.6ForE=(1X1=f1)(2X2=f2):::(nXn=fn) (1)f(1)=1(X)and lete(i)def X2)(X4=X1_X3)beaxpoint-equationsystemoverIB. Example:Let(X1=X2^X4)(X2=X3_X1)(X3=X4^ Thecharacterizationofthesolutionwillbeillustratedbyanexample overthebooleanlatticeib=ffalse;trueg,wherefalse<true. Corollary3.7If[E]=0then[E(i)]0=0for1in. =(ixi=fi):::(nxn=fn)for1in. Startingfromthexpoint-equationsystemconsistingonlyofthelast equationx4=x1_x3wewillselectstepwiseallenvironmentsful- equationsystemwithoneequationmore. llingpoint(2)ofproposition3.5,thenthosefulllingpoint(1),and inthenextsteptheremainingenvironmentsareconsideredforthe

3.1.Fixpoint-equationsystemsforcompletelattices. Forreadabilitywewriteanenvironmenthereasavector(b1;b2;b3;b4), FortheequationsystemconsistingofthelastequationE(4)(X4= meaninganenvironmentwhere(xi)=bi. X1_X3),itisthecasethat [E(4)](true;false;false;true)=(true;false;false;true) 31 [E(4)](true;true;true;true)=(true;true;true;true) [E(4)](true;true;false;true)=(true;true;false;true) [E(4)](true;false;true;true)=(true;false;true;true) [E(4)](false;true;true;true)=(false;true;true;true) [E(4)](false;false;true;true)=(false;false;true;true) followingdo: notallofthemfulllpoint(1),i.e.,theequationx3=x4^x2;the NowwegoonwithE(3)(X3=X4^X2)(X4=X1_X3) Eachoftheenvironmentsabovefulllpoint(2)ofproposition3.5,but [E(4)](false;false;false;false)=(false;false;false;false) [E(4)](false;truefalse;false)=(false;truefalse;false) (true;false;false;true) equationx2=x3_x1.theseare: Notethatforallthesefourenvironmentsitis [E(3)]=[(X3=X4^X2)(X4=X1_X3)]= Thenextstepistoselecttheseenvironmentswhichfulllalsothe (false;false;false;false) (true;true;true;true) (false;true;true;true) Buthereitisthenotthecasethateachofthesesatises [E(2)]=[(X2=X3_X1)(X3=X4^X2)(X4=X1_X3)]=. (false;false;false;false) (true;true;true;true) (false;true;true;true)

For(true;true;true;true)wehave 32=[(X2=X3_X1)(X3=X4^X2)(X4=X1_X3)] =[(X2=X3_true)(X3=X4^X2)(X4=true_X3)] [E(2)](true;true;true;true) Chapter3.Fixpoint-equationsystems. Bothfulllpoint(1)and(2)ofproposition3.5.Hencesolutionis onlythelexicographicllysmalleronewithrespecttoe(2),whichis incideinthefreevariableofe(2),whichisx1andequalstofalse. Ontheotherhand,(false;true;true;true)and(false;false;false;false)co- =(true;true;true;true) =[(X2=true)(X3=X4^X2)(X4=true](true;true;true;true) (true;true;true;true) (false;false;false;false)(becauseofthemu-xpointintheequationof systemisnotveryintuitive,andaninterestingquestionis,whether X2). Bothenvironments(true;true;true;true)and(false;false;false;false)fulll (true;true;true;true)(becauseofthe-xpointofx1)isthesolutionof theequationsystem. Unfortunately,thedenitionofthesolutionofaBooleanequation equationx1=x2^x4andthelexicographicallysmallerone,here selectoneenvironmentasthesolution. thereexistsamoreilluminatingcharacterization. Anaturalideaistodeterminethesetofallenvironmentsthatfulllall equations(xi)=fi(),andthen,accordingtothexpointoperators, C relatedtothemethodswhichdeterminethesolution.thiswillbe Unfortunatelythisapproachcannotwork.Counterexamplescanbe xpointexpressionstoxpoint-equationsystemsandshowthatthe nestedxpointexpressions.wenowdeneatransformationfrom treatedinchapter6. Fixpointequationsystemsareintroducedasanextendednotationfor foundinsection6.1andalsosomemorediscussionofthispoint. semanticispreserved. Thequestionforaclearercharacterizationofthesolutionisclosely

3.1.Fixpoint-equationsystemsforcompletelattices. Thetransformationisdividedintotwofunctions.One,E,mapsthe tree-likestructureofaxpointexpressiontoasequenceofexpressions. withanexampleandgivetheformaldenitionafterwards. Example: E(X:((Y:X_Y)^(Z:X^Z))) Theotherone,E0turnsexpressionsintoxpointequations.Westart 33 =(X=E0(Y:X_Y)^E0(Z:X^Z))E(Y:X_Y)E(Z:X^Z) =(X=E0((Y:X_Y)^(Z:X^Z))) =(X=Y^Z)(Y=E0(X_Y))(Z=E0(X^Z)) =(X=Y^Z)(Y=X_Y)(Z=X^Z) Denition3.8LetX:fbeaxpointexpressionoveralattice (A;),wherefisamonotonefunctiononAconsistingofconstants, variables,xpointexpressions,thelatticeoperations_and^and E((Y:X_Y)^(Z:X^Z)) eachvariableisboundonlyoncebyaxpointoperator.emaps X:ftoaxpoint-equationsystemandisdenedasfollows: Op(ki) additionallyasetofmonotoneki-aryoperationsona,denotedby iforsomei2in.assumethatinx:fnamesareunique,i.e. E(Op(ki) i(f1;:::;fki))=e(f1):::e(fki) E(f1_f2)=E(f1)E(f2) E(f1^f2)=E(f1)E(f2) E(X:f)=(X=E0(f))(E(f)) E(X)= E(a)= E0(Op(ki) i(f1;:::;fki))=op(ki) E0(f1_f2)=E0(f1)_E0(f2) E0(f1^f2)=E0(f1)^E0(f2) E0(X:f)=X E0(X)=X E0(a)=ai(E0(f1);:::;E0(fki))

34 Theproofofthispropositionrequiresthefollowinglemma: Proposition3.9LetX:fbeaxpointexpressionoveralattice Then(X:f)()=([E(X:f)])(X). (A;)andanarbitraryenvironment. Chapter3.Fixpoint-equationsystems. that lhs(e1)\lhs(e2)=;, lhs(e1)\rhs(e2)=;, Lemma3.10LetE1andE2bexpoint-equationsystems,such Booleanequationsystemsinthecontextof-calculusmodelchecking systemtoa(nested)xpointexpressionisnotalwayspossible.for Notethatastraightforwardtransformationbackfromaxpoint-equation wewillshowamethodinsection5.2.ingeneral,axpoint-equation lhs(e2)\rhs(e1)=;. sions.forexample(x=y)(u=v)isaxpoint-equationsystem, systemcanbetransformedbacktoasetof(nested)xpointexpres- Then[E1][E2]=[E1E2] andx:yandu:vare(theonlysensible)xpointexpressionscorrespondingtoit. Anotherexampleis(X=Z)(Y=X)(Z=Y).Itmightcorrespond totheexpressionx:z:y:x,butthetransformationofthisexpressiontoaxpoint-equationsystemgives(x=z)(z=y)(y=x). monotoneoperatoronenvironments. solutions.therstonestatesthataxpoint-equationsystemisa tionsystemswhichdescribeequivalenceandorderrelationsontheir Inthefollowingwepresentacollectionofpropertiesofxpointequa- ItiseasytoseethatinthelemmaaboveonlyforvariablesXthatare freeineweneedthecondition1(x)2(x).hencetheorderof theenvironmentsdenedpointwiseonallvariablescanberestricted tothevariableswhicharefreeine. Lemma3.11If12then[E]1[E]2.

tionsorderedbyrespectively,forallenvironments.itextendsthe 3.1.Fixpoint-equationsystemsforcompletelattices. equationsystems,relatingthosethathavethesamesolution,orsolu- Wedeneanequivalencerelationandanorder-onxpoint- Corollary3.12[E]1_[E]2[E](1_2),and [E]1^[E]2[E](1^2). 35 equivalencerelationdenedin[ver95]forbooleanequationsystems. thisresultwasstatedin[ver95]. Equivalenceandorderingofxpoint-equationsystemsispreservedfor prexingofequations.forequivalenceonbooleanequationsystems Denition3.13 Lemma3.14IfE1E2thenEE1EE2. DeneE1E2i[E1]=[E2]forallenvironments. DeneE1-E2i[E1][E2]forallenvironments. Denition3.15Letforsomen2IN E1(1X1=f1):::(nXn=fn), E2(1X1=g1):::(nXn=gn). ThenE1E2ifigi. IfE1-E2thenEE1-EE2. E1_E2def E1^E2def Lemma3.16IfE1E2thenalsoE1-E2 Corollary3.17[E1]_[E2][E1_E2],and =(1X1=f1_g1):::(nXn=fn_gn), =(1X1=f1^g1):::(nXn=fn^gn), [E1]^[E2][E1^E2].

X3)(X2=X3)(X3=X2) systemse1(x1=x2)(x2=x2)(x3=x1)ande2(x1= greaterone: Example:Againthelatticeis(IB;).Considertwoxpoint-equation casethatbothsystemshavethesamesolutiontheirdisjunctionhasa Thiscorollarywillbeillustratedbyanexample,whereeveninthe 36 Chapter3.Fixpoint-equationsystems. Thereareothersimple,desirablepropertieswhichsurprisinglydonot X1_X2)is(true;true;true). hold.wedemonstratehereoneofthem. IfE1-E2thenE_E1-E_E2andE^E1-E^E2 solutionoftheirdisjunction(x1=x2_x3)(x2=x2_x3)(x3= Bothhavethesamesolution(false;false;false)forany.However,the Counterexample:LetE;E1;E2bexpoint-equationsystemsoverthe Booleanlattice(IB;). C E1(X1=X1)(X2=X2)(X3=X3) E^E1. (false;false;true),e2^ehas(false;false;false)assolution.heree^e2- E1hasthesolution(false;true;true)andE2hasthesolution(true;true;true). ThesolutionofEis(false;false;true).E1^Ehasalsothesolution HenceE1-E2. E2(X1=X2)(X2=X3)(X3=X2) E(X1=X2)(X2=X1)(X3=X3) ThefollowinglemmaextendsapropertyforBooleanequationsystems in[ver95]toxpoint-equationsystems. Lemma3.18If([(X=f)E])(X)=([(X=g)E])(X) then[(x=f)e]=[(x=g)e]: C ingandreductionmethodsforxpoint-equationsystems. theequationsystempreservingthesolution.thisallowsstepwisesolv- knowingpartsofthesolutionthenthesepartsmaybe\removed"from Thenextbothlemmatadealwithaquitenaturalproperty:when

3.1.Fixpoint-equationsystemsforcompletelattices. Lemma3.19Let EE1(X=f)E2, ([E])(X)=a,and E0E1(X=a)E2. 37 pointoperator,fromto,ortheotherwayround.frombekic's equationsystemwheninterchangingequationsorswitchingthex- Thefollowinglemmatadescribepropertiesofthesolutionofaxpoint- Lemma3.20[E1(X=a)E2]=[E1E2][X=a]. Then[E]=[E0]. whichreferstolexicographicordering(proposition3.5). slightlysurprisinghavinginmindthecharacterizationofasolution pliesdierentsolutionswhichareorderedpointwise.thispropertyis Theorem2.24itfollowsthatinterchangingsubsequentequationswith thesamexpointoperatordoesnotinuencethesolution.thesame holdsforequationswithdierentxpointoperatorsifthevariablesof bothequationsaredierent.otherwiseinterchangingequationsim- Lemma3.21Let 1def 2def Then1=2. Lemma3.22If X1isnotfreeinf2, =[E1(X1=f1)(X2=f2)E2], X2isnotfreeinf1, =[E1(X2=f2)(X1=f1)E2]. 1def 2def Then1=2. =[E1(1X1=f1)(2X2=f2)E2] =[E1(2X2=f2)(1X1=f1)E2]

38Lemma3.23Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen 1(X1)<2(X1)and1(X2)<2(X2). =[E1(X1=f1)(X2=f2)E2], =[E1(X2=f2)(X1=f1)E2]. Chapter3.Fixpoint-equationsystems. Lemma3.24Let 1def 2def =[E1(X=f)E2], _or^.everyxpoint-equationsystemcanbetransformedintosuch tems,whereeachrighthandsidecontainsatmostoneoftheoperators Oftenweneedsomestandardrepresentationofxpoint-equationsys- Thenitis12,andmoreover,iftheinequalityisstrictthen 1(X)<2(X). =[E1(X=f)E2]. aformbyintroductionofadditional\fresh"variables. ([(X=f1_f2)E])(Y)=([(X=f1_X0)(0X0=f2)E])(Y), ([(X=f1^f2)E])(Y)=([(X=f1^X0)(0X0=f2)E])(Y), wherex0isanewvariable,i.e.(*)x0doesnotoccurontheright handsideofeorinf1orf2,and(**)y6=x0. Lemma3.25 withinablockduplicateequationsmayberemoved. Forreductionofxpoint-equationsystemsthenextpropertyisuseful: Lemma3.26Let 1def 02def 2def Then1=2. =[E1(X1=f)(X2=f)E2] =[E1[X1=X2](X2=f[X1=X2])E2[X1=X2]] =02[X1=02(X2)]

3.2.Booleanequationsystems. nedinsection3applyalsotobooleanequationsystems.however, 3.2Booleanequationsystems. WenowintroduceBooleanequationsystemsasaspecialcaseofxpointequationsystems,wheretheunderlyinglatticeistheBooleanlattice 39 ftrue;falsegwithfalse<true.ofcourse,syntaxandsemanticsasdeexpressions.analogouslytodenition3.1wedene: ordertodistinguishthebooleancasealsosyntacticallywechoose[[]] LetXbeasetofBooleanvariables,andf;g;:::rangeoverBoolean andwewillreintroducesyntaxandsemanticsforthisspecialcase.in interpretedoverthebooleanlatticedealingwithxpointsgetssimpler, insteadof[]assemanticbrackets. ABooleanequationisoftheformX=f,where2f;g,Xisa acountablesetofvariablesxisdenotedbyib+(x). Denition3.27ThesetofnegationfreeBooleanexpressionsover DealingwithxpointsgetsmuchsimplerovertheBooleanlattice. Thefollowingtwolemmatashowthattheleastandgreatestxpoints equationandeisabooleanequationsystem,then(x=f)eisalso ABooleanequationsystemisasequenceofBooleanequations.The emptysequenceisabooleanequationsystem;ifx=fisaboolean abooleanequationsystem. BooleanvariableX2X,andf2IB+(X). pointwise.(seealsodenition2.21andremark2.23.) ofbooleanfunctionscanberepresentedasfunctionsthemselves.in contrasttostandarddenitionsitisnotnecessarytoevaluatethem Lemma3.29Supposef(X1;:::;Xn)isamonotoneBooleanfunctionfromIBntoIB.Thenitsleastandgreatestxpointswith respecttox1arex1:f(x1;:::;xn)=f(false;x2;:::;xn)and X1:f(X1;:::;Xn)=f(true;X2;:::;Xn)andbotharemonotone singlevariablex.thenx:f(x)=f(false)andx:f(x)=f(true). Lemma3.28Supposef(X)isamonotoneBooleanfunctioninthe functionfromibn 1toIB.

40Proposition3.30LetEbeaBooleanequationsystem,X=fa Booleanequation,anenvironment,b=falseandb=true.Then forthesolutionofabooleanequationsystemitisthecasethat: [[(X=f)E]]=[[E]][X=f([[E]][X=b])]: [[]]= Chapter3.Fixpoint-equationsystems. Example:ConsidertheequationsystemX1=X1andarbitrary. itsvariablesandthesizeofallitsright-handsideexpressions, HencethesolutionofthisBooleanequationsystemisX1=true.C ThesizeofaBooleanequationsystemEisdenedasthenumberof [[X1=X1]]=[[]][X1=(X1)([[]][X1=true])] jjdef =[X1=(X1)([X1=true])] =[X1=true] ThesizeofanegationfreeBooleanexpressionjfjisthenumberof variablesandconstantscontainedinf. expressionconsistsofconjunctions,ordisjunctions,orasinglevariable ABooleanequationsystemEisinsimpleform,ifeachright-handside j(x=f)ejdef =0 oraconstant. =1+jfj+jEj: expressionsto2.thisgivesrisetothefollowingdenitionofastandard Insomecontextsitisusefultorestrictthesizeoftheright-handsize formforbooleanequationsystems. ABooleanequationsystemEisinstandardform,if lhs(e)=fx1;:::;xngforsomen2in ifxicxjtheni<j eachright-handsideexpressionconsistsofadisjunctionxi_xj,a conjunctionxi^xj,asinglevariablexioraconstanttrueorfalse.

3.2.Booleanequationsystems. ABooleanequationsystemcanbedevidedintoblocks.Ablockis abooleanequationsysteme0instandardformandarenaming function,suchthat([[e]])(x)=([[e0]])((x)),ande0hassize Proposition3.31ForeachBooleanequationsystemEthereexists linearinthesizeofe. 41 depthandalternationdepthforbooleanequationsystems.. operatorinfront.hencewecandistinguish-blocksand-blocks. Booleanequationsystem.Wenowdeneactivevariables,nesting systemextendsnaturallytoanordereandcontheblocksofa ThelinearorderingsEandContheequationsofaBooleanequation denedasasetofconsecutiveequationsofehavingthesamexpoint Denition3.32Let EbeaBooleanequationsystem, XX=fX,YY=fYbeequationsofE, XX=fXCYY=fY thereisafreeoccurrenceofxinyy=fy,or ThenXisactiveinYY=fYi somevariablezisfreeinyy=fy,xczcyandxisactive Whendeningthenestingdepthandalternationdepthofxpoint AvariableXisactiveinablockEj,ifitisactiveinanyequationof Ej. AblockEiisactiveinablockEj,ifsomevariableXinanequation XX=fXofEiisactiveinEj. inzz=fz. mulaorderisapartialorder.inthecaseofbooleanequationsystems wehavejustalinearorderontheequations.however,thepartialorder isreectedbythepossibleapplicationsoflemma3.22tointerchange operatorsforexpressionswehavetotakeintoaccountthatthesubfor- equations.

42EistheminimalnumberofblocksofallBooleanequationsystems Denition3.33ThenestingdepthofaBooleanequationsystem accordingtolemma3.22. Denition3.34Let thatcanbederivedfromeby(repeated)interchangingofequations Chapter3.Fixpoint-equationsystems. EbeaBooleanequationsystem, 1X1=f1C:::CnXn=fnachainofBooleanequationsof Section3containsanumberofpropertiesofxpointequationsystems, maximallength,suchthatforevery1i<n whichare,ofcourse,alsovalidforthespecialcaseofbooleanequation systems.inadditiontothesethereexistmorepropertiesforboolean ThenEhasalternationdepthn,i.e.ad(E)=n. (2)Xnisfreeinfn,and (3)i6=i+1, (1)Xiisactiveini+1Xi+1=fi+1, ductivelyasfollows: ThecomplementationEofaBooleanequationsystemisdenedin- equationsystems,whichwillbeneededinlaterchapters. where= (X=f)E=(X=f)E; false=true true=false X=XforX2X = = Thecomplementofanenvironmentisdenedas(X)=(X). ThecomplementationlemmaforBooleanequationsystemsis: Lemma3.35([[E]])(X)=falsei([[E]])(X)=true. f1^f2=f1_f2 f1_f2=f1^f2

3.2.Booleanequationsystems. ThenextisaverystrongpropertyaboutareductionofBooleanequationsystemspreservingtheirsolution.HavingaBooleanequatiotionsofE0.IneveryequationofEwithadisjunctionontheright-hand orconstantsontheirright-handsideareunchangedandbecomeequationsysteme0inthefollowingway:allequationshavingconjunctions 43 systemeinstandardformwecanconstructanewbooleanequa- asystemisinconjunctiveform.theorderofvariablesineande0 sideonedisjunctisselectedasthenewright-handsidefortheequation ine0.notethate0containsnoproperdisjunctionsandwesay,such isthesame.fromdenition3.15andlemma3.16weknowalready thereexistsachoiceofdisjuncts,suchthateande0havethesame solution.thedualpropertyholdswhenchoosingconjunctsinsteadof disjuncts. thatforeveryenvironmentthesolutionofe0islowerorequaltothe solutionofe.thefollowingpropositionsaysevenmore:forevery Proposition3.36GivenaBooleanequationsystemEandan environmentthereexistbooleanequationsystemse0ande00with theproperties: E0isinconjunctiveform, E0E,and [[E0]]=[[E]]. mentthereexistsabooleanequationsysteme0withthefollowing ForE00thedualpropertieshold: E00isindisjunctiveform, E00E,and [[E00]]=[[E]]. Corollary3.37ForBooleanequationsystemEandanenviron- properties: [[E]]=[[E0]],and E0isderivedfromEbyselectingineveryequationonevariable oftherighthandexpression.

conjunctivecase. Proof:Applyproposition3.36forthedisjunctiveandthenforthe 44 Chapter3.Fixpoint-equationsystems.

Chapter4 places,suchas[sti93]and[eme91].herewewillbrieyreviewthe logicanditspropertiesandwegiveassociateddenitionsrelevantto Thischaptergivesanintroductiontothemodal-calculusaccording beenwidelystudiedanddetailedintroductionscanbefoundinseveral tokozen'spropositional-calculus[koz83].themodal-calculushas Themodal-calculus. ourwork. ofthemodal-calculusisanexpressionoftheform: labelsandadenumerablesetzofpropositionalvariables.aformula ofatomicpropositionsincludingtrueandfalse,anitesetlofaction Thesyntaxofthemodal-calculusisdenedwithrespecttoasetQ 4.1Syntaxandsemantics. standardconventionsforthederivedoperatorsandabbreviationsare: occurrenceofzinfallsunderanevennumberofnegations.the wherez2z,q2qanda2l,andwhereinz:everyfree ::=ZjQj:j^j[a]jZ:; 1_2def hkidef [K]def haidef =Wa2Khai =:[a]: =Va2K[a] =:(:1^:2)

wherekl,and[z=:z]meansthesyntacticalsubstitutionof 46 everyoccurrenceofzinby:z. [ K]def Z:def [ ]def =[LnK] =[L] =:Z::[Z=:Z]; Chapter4.Themodal-calculus. mulacanbetransformedsyntacticallyintopositivenormalformby usingthederivedoperators,applyingthedemorganrulesandrenamingvariables.therefore,wecanrestrictthesetofformulaetothe positivefragmentassumingthatforeveryatomicpropositionq2q thenegationofqisalsoanatomicproposition,i.e.anelementofq. Inthissense,anequivalentdenitionofthesyntaxis: ::=ZjQj^j_j[a]jhaijZ:jZ: subsetofxpointfreeformulaeby0. Aformulaisinpositivenormalform,ifnegationsapplyonlyto Wedenotethesetofallmodal-calculusformulaebyL,andthe atomicpropositionsandnovariableisquantiedtwice.everyfor- by!def andassumethattheyareinnormalform. Formulaeofthemodal-calculuswiththesetLofactionlabelsare a2labinaryrelationonstates.theunionofallrelationsisdenoted Inthefollowingwewillreferonlytoformulaeofthepositivefragment interpretedrelativetoalabelledtransitionsystemt=(s;fa!ja2 Lg),whereSisapossiblyinnitesetofstatesanda!SSforevery formulaisthesetofstatesjjjjtv.astatessatisesaformula, modelmofthemodal-calculus.thesemanticsofeach-calculus holdforeverystateinv(q)andv(z).thepairtandviscalleda writtenassj=m,is2jjjjtv,whichisdenedinductivelyasfollows: propositionqinqandpropositionalvariablezinzasetofstates V(Q)SandV(Z)SmeaningthatpropositionQandvariableZ =Sa2La!.AvaluationfunctionVassignstoeveryatomic jjqjjtv=v(q) jjzjjtv=v(z)

4.1.Syntaxandsemantics. jj1^2jjtv=jj1jjtv\jj2jjtv jj1_2jjtv=jj1jjtv[jj2jjtv jjz:jjtv=\fs0sjjjjjtv[z=s0]s0g jjhaijjtv=hhaiitjjjjtv jj[a]jjtv=[[a]]tjjjjtv 47 where[[a]]ts0def jjz:jjtv=[fs0sjs0jjjjtv[z=s0]g numberoftransitions,jtjdef Examplesfor-calculusformulaewillbegivenbelow.Firstwewant tointroducesometechnicalterms. Thesizeofatransitionsystemincludesthenumberofstatesandthe hhaiits0def =fsj9s02s0:sa!s0g =fsj8s02s:ifsa!s0thens02s0g Thebranchingdegreej-Rjisthemaximalnumberofsuccessorsthat anystateofthetransitionsystemhas,j-rjdef AnupperboundforthebranchingdegreeisthenumberofstatesjSj. Thesizeofaformulajjisdenedasfollows: =jsj+j!j. j1_2j=j1j+j2j j1^2j=j1j+j2j jzj=jqj=1 =maxs2sjfs0js!s0gj. jz:j=1+jj jz:j=1+jj jhaij=1+jj j[a]j=1+jj Denition4.1Asusual,subformulaeofaformulaaredened inductivelyonthestructureof.if writee,andc ifitisapropersubformula. isasubformulaofwewill

48 WenowwanttointroducethenotionsofnestingdepthandalternationdepthofxpointoperatorsforformulaeofL.Thelatter subformulaof.anoccurrenceofavariablewhichisnotboundis Zisbound.AnoccurrenceofXinisbound,ifitisboundinany Denition4.2InaformulaZ: calledfree. eachoccurrenceofthevariable Chapter4.Themodal-calculus. Kaivola[Kai96].Thereamoredetaileddiscussionoftheseconcepts AlternationdepthwasdenedbyEmersonandLei[EL86]andisa withaminorextension.itsdenitionbasedonactivevariablesfollows willbedenedviaactivevariablesasintroducedbykozen[koz83]. relevantsizeformanymodelcheckingalgorithms.niwinski[niw86] gaveamoresensibledenitionforalternationdepthwhichwewilluse alternationdepthis2,whereaswewantittobe1. theemerson-leialternationdepthofx:y:z:xis3,itsniwinski canbefound.asmallexamplefordemonstratingthedierencesis: beaformula, E1X1: Denition4.3Let Thenhasnestingdepthn,i.e.nd()=n. beamodal-calculusformula, Denition4.4Let mallength. 1C:::CnXn: nachainofsubformulaeofmaxi- Zavariable. ThenZisactivein thereisafreeoccurrenceofzin somevariablez0isfreein inz0: beasubformulaof,i.e.e 0. i,ez0:,or,and0e,andzisactive

4.2.Basicformulae. beaformula, E1X1: Denition4.5Let mallength,suchthatforevery1i<n (1)Xiisactiveini+1Xi+1: 1C:::CnXn: nachainofsubformulaeofmaxi- i+1, 49 LeavingitoutwouldgiveNiwinskialternationdepth. Notethatourextensionconsistsofpoint(2)inthepreviousdenition. Thenhasalternationdepthn,i.e.ad()=n. (3)i6=i+1. (2)Xnisfreein n,and Therstaspecttomakeclearisthedierencebetweenthemodalities builtup,andwewanttoexplainthemhere. [a]andhai.theformula[a]istrueatastateforwhichnecessarily ever,thereareonlyafewbasicstructures,fromwhichformulaeare Itneedssomepracticetoreadandcreate-calculusformulae.How- 4.2Basicformulae. possiblythea-successorsfulll. thea-successorsfulll,theformulahaiistrueatastateforwhich Forthersttransitionsystem,wehaves0j=haiQands0j=[a]Q.For s0 ccc as3 bs2j=q s1j=qt0 ccc at3 bt2j=:q t1j=q Q,butt06j=[a]Q,ast0alsohasana-successorfullling:Q.Inthe thesecondoneitist0j=haiq,becauset0hasana-successorfullling u0b thirdtransitionsystemwegetu06j=haiq,duetotheabsenceofanasuccessor,butu0j=[a]q,becausethereisnoa-successornotfullling u3 Q.

eral,leastxpointsdescribenitebehaviour,greatestxpointsaddi- tionalyalsoinnitebehaviour.inthetransitionsystemsbelowwe Crucialisthedierencebetweenleastandgreatestxpoints.Ingen- 50 assume:qateachstate,wheretheoppositeisnotstatedexplicitly. Chapter4.Themodal-calculus. v1av2j=q pathonwhicheventuallyqwillhold".itholdsbothstatesv1and TheformulaZ:haiZ_Qstandsfortheproperty\thereexistsana- w1a aw2aw3j=q a w1.theuniversalcounterpart\onallpathseventuallyqwillhold", w1isnotcontained,andhenceisnotanelementoftheleastxpoint, jj[a]x_qjjtv[z=fw3g]=[[a]]tfw3g[fw3g=;[fw3gfw3g Itfollowsthatintheintersectionofallsetssatisfyingtheinequality thesubsetfw3gsatisestheinequality: expressedbyz:[a]z_q,holdsforv1,butnotforw1,becauseon whichcoincideswiththeinformalargumentationabove. Consideringthesemanticdenitionofaleastxpoint,wehavethat theinnitepathw1w2w1w2:::theatomicpropositionqneverholds. Withagreatestxpoint,theproposition\onalla-pathsalwaysQ Combiningleastandgreatestxpointsallowsustoexpressmorecomplicatedproperties.TheformulaZ:X:(([a]Z^Q)_[a]X)corresponds holds"canbeformulatedasz:[a]z^q.inthetransitionsystems aboveitonlyholdsatw3. totheproposition\onallinnitea-pathsinnitelyoftenqholds".to makethestructureplausible,considerthetwofragmentsoftheformulax:(([a]z^q)_[a]x)saying\eventually([a]z^q)willhold" andz:([a]z^q)saying\alwaysqwillhold".combiningthemin oneformulagives\always,eitherqholds,or,ifitdoesnot,theneventuallyqwillhold"whichisequivalenttotherstexplanationabove. Aslastexampleconsidertheproperty\eventuallyQwillalwayshold", existentialversionz:x:((haiz^q)_haix)holdsalsoforw1. Inthetransitionsystemsabove,thisformulasatisesv1andw3.The

expressedbytheformulax:z:(([a]z^q)_[a]x).here,theleast xpointistheoutermostandthedierencetothepreviousformula 4.3.Propertiesofthemodal-calculus. liesintheorderof\alwayseventually"and\eventuallyalways". Inchapter7weusesomemoresophisticatedformulae,buttheyare explainablewiththebasicexamplesdiscussedinthissection. 51 theonlywayoflookingatthenextstatewithinapath.itstandsin allsuccessorsorsomesuccessormaybeconsidered.infact,thisis Themodal-calculusisabranchingtimelogic,inthatateachstate ofrunsandineachrunthereisoneuniquesuccessorforeachstate.a contrasttolineartime(temporal)logic.there,themodelsaresets 4.3Propertiesofthemodal-calculus. branchingtimepropertywhichcannotbeexpressedinlineartimeis: itisalwayspossibletocontinueinsuchawaythateventuallyqholds. Expressiveness Themodal-calculussubsumesmanyothertemporallogics,suchas PropositionalDynamicLogic(PDL)[FR79],PDL-[Str82],ComputationTreeLogic(CTL)[CE81],itsextendedversionsCTL*[EH86], However,translationsfromtheselogics(apartfromHennessy-Milner andectl*[vw83],hennessy-milnerlogic[hm85],andlineartime exponential,forectl*thetranslationissingle-exponential[dam92], logic)intomodal-calculusarenon-trivial,e.g.forctl*isitdouble- asitisalsoforlineartime-calculus. lowc2denotesaformulathatisclosedandgeneratedbythegrammar. wasshowntobeexactlyasexpressiveasectl*.inthedenitionbe- L2includesL1andallowsconjunctionsand[a]-operatorsinarestricted eralcase,constants,variablesandthexpointoperators.thefragment form:theymaybeappliedonlytoclosedsubformulae.in[ejs93]l2 ThefragmentL1ofthemodal-calculusconsistsofformulaewhich containonlydisjunctions,diaanextstepoperators,and,asinthegen-

Foralongtimeitwasnotknown,whetheralternationdepthofmore than3increasestheexpressivenessofthemodal-calculus.bradeld ThesetofformulaeofL2isdenedas: [Bra96]showedthestrictnessofthealternationhierarchybytransformingittothemu-arithmetichierarchy.Independently,Lenzi[Len96] relations:inmodallogicwithoutxpointsrstorderpropertiescanbe 522::=QjZj2_2j2^c2jhai2j[a]c2jZ:2jZ:2 Chapter4.Themodal-calculus. provedthesameresult. Comparingmodallogicswithpropositionallogicgivesthefollowing ittobeequi-expressivetosns. monadicsecondordertheoryofnsuccessors.in[hut90]huttelshowed rstandsecondorderlogic. KozenandParikh[KP83]reducedthemodal-calculustoSnS,the expressivepowerbeyondrstorder:themodal-calculusliesbetween expressed,butmodallogicliesstrictlybetweenpropositionallogicand Axiomatization rstorderlogic.addingxpointoperatorstomodallogicshiftsthe pendentlyalsohartonas[har95],bymeansofmodaldualitytheory. andbonsangue([akm95],[bk95])provedthesameresult,andindezationforthefullmodal-calculus.ambler,kwiatkowska,measor Walukiewicz[Wal95b]showedthecompletenessofKozen'saxiomatizationforthefullmodal-calculuswasanopenquestion. -calculus(theaconjunctivefragment).foralongtimetheaxiomati- Kozen[Koz83]gaveanaxiomatizationforafragmentofthemodal doesthereexistamodelforit? Fromthereductionofthemodal-calculustoSnS[KP83]thedecidabilityfollowsgivinganon-elementarydecisionprocedure. Thequestionofdecidabilityis:givenaformulaofthemodal-calculus, Decidability model.healsogivesanonelementarydecisionprocedure. calculus,sayingthateveryformulahavingamodelhasalsoanite In[Koz88]Kozenprovedanitemodeltheoremforthemodal-

In[EJ88]EmersonandJutlashowedthatdecidabilityofthemodalcalculushasdeterministicexponentialtimecomplexity.Byareduction fromalternatingpolynomialspaceturingautomataitfollowsthatthe 53 problemisexptimecomplete[eme96]. ModelChecking Themodelcheckingproblemis:Givenamodelandaformulaofthe 4.3.Propertiesofthemodal-calculus. case. ThesizeofthemodelcheckingproblemisdenedasjjjTj,where dealwithnitestatespacemodelchecking,chapter9withtheinnite modelswithbothniteandinnitestatespaces.chapters5to8will modal-calculusdoesinitialstateofthetransitionsystemsatisfythe isaformulaandtatransitionsystem. formula? Zhang,SokolskyandSmolka[ZSS94]showedthatnitestatespace Manyauthorsrestrictthemodelstoniteones.Wewanttoconsider triviallybeexpressedasasetofbooleanequations(withanyxpoint Kalorkoti[Kal96]pointedoutthatamonotoneBooleancircuitcan operators),andp-hardnessfollowsfromtheequivalenceofthemodel checkingisp-complete. modelcheckingisp-hard,evenforthealternationfreefragment.it followsfromemersonandlei's[el86]polynomialalgorithmforfragmentswithrestrictedalternationdepththatforthesefragmentsmodel provedinchapter5. checkingproblemandsolvingbooleanequationsystems,whichwillbe ThebestknownupperboundformodelcheckingintheunrestrictedcalculusisNP\co-NP,provedbyEmerson,JutlaandSistla[EJS93]. Thesetof-calculusformulaeLfactorizedbytheequivalencerelation,formsalattice,whereformulaeareorderedbyimplication, Ingure4.1below,weillustratethemodelcheckingproblem. Section6.5containsaproofofthisresultinourframework. formula.thepowersetp(s)isacompletelattice. monotoneandmapseachformulatothesetofstatesthatsatisfythe [[]]:L!P(S) knownasthelindenbaumalgebraofl.thesemanticfunction

54 SSSSSSSS (0/,,)) true S Chapter4.Themodal-calculus. SSSSSSSS false kktv (P(S),) S oneexamplefornon-continuityis[a],wherejj[a]jjtv=[[a]]tjjjjtvand wouldalsobeacompletelattice.however,thisisnotthecase,and IfjjjjTVwerecontinuous,wecouldimmediatelyderivethat(L=,) Figure4.1.Latticesofthemodal-calculusanditssemantics ; whethertheinitialstateisanelementofthisset.thisapproachis calledglobalmodelchecking.thestrategyoflocalmodelchecking setofstatesforwhichtheformulagivenholds,andthentocheck degree(see[sti93]p.499). Onestrategytosolvethemodelcheckingproblemistodeterminethe [[a]]tisonlycontinuousfortransitionsystemswithnitebranching triestoanswerthequestiondirectlyfortheinitialstate.

Chapter5 checking. systemsformodel Booleanequation equationsystemsforthecaseofsimplexpoints.onereasonis,that Themaininterestofthischapteristoshowtheequivalenceofthe andlevi[vl94]andothers.however,theymainlyderiveboolean theapproximationschemeusingbacktracking,themostwellknown ofsolvingbooleanequationsystems.severalauthorshavereduced modelcheckingproblemforthemodal-calculusandtheproblem algorithmgivingasolutionto(nested)xpointexpressions,requires andcrubille[ac88],andersen[and92],larsen[lar92],vergauwen subsequentlysolvingsimplexpointexpressions.therefore,thereis themodelcheckingproblemintobooleanequationsystems:arnold noneedfordeningxpoint-equationsystemswithnestedandalternatingxpointoperators.incontrasttothiswewanttoinvestigatethrithm.existingmodelcheckingalgorithmscannowbeinterpretedas generalcaseofbooleanequationsystemsindependentlyfromanyalgo- algorithmsforsolvingbooleanequationsystemsandviceversa.furthermore,wehaveanumberofusefulpropertiesofxpoint-equation

problemwillbeshown,astheycanbefoundinautomatatheoryand gametheory(chapter8). Section5containsthereductionofthemodelcheckingproblem.Itconsistsofasyntacticalmappingfroma-calculusformulaandamodeover,theequivalencetootherframeworkssolvingthemodelchecking andhelptogiveaclearerunderstandingofthebasicproblem.more- systemscollectedinchapter3.theyallowustoderivenewalgorithms 56 Chapter5.Booleanequationsystemsformodelchecking. inthesizeoftheformulaaswellasinthesizeofthetransitionsystem.apolynomialreductionfrombooleanequationsystemstomodel systemderivedhasthesolutiontrueforacorrespondingvariable.in section5.2itwillbeshownthatthereexistsareductionwhichislinear attheinitialstateofthetransitionsystem,ithebooleanequation toabooleanequationsystem,andtheproofthattheformulaholds 5.1Reductionofthemodelchecking checkingproblemsispresentedinsection5.2. modal-calculusformulaandamodelmtoabooleanequation ThetransformationfunctionEmapsapair(;M)consistingofa system. EreferstoasetoffunctionsfE1;:::Eng,whereeachEi,for1in, RoughlythefunctionEisresponsibleforthelinearizationofanested isrelatedtostatesiofthetransitionsystem. problem. xpointformula,whereasthefunctioneimapsamodal-calculus argumentmofewhenitisclearfromthecontext.note,thatthe formulatoabooleanexpressionatstatesi.wewillomitthesecond equivalentformulax:byadditionofaneectlessxpointoperator, transformationisdenedforformulaehavingaxpointasoutermost operator.aformulanotinthisformcaneasilytransformedtoan wherexisnotfreein(seeproposition2.17(5)).

5.1.Reductionofthemodelcheckingproblem. E(1^2)=E(1)E(2) E(X)= E(Q)= 57 E(1_2)=E(1)E(2) E(X:)=(X1=E1()):::(Xn=En())E() E(hai)=E() E([a])=E() Ei(1_2)=Ei(1)_Ei(2) Ei(1^2)=Ei(1)^Ei(2) andfor1in Ei(X)=Xi Ei(Q)=(trueifsi2V(Q) Ei(hai)=_ Ei([a])=^ falseotherwise ForavaluationVtheenvironmentVisdenedas:V(Xi)=truei Thefollowingreductiontheoremshowsthatthetransformationpreservesthesemantics,i.e.apropertysatisesastateinamodelithe Ei(X:)=Xi sia!sjej() si2v(x). correspondingvariableinthebooleanequationsystemderivedhasthe solutiontrue. ThenforallenvironmentsVitisthecasethat sij=mx:i([[e((x=);m)]]v)(xi)=true. M=(T;V)amodelandsiastateofT. Theorem5.1LetX:beaformulaofthemodal-calculus,

proveis\onsomeinnitea-pathqholdsin- Aproofcanbefoundintheappendix.Amotivationforitwillbeafter 58 thefollowingexample. Example:Considerthetransitionsystemdepicted,andletQholdfors2,butnotfors1, i.e.v(q)=fs2g.thepropositionwewantto Chapter5.Booleanequationsystemsformodelchecking. E(X:Y:hai((Q^X)_Y)) nitelyoften",x:y:hai((q^x)_y).the reductiontoabooleanequationsystemis: =(X1=E1(Y))(X2=E2(Y))E(Y:hai((Q^X)_Y) =(X1=Y1)(X2=Y2)(Y1=E1(hai((Q^X)_Y))) s1as2 =::: (Y2=E2(hai((Q^X)_Y)))E(hai((Q^X)_Y)) (Y1=E2((Q^X)_Y)))(Y2=E1((Q^X)_Y))) =(X1=Y1)(X2=Y2)(Y1=X2_Y2)(Y2=Y1) (Y1=(true^X2)_Y2)))(Y2=(false^X1)_Y1))) E((Q^X)_Y) Theproofoftheorem5.1willtakeseveralintermediatesteps.Roughly a-calculusformulahastobemappedtoa-calculusequationsystem. Thenthelatterismappedtoaequationsystemonthepowersetof thestatespace,wheremodaloperatorsaremappedtosetoperators etc.thelaststepreectstheisomorphismbetweensetsandboolean vectors.forthebasecaseofexpressionsthesituationcanbeillustrated C orderingformalattice(0=,;)),thelindenbaumalgebraof0. themodal-calculus,i.e.,theexpressionsofthepropositionalmodal logic.theequivalenceclassesof0togetherwiththeimplication asfollows:recallthat0isthesetofxpoint-freeexpressionsof

5.2.Representationandcomplexity. SSSSSS (M/,,)) true S kktv! SSSSSS (P(S),) I= SSSSSS (true,:::,true) 59 Figure5.1.Latticesformodal-calculus,statespaceandBooleanvectorspace false ; (false,:::,false) (IBjSj,) ThepowersetofthestatespaceS=fs1;:::;sngwiththeinclusion orderformsacompletelattice(p(s);).theevaluationfunction isomorphicto(p(s);).thelaststepleadsfromavectorexpression falsetruethebooleanlattice(ibjsj;jsj)withpointwiseorderingis theevaluationfunctionfrom0toexpressionsover0mapsmodal wegetanexpressionoverthepowersetofthestatespace.dening variablesandthelogicaloperators^;_tothesetoperators\;[.thus kktv:0!p(s)ismonotone(andcontinuous).theextensionof inibntoabooleanequationsystem;avectorexpressionissplitinto nexpressionsandtheoperators[[a]]t;hhaiitareevaluated. operators[a];haitosetoperators[[a]]t;hhaiit,modalvariablestoset 5.2Representationandcomplexity. forsomeindexsetsi1;:::;il.obviouslythesizeofthisexpressionis modaloperators.theproblemisdiscussedine.g.[and92]:anequationinl1oftheformixi=hai[a]:::hai[a]xjwithlmodaloperators Booleanequationsystemofexponentialsizeinthenestingdepthof istransformedtojsjequationsoftheformwi1vi2:::wil 1VIlXk AstraightforwardapplicationofthetransformationEmayleadtoa boundedbyj-rjl,wherej-rjisthebranchingdegreeoftheunderlyingtransitionsystem.theupperboundforthebranchingdegreeis

tionisdonebyintroductionofadditionalvariables.forthegeneral handsideconsistsofadisjunctxi_xjoraconjunctxi^xjorone modaloperatorinfrontofavariable[a]xorhaix.thetransforma- thesizeofthestatespacejsj. 60 InordertoavoidsuchblowupArnoldandCrubille[AC88]suggested totransform-calculusequationsintosimpleform,i.e.eachright Chapter5.Booleanequationsystemsformodelchecking. caseofnestedxpointoperatorsinproposition3.25thecorrectness ofintroducingnewvariablesandequationsisprovedfordisjunctions andconjunctions.thecorrectnessofintroducingnewvariablesand fromthetransformationefromamodal-calculusformulaanda lemma3.25. UsingthistechniquethesizeofaBooleanequationsystemresulting equationsformodaloperatorscanbeshownsimilarlytotheproofof stateexistsana-transitiontoeachotherstate(nottoitself).the assumptionsforthisresultcanbefoundinandersen[and92].the thenalsoinsimpleformasdenedinsection3.2. Example:Consideratransitionsystemwithkstatesandfromeach -calculusformulaisx:[a]haix. Booleanequationsystemderivedfromamodelcheckingproblemis model(t;v)isboundbyo(jjjtj).adiscussionoftherepresentation kaaaaaa!!! aaaaaaaaa ::: 1 LLLLLLLLL @@@@@@@!!!!!!!!! 2 LLLLLLLLL @@@@@ HHH 6 34 5 Figure5.2.Transitionsystem

anuntransformedequation X=[a]haiX TheBooleanequationsystemderivedfrom hassizeofo(k2): 5.2.Representationandcomplexity. X1=k^j=2k_ i=1;i6=jxi simpleformequations (X=[a]X0)(X0=haiX) 61 Xk=k 1 ::: hassizeofo(k): ^j=1k_ i=1;i6=jxi X01=k_j=2Xj X1=k^j=2X0j CItisobviousthatnestingdepthandalternationdepthofaBoolean X0k=k 1 Xk=k 1 :::_j=1x0j ^j=1x0j depthoftheunderlying-calculusformula.independencyofthe modelthesenumberscandecreaseasthefollowingexamplewillshow: equationsystemarenotgreaterthannestingdepthandalternation X:haiY:[b]X^[a]Y Egives: (X1=Y2)(X2=Y1)(Y1=Y2)(Y2=Y1) Example:Considerthe-calculusformula andthetransitionsystemdepicted. TransformationtoaBooleanequationsystem hasnestingdepthandalternationdepth2. Ehasnestingdepth2andalternationdepth1.s1as2

Inordertoshowthatthemodelcheckingproblemandtheproblemof 5.3ReductionofBooleanequation solvingabooleanequationsystemareequivalentwealsohavetogivea 62systems. Chapter5.Booleanequationsystemsformodelchecking. ofetheyhavethesamesolution.roughly,aftersomereorderingof transformationintheotherdirection.foranyclosedbooleanequation dividedintoblocks.wedeneatransitionsystemthatconsistsofas manystatesasthelargestblockcontainsequations.transitionsare equationsandintroductionofnewequationsanequationsystemis systemewewillconstructaformulaofthemodal-calculusanda modelm,suchthateande(;m)areequivalent,i.e.forallvariables denedstraightforwardlyinsuchaway,thatthetransformatione producestherequiredexpressions. allx2lhs(e)andenvironments suchthatforavariablerenamingfunctiononthevariablesofe, apropositionofthemodal-calculusandamodelm=(t;v), Theorem5.2ForaclosedBooleanequationsystemEthereexists standardform. Proof:Theconstructionofandatransitionsystemisperformed insevensteps.weassumethatthebooleanequationsystemeisin Itisad(E)ad(),TisofsizeO(jEj2)andisofsizeO(jEj2). ([[E]])(X)=([[E(;M)]])((X)): (2)Withineachblockmovealldisjunctionstothetopandtheconjunctionstothebottomaccordingtotheorem3.21.Nowdivide eachblockintotwonewblocks,suchthatonecontainsnodis- (1)DivideEintoblocks,suchthatconsecutiveblockshavedierent noconjunctions(calleddisjunctiveblock). operator. junctions(calledconjunctiveblock)andtheotheronecontains xpointoperatorsandwithinoneblockthereisauniquexpoint

(4)TransformtheBooleanequationsystemintoanequivalentone,E0 5.3.ReductionofBooleanequationsystems. (3)IntroduceanewvariableforeachblockandifXisthevariable functionwhichmapsan\old"variabletoa\new"one. ofablockrenamealltheleft-handsidevariablesofthisblock tox1;:::;xjforsomej2in.letbetheinjectiverenaming 63 sequentblock.thenintroduceanewvariablex0,transformthe isnotavariableofthesameblockasyandnotofthedirectlysubatorofthisblock.continuewithintroductionofnewvariables ontherighthandsideofanequationy=f,whereyexandx equationabovetoy=f[x=x0]andaddtheequation0x0=x tothedirectlysubsequentblock,where0isthexpointoper- inthefollowingway.assumethereisoccurrenceofavariablex sequent,butnotdirectlysubsequentblock.choosenamesofnew variables,suchthatwithinoneblockthereisstillauniquevariablenameandconsequentvariablesarenumberedbyconsequent indices.thetransformationiscorrectaccordingtolemmata3.25 and3.22.theadditionalblow-upofthebooleanequationsystem isnotmorethano(n2)forndef untilthereisnooccurrenceofavariablewhichbelongstoasub- (5)Ifnisthehighestindexappearinginoneoftheblocksthencreate (block)variables(x;y)thereexistsauniquelabelxy.transform cannotbeaddedmoreequationsthanthenumberofright-hand sidevariablesintheprecedingblocksofe. Deneasetofactionlabels,suchthatforeachorderedpairof atransitionsystemtconsistingofnstatesnumbered1ton. =jej,becauseineachblockofe0 forequationsofaconjunctiveblock, theequationsandaddlabelledtransitionstothetransitionsystem asfollows.let1i;j;kn. forequationsofadisjunctiveblock, ixi=yj_zk ixi=yj^zk ixi=hxyiy_hxzizixy ixi=[xy]y^[xz]zixy!j;ixz addtottransition(s) ixy ixy!j!k!k

(6)Createasequenceofexpressions,oneforeachblock.Foreach 64disjunctiveblockwithvariablesX1;:::;Xkdene Thetransformationdoesnotincreasethesizeoftheequationsystem(apartfromadditionofmodalities). Xdef Chapter5.Booleanequationsystemsformodelchecking. Dually,foreachconjunctiveblockwithvariablesX1;:::;Xkdene reducedtohxyiy).createtheexpressionx:x. appearsatmostonceinx(assumingthathxyiy_hxyiyis Notethataccordingtothechoiceofactionlabelseachvariable =k_i=1fijxi=iisanequationg: (7)Byconstructionthesequenceofexpressionshastheproperty:in ThesizeofX:XislinearinthenumberofblocksofE0. pearsatmostonceinx.createtheexpressionx:x. X:Xoccuronlyleft-handsidevariablesfromprecedingexpressionsorfromthedirectlysubsequentone.Generateanexpression Againaccordingtothechoiceofactionlabelseachvariableap- Xdef =k^i=1fijxi=iisanequationg: constructeddonotcontainatomicpropositions). temtandanarbitraryvaluation(thisis,becausetheformulae subsystemofe(;m),wheremconsistsofthetransitionsys- startingwiththerstexpressionofthesequenceandtheiterativelysubstitutingthevariablewhichisleft-handsidevariable ofthenextexpressionbythenextexpression.showthate0isa ThesizeofislinearinthesizeofallX,andhencequadratic laeconstructeddonotcontainconstants. (T;V).ThevaluationVcanbechosenarbitrarily,becausetheformu- ItiseasytoshowthatE0isasubsystemofE(;MT),whereMT= O(b2),wherebisthenumberofblocksinE,andthetransition systemthasatmostnstatesand2ntransitions,wherenisthe inthenumberofblocksofe0.then,altogether,thesizeofis numberofequationsine.

5.3.ReductionofBooleanequationsystems. consideringinnitebooleanequationsystemsweassumethatthe innitenumberofequations.thetransformationfortheinnite casethenworksastheoneforthenitecase,onlythetransition Remark5.3ThenumberofactionlabelsisquadraticinthenumberofblocksofE,butdoesnotdependonthesizeofblocks.When numberofblocksisnite,butwithineachblocktheremaybean 65 Example: Booleanequationsystem Z1=Z3_Z5 Z2=Z4^Z6 sizequadraticinthenumberofblocks. systemwillhaveaninnitenumberofstates.theformulahas Z4=Z2_Z5 Z3=Z1_Z6 step1: Z5=Z3^Z2 step2:blockstructure step3:renaming Z6=Z4_Z3 Z1=Z3_Z5 Z2=Z4^Z6 W1=U1_X2 X1=V1_Y1 X2=X1_W1 U1=W1_Y1 V1=X1^X2 additionalvariables step4:introductionof Z4=Z2_Z5 Z6=Z4_Z3 Z5=Z3^Z2 Z3=Z1_Z6 Y1=W1^V1 W1=U1_X2 W2=X1 U1=V2_V3 W3=X2 V1=W2^W3 W4=X3 V2=W1 X1=V1_Y1 V3=W4 X2=X1_W1 X3=Y1 Y1=W1^V1

step5:creatingequationsandatransitionsystem 66U1=huviV_huviV V1=[vw]W^[vw]W V2=[vw]WChapter5.Booleanequationsystemsformodelchecking. W1=hwuiU_hwxiX W2=hwxiX W3=hwxiX W4=hwxiX X1=hxviV_hxyiY V3=[vw]W w11x1x2 y1;y2; X2=hxxiX_hxwiW X3=hxyiY Y1=[yw]W^[yv]V 4 1 x21;x22;v;w u;v;w wv 2 3w step6:createoneexpressionforeachblock U:huviV step7:generateoneexpression V:[vw]W W:hwuiU_hwxiX U:huvi( X:hxviV_hxxiX_hxwiW_hxyiY Y:[yw]W^[yv]V V:[vw]( W:hwuiU_hwxi( X:hxviV_hxxiX_hxwiW_hxyi( Y:[yw]W^[yv]V ))))

5.3.ReductionofBooleanequationsystems. translateformulaandtransition systemcreatedbacktoa U1=V2_V3 U2=false 67 W1=U1_X2 U3=false W2=X1 U4=false W3=X2 V1=W2^W3 W4=X3 V2=W1 X1=V1_Y1 V3=W4 X2=X1_W1 V4=true X3=Y1 X4=false Y1=W1^V1 Y2=false Y3=false Y4=false C

68 Chapter5.Booleanequationsystemsformodelchecking.

Chapter6 SolvingBoolean InthischapterwewillilluminatevariousmethodsforsolvingBoolean equationsystems.allofthemareinfactmodelcheckingalgorithms. Usuallytheyarepresentedwithindierentsettings.Heretheyareall discussedwithinoneframework.thisallowsaclearerunderstanding ofconcepts. Wedistinguishtwobasicclassesofmethods,theglobalonesandthe casecomplexityoflocalalgorithmscanneverbebetterthantheone interest.(usuallyitisthevariablewhichcorrespondstotheinitial stateofthetransitionsystemandthepropertytoprove.)theworst formationtocalculatethesolutionforthesinglevariablewhichisof onestrytodetermineasubsetofequationswhichgivessucientin- andtheirresultisacompletesolutionforallvariables.thelocal localones.theglobalonesrequirethefullbooleanequationsystem ofglobalalgorithms:intheworstcasethewholeequationsystemis informationandthereforelocalmethodsmighthavebetteraverage involvedinthesolutionfortherstvariable.however,insomeaverage casecomplexity.traditionally,approximationtechniques(seesection caseitislikelythatjustasubsetoftheequationscontainssucient

70 6.2)belongtotheglobalalgorithms,tableaumethods(seesection6.3) tothelocalones.however,bordersbetweentheapproachesarenot strict.thereexistsanapproximationbasedalgorithmwhichworks locally;thegaueliminationalgorithm(seesection6.4)existsinboth versions. Inchapter8wewillconsiderotherframeworks,inwhichthereexist Chapter6.SolvingBooleanequationsystems. 6.1PlainBooleanequationsystems. ForthemomentweconsiderclosedBooleanequationsystemsinsimple algorithmssolvinganequivalentproblemalsosolvebooleanequation problemsequivalenttosolvingbooleanequationsystems.ofcourse, formwithoutanyminimalityandmaximalityconditions,i.e.wejust forgetaboutthes.theremainingsystemepisnotanorderedset ofbooleanequationsoftheformxi=fiforsome1in.a solutionsofthebooleanfunctionformacompletelattice.thenumber systemepcaneasilybetransformedintoabooleanfunctionofthe thatforeachequationxi=fiitisfi()=(xi).anequation formw1in(fi^x0i)_(f0i^xi)=0.itisawellstudiedareawhat Theconditionthatallfisaremonotoneensuresthatthesetofall thesolutionsofsuchafunctionare(seeforexample[rud74]). solution(orxpoint)ofepisanenvironment:lhs(ep)!ib,such FromaplainBooleanequationsystemEpwecanderivetwosortsof graphs:theordergraphtellingorderconditionsforthevariablesineverysolutionandthedependencygraphshowingtheinterdependency ofthevariablesinthesystem. Theordergraphisarepresentationoforderconditionsderivedfrom theequations.itconsistsofasetofverticesf1;:::;n;true;falseg,one ofsolutionsisingeneralexponentialinthenumberofequations. vertexforeachequationofthesystemepandtwofortheboolean constants.ifthereisanequationxi=xj^xkinepthenforevery solutionofepitisthecasethatxixjandxixk.hence therewillbetheedgesj!iandk!iintheordergraph.dually,if

(Xj)=trueand(Xk)=truefulllstheorderconditionsderived allvariablesinthecyclehavetobeequalineverysolution.however, 6.1.PlainBooleanequationsystems. theedgesi!jandi!k.cyclesintheordergraphindicatethat Xi=Xj_XkthenXiXjandXiXkandtheordergraphcontains butnotbeingsolutionsofthesystem.forexample(xi)=false, thereexistenvironmentsfulllingallconditionsoftheordergraph, 71 ThedependencygraphofaplainBooleanequationsystemEpalso fromxi=xj^xk,butisnotasolutionoftheequation. hastheverticesf1;:::;n;true;falseg.itisarepresentationofthe Xi=Xj^XkorXi=Xj_Xkthedependencygraphcontainsthe edgesj!iandk!i.theinformationwecangetfromthedepen- dependencyrelationsderivedformtheequations.foranequation tions.partsofthegraphwhicharenotstronglyconnectedindicate dencygraphisforexampleaboutthenestingstructureoftheequa- weaddtoourequationsystemminimalityandmaximalityconditions thattheunderlyingsystemcanbedecomposedinpartswhichcanbe (booleangraphsinhisterminology)andderivedecientalgorithms solvedoneaftertheother. Ourquestionnowiswhatisthesolutionweareinterestedin,when andorder. ForBooleanequationsystemswithonlymaximalxpointsoronly minimalxpointsandersen[and94a]investigateddependencygraphs lutionsoftheplainbooleanequationsystemistheonewewant?a fordeterminingthemaximal,orminimalresp.xpoint. rstideaisthatitisthelexicographicallyleastsolutionoftheplain system.thelexicographicorderisderivedfromthexpointoperators Forthecaseofnestedandalternatingmaximalandminimalxpoints asindenition3.4andthecharacterizationofthesolutionfromproposition3.5suggestssuchanidea.therstexamplebelowwillshow, thatthisisnotthecase.thesecondexamplewillshowthatitiseven xpointoperatorsisoneofthesolutionsoftherelatedplainboolean equationsystem.nowaninterestingquestionis,whichoneoftheso- thingsgetmorecomplicated.clearly,thesolutionofthesystemwith worse.therewepresenttwobooleanequationsystems,bothhaving

xpointoperatorsdonotprovideenoughinformationtoselectthesolution.allalgorithmswewilldiscussinthischapterhavetodetermine thesolutionsofthesubsystemsrst(insomeabstractview).thisis thesamexpointoperatorsinthesameorder,andbothhavingthe setofsolutionsfortheirplainversion.however,theirsolutionsdier. Chapter6.SolvingBooleanequationsystems. 72 Thisindicates,thatthesetofxpointsoftheplainsystemandthe However,thesolutionof[[X2:X2]][X1=i(X1)]isX2=trueforboth anargumentforthatthetraditionalmethodsforsolvingplainboolean environments,i=1,2.hencethesolutionofthewholesystemis1, Thereexisttwoenvironmentsfulllingthebothconditionsabove: equationsystemsdonothelpinthecasehere. i.e.x1=true;x2=true,whereasthelexicographicleastxpointis Example:Let(X1=X2)(X2=X2)beaBooleanequationsystem. 1=[X1=true][X2=true]and2=[X1=false][X2=false].Forboth, i=1,2,itis(x1)(i)=i(x1)and(x2)(i)=i(x2). thebooleanequationsystem,([[(x1=x2)(x2=x1)]])(xi)=true X1=false;X2=false. tionsystemis([[(x1=x2)(x2=x2)]])(xi)=falsefori=1;2. lutions(true;true)and(false;false).thesolutionforthebooleanequa- Example:TheplainequationsystemX1=X2,X2=X2,hastheso- TheplainequationsystemX1=X2,X2=X1alsohasthesolutions (true;true)and(false;false).however,herewehaveanothersolutionfor CalculatingtheleastxpointX:f(X)ofamonotone(andcontinuous)functionf(X)worksinthewellknownmanner:thefunctionticesisbasedontheapproximationtechniquefromproposition2.20. 6.2Approximation. Themostwellknownmethodforsolvingxpointequationsoverlat- fori=1;2. C thelatticeisnite. plicationsoffwillreachthexpointafteranitenumberofsteps,if ofthepreviousapplicationetc.,andtheincreasingchainoftheseap- isappliedrsttothebottomelementofthelattice,thentotheresult

6.2.Approximation. Dually,whenstartingfromthetopelement>,thegreatestxpoint?f(?)f(f(?)):::fi(?)=X:f(X)forsomei2IN beapproximatedsimultaneouslyinordertoreachtheleastxpoint. canbedetermined. Themethodeasilyextendstonestedxpoints.Fornestedxpointsof thesamekindsuchasx1:f1(x1;x2:f2(x1;x2))bothfunctionscan 73 taneouscalculationisnotpossible.whenapproximatingx1:f1each evaluationoff1requiresafullapproximationofx2:f2:?f1(?)f21(?):::fi1(?)=x1:f1(x1;x2:f2(x1;x2)) forsomei2in. ForalternatingxpointssuchasX1:f1(X1;X2:f2(X1;X2))asimul- wegetbymonotonicityargumentstheincreasingchain Forfi+1 1(?)def =f1(fi1(?);fi+1 2(?))andfi+1 2(?)def =f2(fi1(?);fi2(?)) systemsisstraightforward.fromtheexplanationsabovefollowsthat fi+1 Hencethealgorithmsbasedonthistechniqueareexponentialinthe forethealgorithmismostecientforabooleanequationsystemwhen allvariablesofoneblockcanbeapproximatedsimultaneously.there- alternationdepth. TheapplicationoftheapproximationtechniquetoBooleanequation 1(>)=f1(fi1(>);X2:f2(fi1(>);X2)). tionsystem WeassumethatBooleanequationsystemsconsideredhereareinsuch aformwherethenumberofblocksisminimal.(seealsodenitions illustratetheapproximationschemeforanalternatingdepth3equa- 3.33and3.34fornotionsofnestingdepthandalternationdepth.)Beforediscussingthevariousapproximationbasedalgorithmswetryto itistransformedtoanequivalentonewithaminimalnumberofblocks. E3:(X1;X2)!X3:f3(X1;X2;X3) E2:(X1;X3)!X2:f2(X1;X2;X3) E1:(X2;X3)!X1:f1(X1;X2;X3) Eachxpointequationdeterminesoneoftheplanes: system(x1=f1)(x2=f2)(x3=f3).thepicturesimpliesthe Inpicture6.1weconsideranalternationdepth3xpointequation actualsituationintheway,thatwedrawlatticesaslines.

74 > X3 (((((((((((((((((((( Chapter6.SolvingBooleanequationsystems.!!! e 1? X2 > X1 equationsystem.oneofthemisthesolutionweareinterestedin.it TheplanesE1,E2andE3intersectinsomeofthexpointsofthe Figure6.1.Visualizinganalternationdepth3approximation2 willbecharacterizedbytheorderofequations.inthepicturethereis intersectionpointofplanese3ande2.thenextstartingpointis justoneintersectionpoint,forsimplicity. thelowervalueofx2,x1=?andx3=?.againthee3-planeis that,onestepisperformedinthedirectionofx2correspondingto oneevaluationoff2.theresultisalowervalueforx2,closertothe?,x2=>andx3=?representedbyadotinthepicture.from thispointitapproximatesinthedirectionofx3thee3-plane.after Theapproximationalgorithmworksasfollows:itstartsatpointX1= approximatedindirectionofx3,followedbyastepindirectionoff2, etc..theseiterativeapproximationsaredepictedeachbyadottedline withanarrowshowingthedirectionoftheapproximation.whenthe 3

valueforx1whichgivesanewstartingpointfortheapproximation, illustratedbyahexagondotinthepicture. AltogetherthealgorithmmovesalongtheintersectionlineofE3and 6.2.Approximation. E2untilitreachestherstintersectionwithE1,therstxpoint, intersectionlineofe3ande2isreached,onestepindirectionofx1is performed,correspondingtoanevaluationoff3.theresultisanew 75 xpointsisperformedbythestraightforwardapplicationofproposition2.20,theexplicitcalculationofanincreasingchain.thetime complexityofthealgorithmforbooleanequationsystemswithone whichisthesolutionofthesystem. InEmersonandLei'salgorithm[EL86]theapproximationforunnested [CS91],Andersen[And92,And93]andVergauwenandLewi[VL92]. thorsdevelopedfasteralgorithmsfortheapproximationofunnested tiontechniquetobooleanequationsystemswitharbitraryalternation depththealgorithmhastimecomplexityo(jejad(e)+1)).otherau- xpoints,e.g.arnoldandcrubille[ac88],cleavelandandsteen ArnoldandCrubille'sandVergauwenandLewi'salgorithmsarebased xpointoperatoristheno(jej2).byextensionoftheapproxima- therighthandsideofitsequationistheconstanttrueoradisjunctionwhereonevariablehasthesolutiontrueoraconjunctionwhere falseunlessitis\forced"tohavethesolutiontrue.itmustbetrueif onbooleanequationsystems,andersenarguesondependencygraphs, equationsystemwithonly-operatorseveryvariablehasthesolution However,thebasicideaofallthesealgorithmisthesame:inaBoolean bothvariablesmustbetrue.theextensionofthesealgorithmstothe CleavelandandSteenon-calculusequationsystemsinsimpleform. generalcaseaccordingtotheapproximationschemathenprovidesalgorithmswhichareexponentialinthealternationdepthofthesystem withatleastalternationdepth3.theircrucialideaisvisualizedin picture6.1:thestandardapproximationtechniquewouldcontinuethe approximationofplanee3fromthenewstartpoint,whichismarked AgreataccelerationwasgainedbyLong&al[LBC+94]forsystems byahexagoninthepicture.actually,fromthepreviousapproxima- [And92,And93],[CKS92].

rivedalocalalgorithmforalternationfreexpointexpressionsbased ofthealternationdepthofthesystem. Allalgorithmsmentionedaboveareglobalones.Andersen[And92]de- 76 tioninthelowerx1-levelandmonotonicityofthefunctionsweknow thatthee3planemustlieabovethesquarepoint,whichmaybeused asthenewstartingpointthen.theiralgorithmisexponentialinhalf Chapter6.SolvingBooleanequationsystems. sentedalocalalgorithmforbooleanequationsystemsofalternation depth2whichisalsoapproximationbased.theiralgorithmhasthe complexitythantheglobalones.in[vl94]vergauwenandlewipre- samecomplexityascomparableglobalalgorithms,buttheadvantage oflocalmethodsthatitpossiblyneedsjustasmallsubsetofequations todeterminethevariableofinterest.thissubsetofequationshasthe onapproximationtechniques,buthavingaslightlyhigherworstcase temandthecomplexitymeasuresareforanadaptedversion.when collected.manyofthemwerenotintendedforbooleanequationsys- equations(uptonondeterministicchoice). Inthetablebelowcomplexityresultsofthealgorithmsmentionedare otherlocalmethodsase.g.tableauxmakeuseofthesamesubsetsof uponsolutionsofvariablesoutside.itseemstobethecasethatthe propertythatthesolutionsofvariablesofthesubsetdonotdepend InthissectionwedeneatableaumethodforsolvingBooleanequation 6.3Tableaux. ad.forthelocalmodelcheckingalgorithmin[vl94]itise=e1e2. slightlybetterbounds.thealternationdepthad(e)isabbreviatedby applieddirectlytothemodelcheckingprobleminsomecasesthereare systemcompletely.atableaugivesasolutionjustforonevariable.for systems.incontrasttoglobalmethods,whichsolveabooleanequation thispurposenotallequationsarerequired.itisthereforecalledalocal method.thetableaumethodpresentedhereistheoneofstirlingand ConsideraBooleanequationsystemEbeinginstandardformandan Walker[SW89]appliedtoBooleanequationsystems. environment.assumethesolutionis0def =[[E]].Thegoalisto

6.3.Tableaux. algorithmfromfragmentcomplexity [EL86] [AC88] TimeComplexityofApproximationBasedAlgorithms full O(jEjad+1) O(jEjjlhs(E)j) 77 [CS91] [CKS92] [VL92] [LBC+94] ad1 O(jEj) [And92] ad1 O(jEjad) O(ad2jEjbad=2c+1) O(jEjlog(jEj)) global showthat([[e]])(xi)=true.thesolutionforxicanonlybetrue,if [VL94] [VLAP94] ad2 full O(jE1j+jlhs(E1)jjE2j)local O(jEjcad) i.e.fi(0)=true.asubgoalisthentryingtoshowthatfigetstrue forequationixi=fitheright-handsidefiistrueatthesolution, local forthesolution.atableauforvariablexiisaprooftreewithroot rulesforconstructingatableauarecollectedbelow.rulesareapplied Xi.ThesucessorsofXiarevariablesrepresentingthesubgoals.The containingxj,andbetweennandn0thereisnonodecontaininga aresuccessful. Terminationcondition1:ThenodencontainingXjisaleafofthe tableauifonthepathfromntotherootthereisanothernoden0 whetheritissuccessfulornot.atableauissuccessfulifallitsleaves isnoruleapplicabletoanodewehavereachedaleafandcandecide untilaterminationconditionholdsforanode.inthecasethatthere Thenoden0iscalledthecompanionofn. variablexisuchthatxiisavariableofalowerblockthanxjine.

Tableaurules: 78 Terminationcondition2:ThenodencontainingXjisaleafofthe tableau,ifonthepathfromntotherootthereisanothernoden0 containingxj.thenoden0iscalledthecompanionofn. [^1]Xi XjXk ixi=xj^xkisanequationofe Chapter6.SolvingBooleanequationsystems. Aleafcontainingtheconstanttrueissuccessful,aleafcontainingthe [^2]Xi constantfalseisunsuccessful.forleavescontainingavariablethe [_2]Xi [_1]Xi Xk ixi=xj_xkisanequationofe isanequationofe Successcriterion2:Aleafnissuccessful,iftheleast(w.r.t.E) successcriteriondiersfortheterminationconditions: Successcriterion1:Aleafcontaininga-variableissuccessful,aleaf anditscompanionisa-variable. nisunsuccessful,iftheleast(w.r.t.e)variableatanodebetweenn containinga-variableisunsuccessful. variableatanodebetweennanditscompanionisa-variable.aleaf transitionsystem: tableau(forbothterminationconditions)whentheunderlyingtransitionsystemjustgrowslinearly. Considerthe-calculusformulaX:[a]Y:hbi(Y_X)andthefollowing ExampleThisisademonstrationoftheexponentialgrowthofa tableauwithrootx1. Proposition6.1([[E]])(X1)=trueithereexistsasuccessful 1m HHHHHH a12 11 b2mhhh a21 22 mm b3... km HHH ak1 k2 mm b1

6.3.Tableaux. TheBooleanequationsystemderivedis X11=true Xk=Yk1^Yk2 X1=Y11^Y12 ::: 79 Xk1=true Thetableauforthecasek=3is: Yk2=Y1_X1 Y11=Y2_X2 Yk=false Y1=false ::: Y31X3 X1Y32 Y21X1Y22 Y11 X2Y31X3 X1Y32 X1Y31X3 X1Y32 Y21X1Y22 Y12 X2 following: plewherethesubtreesarenotexactlythesame,butsimilaristhe factthatitcontainsthesamesubtreesseveraltimes.anotherexam- Itisobviousthattheexponentialsizeofthetableauisduetothe Y31X3 X1Y32 X:h iy:h ih ix^h ih iy andthetransitionsystem Example: Giventhe-calculusformula 2iii 531i@@@@,,,, 4

80 TheBooleanequationsystemderivedis X1=Y2_Y3_Y4_Y5 X4=Y5 X3=Y5 X2=Y5 Chapter6.SolvingBooleanequationsystems. X5=Y1_Y2_Y3_Y4 Y2=5_i=1Xi^5_i=1Yi Y3=5_i=1Xi^5_i=1Yi Y1=X5^Y5 Y4=5_i=1Xi^5_i=1Yi maytryitbyhand. TheversionofthetableaumethodofCleavelandasimplementedin wasstoppedafterhavingcreated22millionnodes.thescepticalreader ThetableauforthisBooleanequationsystemhasanenormoussize. AnimplementationoftheoriginaltableaumethodofStirling&Walker Y5=5_i=1Xi^5_i=1Yi Theexamplespresentedherecanalsobesolvedwithoutproducing AtableaubasedmodelcheckingalgorithmwasintroducedbyLarsen theconcurrencyworkbenchcandealwithredundancyofthiskind. redundantinformationbythetechniqueof[mad92]. dierentsubtreesofthetableauthesame(orverysimilar)subgoals [Lar95]forunnestedxpointexpressions.StirlingandWalker[SW89] stratedbyexamplesinthissection.onereasonforthatisthatin andcleaveland[cle90]developedtableaumethodsforthefullmodal -calculus.winskel[win89]extractedtheprinciplesofthesetableau methodssuerfromahighworstcasecomplexity,whichwasdemon- methodsandpresentedthemasarewritesystem.unfortunatelythese

6.4.Gauelimination. maybecomputedrepeatedly.forunnestedxpointexpressionslarsen previouslydiscovered(failed)resultsareremembered.in[mad92]the [Lar92]presentedatableaumethodwithpolynomialworstcase.There tableaumethodsof[sw89]and[cle90]areextendedbyadditional structurewhichallowstomakemaximaluseofresultsgainedinone subtableauforlatersubtableauxduringconstruction.however,some 81 amountofredundancyisinherenttotop-downconstructions,andit sectionissimilartothegaueliminationalgorithmforlinearequationsystems.itistheonlymethodknownsofarwhichdoesnot tothegaueliminationmethodinsection6.4. 6.4Gauelimination. ThemethodforsolvingBooleanequationsystemspresentedinthis canonlybeavoidedbyabottom-upevaluation.thisapproachleads anexpressionisconstructedcontainingnooccurrenceofx.inasubsequentsubstitutionstepeachoccurrenceofxintherestofthducedbyonevariableandequationaftertheotheruntilthesolution isdetermined.thereductionconsistsoftwostepswhichareapplied iteratively.firstcomesaneliminationstep,whereforavariablex requirebacktrackingtechniques:anequationsystemisstepwisere- equations.thustheproblemofsolvingabooleanequationsystemis reducedtotheproblemofsolvingasmallerbooleanequationsystem. TheGaueliminationalgorithmisalsorelatedtothetableaumethods. Themainideahereisthattheconstructionofatableauinatop-down mannerleadstotreespossiblycontainingmanycopiesofidentical(or ingsystemcontainsnooccurrenceofxontheright-handsidesofits equationsystemissubstitutedbythex-freeexpression.theremain- involvingallequationsofthebooleanequationsystem.thecombinationofatableau-liketop-downselectionofequationsandbottom-up similar)subtrees.averynaturalwaytoovercomesuchanunnecessary blow-upistoconstructadirectedacyclicgraphinsteadofatree(i.e. atableau).thiscanbedoneinabottom-upmanner. Apurebottom-upmethodwouldagainleadtoaglobalalgorithm

examplewheretheexpressionscreatedhaveexponentialsize. havior,gaueliminationsolvestheprobleminlineartime.however, forthenaivealgorithmderivedfromgaueliminationthereexistsan 82 theapproximationmethodortableaumethodhaveanexponentialbe- evaluationgivesanalgorithmwhichmakesuseofthesameinformationasatableau,butavoidsredundancy.inmanyexamples,where Chapter6.SolvingBooleanequationsystems. InthecaseofGaueliminationforBooleanequationsystemsaneliminationstepinferedinlemma6.2isaconsequenceoflemma3.29.In anequationx=feachoccurrenceofxinfmaybesubstitutedby 6.4.1Globalandlocalalgorithm. dierentversionbykalorkoti[kal96]. Thealgorithmwasintroducedin[BM93,Mad95]andinaslightly Dierentproofscanbefoundin[BM93,Mad95]. Thesubstitutionstepderivedfromlemma6.3preservesthesolution justinthecasewhenwefollowtheorder:anoccurrenceofavariable maybesubstitutedbyaright-handsideexpressiononlyinalllower false,orduallyforbytrue. Theeliminationstepisbasedonthefollowinglemma. TheproofspresentedherewerepartlysuggestedbyVergauwen[Ver95]. (w.r.t.e)equations.(seealsoproposition2.21.) Lemma6.2Let [[(X=f)E2]]=[[(X=f0)E2]]: Proof:Accordingtoproposition3.14itissucienttoshowthat E1;E2beBooleanequationsystems, X=f;X=f0Booleanequations, [[(X=f)E2]]=[[E2]][X=f([[E2]][X=b])] Then[[E1(X=f)E2]]=[[E1(X=f0)E2]]. wheref0=f[x=b]. =[[E2]][X=f0([[E2]][X=b])] =[[(X=f0)E2]]

6.4.Gauelimination. Thefollowinglemmaisthebasisforthesubstitutionstep: Lemma6.3Let E1;E2;E3beBooleanequationsystems, 1X1=f;1X1=f0;2X2=gBooleanequations, wheref0=f[x2=g]. 83 01def 02def Proof:Againfollowingproposition3.14wejustneedtoshowthatfor [[E1(1X1=f)E2(2X2=g)E3]]def [[E1(1X1=f0)E2(2X2=g)E3]]def Then1=2 =[[(1X1=f)E2(2X2=g)E3]]and=1 itisthecasethat01=02. =[[(1X1=f0)E2(2X2=g)E3]]=2. solutionof(1x1=f0)e2(2x2=g)e3.hence02islexicographically smallerthan01,because02isthesolution. Wewillshowthat01fulllsbothconditionsofproposition3.5forthe Showf0(01)=01(X1)(condition(1)ofproposition3.5) 01(X1)=f(01) g(01)=01(x2) =f(01[x2=01(x2)]) =f(01[x2=g(01)]) lexicographicallysmallerthan02. Show[[E2(2X2=g)E3]]01=01(condition(2)ofproposition3.5): 3.5forthesolutionof(1X1=f)E2(2X2=g)E3,andhence01is followsfromproposition3.7 Analogously,thedualholds:02fulllsbothconditionsofproposition f(02)=02(x1)(condition(1)ofproposition3.5): =f0(01) analogously [[E2(2X2=g)E3]]02=02(condition(2)ofproposition3.5) Altogetherwecanconcludethat01=02.

84 Basedonthesebothlemmataisthefollowingalgorithminpseudo code. i:=n; Inputare(1X1=f1):::(nXn=fn)and Chapter6.SolvingBooleanequationsystems. whilenot(f1trueorf1false) doinstantiatexiinfitobi; Figure6.2.GlobalVersionoftheGauEliminationAlgorithm odi:=i-1; f1:=eval(f1);:::;fi 1:=Eval(fi 1);(evaluationstep) SubstitutefiforXiinf1;:::;fi 1;(substitutionstep) (eliminationstep) expressionsappliedinthefunctionevalofthealgorithmingure datastructureforbooleanexpressions.theretheevaluationrulesare 6.4.1.Inanimplementationbinarydecisiondiagramswerechosenas performedimplicitlywitheverysubstitutionandeliminationstep.in theexamplesdonebyhandthefollowingsetofbooleanlawswasused AcrucialpointinthealgorithmaretheevaluationrulesforBoolean forevaluationẋ^true=x (X^Y)_(X^Z)=X^(Y_Z) X_(X^Y)=X X^(X_Y)=X X^false=false X_false=X X_true=true Inmostcontextsweareonlyinterestedintherstcomponentofthe (X_Y)^(X_Z)=X_(Y^Z)

everyxiwherethevariablesxi;:::;xndonotoccur.astraight backwardsubstitutionleadstothewholesolution. substitutionstephavetobeappliedntimesgivinganexpressionfor areinterestedinthewholesolutionthegaueliminationstepand ingure6.4.1stops,ifthesolutionofx1(f1)isdetermined.ifwe 6.4.Gauelimination. solution,i.e.whetherx1istrueorfalse.thereforethealgorithm 85 Example:StartingwiththeBooleanequationsystem: SubstitutionofX1^X2forX4andevaluation(Thesubstitutedexpressionsareunderlined): X1=X2_X3 X3=X4_X1 X1=X2_X3 X2=X3^X4 X4=X1^X2 SubstitutionofX1forX3andevaluation: X3=(X1^X2)_X1=X1 X1=X2_X1 X2=X3^(X1^X2) SubstitutionofX1forX2: Thecompletesystemconstructedbythealgorithmis: EliminationofX2inX2=X1^X2givesX2=X1^true=X1. X1=X1_X1=X1=false(byaneliminationstep) X2=X1^(X1^X2)=X1^X2 BackwardsubstitutiongivesX1=X2=X3=X4=false. subsetofequationswhichisnecessarytodeterminethesolutionfor Ifonlytherstvariableisofinterest,itsucestoconsideronlythe X1=false X2=X1 X3=X1 X4=X1^X2 (from4) (from3) (from2) (from1) C

E0consistingonlyoftheequation(1X1=f1).AslongasX1is notevaluatedtotrueorfalseweselectafreevariablefromf1,insert itsequationine0,applytheglobalversionofgauelimination,and 86 X1.Therelevantsubsetofequationsisselectedinatop-downmanner. ThisobservationleadstothelocalversionofGaueliminationgivenin gure6.3.theideaisasfollows.westartwiththeequationsystem Chapter6.SolvingBooleanequationsystems. continueinthesamewaywiththemodiedequationsysteme0. whilenot(f1=trueorf1=false) InstantiateX1inf1; f1:=eval(f1); E0:=(1X1=f1); doselectxjfromf1,wherexjisnotinlhs(e0); Createfj,insertjXj=fjinE0 (evaluationstep) (eliminationstep) Figure6.3.LocalVersionoftheGauEliminationAlgorithm Thereexistsanaccelerationofthealgorithmwhichworksasfollows: anoccurrenceofavariablexjmaybesubstitutedbytrueorfalseatan odapplytheglobalversionofgaueliminationtoe0 accordingtotheorderbythetransformationrules; possibilityappearsinthedenitionofthesemanticsforbooleanequationsystems(proposition3.30):anyoccurrenceoftherstvariable, earlierstagethanwhenoccurringontherighthandsideofitsdening equationjxj=fj.thisisthecase,whenitdoesnothappenthat(a inthesensethatitcanbedeterminedinadvance,whethersucha copyof)thisoccurrenceofxjissubstitutedintoanequationixi=fi wherexiexjduringthealgorithm.thispropertyisastaticone besubstitutedbytrueorfalserightinthebeginning.however,forthis X1,willneverbesubstitutedintoapriorequation,simplybecause theredoesnotexistapriorone.hence,everyoccurrenceofx1may substitutionintoapriorequationwillhappen.aspecialcaseofthis

itisonlyguaranteedthatthealgorithmproducesthecorrectsolution fortherstvariable. 6.4.2Complexityforthegeneralcase. 6.4.Gauelimination. accelerationitisthecasethatbackwardsubstitutiondoesnotwork: 87 gentstorageofexpressions. andgiveanexampleforit.thesourceofcomplexityhereisthesize tially.however,itisnotknown,whetherthereexistsaversionofthe algorithm,wherethisexponentialblowupisavoidedbymoreintelli- ofright-handsideexpressions,whichinanexamplegrowthsexponen- eliminationisofcomplexityexponentialinthenumberofequations, InthissectionwearguethatthenaivealgorithmderivedfromGau Incomparisontotheapproximationalgorithmthebehaviourcwof acase,wheretheapproximationbasedalgorithmsneedsexponentially thealgorithmneedssametimeandspace.anexampledemonstrates Gaueliminationalgorithmsisverydierent.WeshowthatthecomplexityofGaueliminationisindependentfromthealternationdepth ofthebooleanequationsystem,i.e.givenanarbitrarybooleanequa- manysteps,butgaueliminationonlypolynomialtimeandspace. numberofequations,butalternationdepth1,andforbothsystems polynomialinthenumberofequations.especiallyforthefragment ForsomefragmentsweshowthatGaueliminationhascomplexity tionsystemthereexistsabooleanequationsystemwiththesame correspondingtol2gaueliminationprovidesano(n2)algorithm. ThenumberofsubstitutionstepsduringtheGaueliminationinthe globalalgorithmislessthan(n 1)+(n 2)+:::+1n2.Thelocal pressionsarisingfromiterativesubstitutions.ingeneralsubstitution versionincludesatmostnapplicationsoftheglobalalgorithmgiving alltogetherlessthann3substitutionsteps. tialinthenumberofvariablesinvolved.assumingthataboolean ofbooleanexpressionsintobooleanexpressionsleadstosizeexponen- ThecrucialpointconcerningcomplexityisthesizeoftheBooleanex- equationsysteminnormalformconsistsofnequations(anddierent

pressionscreatedrelativelysmall.findinganexamplewheretheright- uationrulesasdiscussedaboveandtheeliminationrulekeeptheex- Tryingabignumberofexamplesshowedthattheapplicationofeval- globalandlocalalgorithmiso(2n). 88 variables),thenthesizeofthebooleanexpressionscreatedduringthe algorithmisboundby2n.hencetheworstcasecomplexityofthe Chapter6.SolvingBooleanequationsystems. handsideexpressionsareofexponentialsizeturnedouttobeadi- culttask.theexamplebelowwasconstructedwithhelpofbrinksma sionwhereonevariableappearstwiceandthelawsforevaluationof XnuptoXn=2thereisnoapplicationoftheeliminationrulepossible. ordertoreduceit.suchanexpressiongivesaschemeforiterativesubstitutionwithnopossibilityofreduction.thexpointoperatorsin [Bri96]andRossmanith[Ros96].Thebasicideaistondanexpres- Thereforexpointoperatorsareleftaway.Assumen210IN.Thesize thisexampleareirrelevant,becausewhenbuildingupexpressionsfor Booleanexpressionsasxedforthealgorithmarenotapplicablein ofexpressionsisthenboundbyo(2n=5). X1 X2 X3 X4 =X2 =X3 =X4 Xn=2+4=Xn=2+6_Xn=2 3 Xn=2+3=Xn=2+5^Xn=2 2 Xn=2+2=Xn=2+4^Xn=2 1 Xn=2=Xn=2+1 Xn=2+1=Xn=2+2_Xn=2+3 ::: =X5 Xn 10=Xn 9_X10 Xn 11=Xn 9_X11 Xn 12=Xn 10^X12 Xn 13=Xn 11^X13 Xn 14=Xn 13_Xn 12 Xn=2+5=Xn=2+6_Xn=2 4 :::

6.4.Gauelimination. Xn 4=Xn 3_Xn 2 Xn 5=Xn 4_X6 Xn 6=Xn 4_X7 Xn 9=Xn 8_Xn 7 Xn 7=Xn 5^X8 Xn 8=Xn 6^X9 89 Inordertomaketheconceptualdierencetotheapproximationmethod clearweshowthatgaueliminationisindependentofthealternation Xn=X1_X2 Xn 1=X1_X3 Xn 2=Xn^X4 Xn 3=Xn 1^X5 variablewithleastxpoint. depthofabooleanequationsystem.leastandgreatestxpointsare treatedinasimilarway:thecorrespondingvariablesaresubstituted byaconstant,trueforavariablewithgreatestxpoint,falsefora bitraryalternationdepthweconstructabooleanequationsysteme0 Proposition6.4Thecomplexityofthenaivealgorithmbased withonly-xpoints,ande0hasthepropertythatthesizeofexpressionscreatedduringgaueliminationisatleastthesizeofexpressions Booleanequationsystemandhencealsooftheunderlying-calculus Proof:TheideaisthatforagivenBooleanequationsystemEofar- ongaueliminationisindependentofthealternationdepthofthe createdfore.(theirsolutionsmaydier.) formula. ForthispurposewehavetorestricttheclassofBooleanequationsystemsweconsidertothosewhichdonotcontainconstantsandallright becauseconstantsandxedrighthandsidevariablescanbeelimiplyingthiseliminationbeforestartinganyalgorithmwillnotincreasnatedfromabooleanequationsysteminlineartime(inthesizeofthe handsidevariablesarebound.infactthisisnotarealrestriction, system)suchthatthesolutionofthesystemispreserved.henceap-

instandardform.thisrepresentationcanbeachievedbyalinear 90 itscomplexity.furthermoreweconsiderbooleanequationsystems blow-upoftheoriginalsystem(inthesizeoftheunderlying-calculus formula). ThetransformationfromEtoE0worksasfollows: everyconjunctioncontaininga-variableistransformedtoadisjunction(ofthesamevariables),and Chapter6.SolvingBooleanequationsystems. everyissubstitutedbya. X2lhs(E0). WehavetoshowthatthesizeofexpressionswhenapplyingGau NotethatthesolutionofE0willbe0,where0(X)=falseforall thesamedependencygraph,andthereforealsothesamestructureof eliminationtoe0isgreaterorequaltothosefore.bothsystemshave ApplyingasubstitutionstepleadstoanexpressioniXi=f[Xj=g]and thecorrespondingequationsofe0,wherei<j. variables.letixi=f;jxj=gbeequationsofeandxi=f0,xj=g0 thermorecorrespondingequationsofbothsystemscontainthesame ThepropertytoshowholdsfortheinitialsystemsEandE0.Fur- lost"incomparisontoe. substitutions.wejusthavetomakesurethatine0\novariablesget (numberof)variablesasf0andg0thenthiswillalsoholdforf[xj=g] Xi=f0[Xj=g0]respectively.Iffandgcontainedatleastthesame off[xj=g]. ForaneliminationstepconsideraspartofanexpressionofEaconjunctionXi^Xj,whereXiisa-variableandXjisa-variable,and andf0[xj=g0]andthesizeoff0[xj=g0]isgreaterorequaltothesize evaluatestoxjasintheothercase.whenxjissubstitutedbyfalse thentheconjunctionofewillevaluatetofalse,whereasthedisjunctionofe0willevaluatetoxi,leadingtoagreaterexpression(withajunctionxi_xjandxiwillbesubstitutedbyfalse.thedisjunction leastonemorevariable)thanine.notethatthecaseofsubstituting Xiissubstitutedbytrue.ThentheconjunctionevaluatestoXj.In trueforavariableinadisjunctionintroducedine0doesnothappen, thetransformedsysteme0theconjunctionwastransformedtoadis-

6.4.Gauelimination. becausethesolutionofe0givesfalseforeveryvariableofe0. AnystatementaboutsizeofBooleanexpressionsmakesonlysenseif wechooseasensiblerepresentationofbooleanexpressions.inthecase hereweevaluateexpressionsjustwiththerulesforconstants. Wenowwanttodemonstratebysomeexamples\good"behaviourof Gauelimination,wheretableaumethodandapproximationmethod 91 needexponentialspaceand/ortime.twoexampleshavealreadybeen treatedinsection6.3,illustratingtheexponentialblow-upoftheplain tableaumethod.theseexamplescaneasilybesolvedwiththetechniquesfromthissectionwithoutanyblow-up.thismightnotbetoo sizenandalternationdepthn. TheGaueliminationmethodproducesonlyexpressionsofaxed surprisingasalreadyextensionsofthetableaumethodin[cle90]and [Mad92]candealwiththeseexamples. Herewepresentanotherexample.Itsfeaturesarethefollowing: Itisscalable,i.e.itisasetofexamples,whichcanhavearbitrary Letn22IN Knownalgorithmsbasedontheapproximationtechniqueareexponentiallyinn. Thelastaspectisduetothefactthattheexampleisconstructedina waythatamaximalnumberofbacktrackingstepsisrequired. constantlengthforanyoftheexamples,andthecomplexityis O(n2). X4=X3_Xn X2=X1_Xn X3=X2^Xn X1=X2^Xn Xn 2=Xn 3_Xn Xn 1=Xn 2^Xn Xn 3=Xn 4^Xn Xn=Xn 1_Xn=2 :::

tiveandtheconjunctiveclassandacombinationofthem.thefrag- mentsofthemodal-calculusthatgivesrisetotheseclassesarel1 InthissectionweconsiderclassesofBooleanequationsystemsfor whichgaueliminationhascomplexityo(n2).thesearethedisjunc- 92 6.4.3Complexityforsubclasses. Chapter6.SolvingBooleanequationsystems. Gaueliminationtodisjunctivesystemsarealwaysdisjunctions.The ifallitsequationsare.expressionscreatedduringanapplicationof disjunctionoritisa2-aryconjunctionwhereatleastoneconjunctisa constant.abooleanequationsysteminstandardformisdisjunctive, ABooleanequationiscalleddisjunctive,ifitsright-handsideisa toectl[vw83],anextensionofctl. andl2.in[ejs93]thefragmentl2wasshownbeingequi-expressive thatareinvolved,whichisatmostthenumberofequationsinthe system. sizeofandisjunctionisboundbythenumberofdierentvariables ofanequationcanberepresentedasaset.substitutioncorresponds Proof:TheglobalversionoftheGaueliminationalgorithmtakes atmostn2eliminationandsubstitutionsteps.eachright-handside canbesolvedintimeandspaceo(n2)withtheglobalversionofthe Gaueliminationalgorithm.ApplyingthelocalversionoftheGau eliminationalgorithmneedstimeo(n3)andspaceo(n2). Proposition6.5AdisjunctiveBooleanequationsystemofsizen morethanndierentexpressions,orsetsresp.,eachofsizelessthan n.thelocalalgorithmneedslessthann3eliminationandsubstitution steps. Theconjunctiveclassisdenedanalogously:aBooleanequationsysteminstandardformisconjunctive,ifitcontainsonlyequationswith thentoaremovingoneelementofasetandunionoftwosets.these operationscanbeperformedinconstanttime.thereexistalwaysnot conjunctionsontheirrighthandsides,ordisjunctions,whereoneof thedisjunctsisaconstant.thedualargumentholdshere. Proposition6.6AconjunctiveBooleanequationsystemofsizen canbesolvedintimeandspaceo(n2)withthethelocalversionof

Disjunctiveandconjunctiveclassesmaybecombinedinarestricted Proof:Analogouslytothepreviousproofofproposition6.5 6.4.Gauelimination. way.intuitively,therequirementis,thatwhenapplyingthegaueliminationalgorithmneveradisjunction(containingmorethanaconstant orasinglevariable)issubstitutedintoaconjunctionorviceversa.the formaldenitionofthecombinedclassisgivenbelow.recallthata subsysteme0ofeisclosedwithrespecttoe,ifree(e0)free(e). eachdisjunctivesystemiscontainedinthecombinedclass; eachconjunctivesystemiscontainedinthecombinedclass; ifabooleanequationsystemeofthecombinedclasscontainesa fc,thenthereisavariablexineitherfdorfc,suchthat disjunctiveequationdxd=fdandaconjunctiveequationcxc= X=fXistheleast(w.r.t.E)equationofasubsystemE0 GaueliminationalgorithmneedstimeO(n3)andspaceO(n2). thegaueliminationalgorithm.applyingthelocalversionofthe. 93 classtheglobalversionofthegaueliminationalgorithmsolvesthe Proposition6.7ForaBooleanequationsysteminthecombined (cxc=fc)c(x=fx). (dxd=fd)c(x=fx), E0iscontainedinthecombinedclass, closedwithrespecttoe, Proof:TheobservationhereisthattheGaueliminationalgorithm evaluatestheleastvariableofaclosedsubsystemtoaconstant.the restisanalogoustothedisjunctiveandconjuncticecase. systeminspaceandtimeo(n2). eliminatedfromtheequationsystemaccordingtolemma3.20,followed byafurtherevaluationstep,andsoon.inthiscaseeachvariableofa aftereachevaluationstepequationswithaconstantright-handsideare thegaueliminationalgorithmhastobemodiedintheway,that Note,thatX=fXhasnottobenecessarilytheleastequationofthe subsystem;itmaybeoneequationofaclosedsubsystem.inthiscase closedsubsystemisevaluatedtoaconstant.

94 getalocalalgorithmforthecombinedclassthereisamodication Alsonote,thatthelocalversionoftheGaueliminationalgorithm classisnotnecessarilycontainedinthecombinedclass.inorderto substitutesdisjunctionsintoconjunctionsandviceversa.thereason appliedtobooleanequationsystemsofthecombinedclasspossibly isthatasubsystemofabooleanequationsysteminthecombined Chapter6.SolvingBooleanequationsystems. temsderivedfrom-calculusformulaeoffragmentl2arecontained tobecreateduntiltheactualsubsystemisinthecombinedclass. formulaeofthefragmentl1aredisjunctive,andbooleanequationsys- inthecombinedclass.(seedenitionsforl1andl2inchapter4). Emerson,JutlaandSistla[EJS93]presentedamodelcheckingalgorithmforL1andL2whichisofcomplexityO(jj2jTj).Transformation tobooleanequationsystemsgivesalsoano(jej2)algorithm. thenoderepresentingthe-calculusformulaandinitialstate,which BhatandCleaveland[BC96]developedamodelcheckingalgorithmfor impliesthattheformulasatiesthetransitionsystem.thelineartime caseofbooleanequationsystems.fortheextensionofthealgorithm tothefragmentl2theyclaim,thattheresultingalgorithmmaybe formulaisprovedbyatableausystem.thetimecomplexityoftheir algorithmiso(ad()jjjtj),givingano(ad(e)jej)algorithmforthe 6.5Complexity. shownalsotohavetimecomplexityo(ad()jjjtj). ItiseasytoseethatBooleanequationsystemsderivedfrom-calculus necessary:beforeapplicationoftheglobalalgorithmequationshave additionallylabelledby_or^.aformulaoflineartimetemporallogic thefragmentl1.itoperatesonthedependencygraphwherenodesare expressesthatthereexistsa-cycle(orconstanttrue)reachablefrom non-emptinessproblemsoftreeautomata,whichareinnp.thenthe proofs(e.g.[ejs93,bvw94])reducethemodelcheckingproblemto Forthemodelcheckingproblemthisisaknownresult.Mostofthe WegiveaproofthattheproblemofsolvingBooleanequationsystem iscontainedinnp\co-np.

ducedtoadisjunctivesystembychoosingonevariableoutofevery propertyholdsforsomemodelifitsnegationdoesnotandviceversa. AnarbitraryBooleanequationsysteminstandardformcanbere- WeclaimthattheproofintheframeworkofBooleanequationsystems isquitesimple.roughlytheargumentationworksasfollows. modelcheckingproblemisalsocontainedininco-np,justbecausea 6.5.Complexity. 95 DuallyaBooleanequationsysteminstandardformcanbereducedto Booleanequationsystemhasasolutionpointwisegreaterthanthesolutionoftheoriginalone.However,inproposition3.36itwasshown conjunctionandthrowingtheotheroneaway.ingeneralthereduced aconjunctivesystem.ingeneralitwillhaveapointwiselowersolution systemintimeo(jej2). thantheoriginalone,buttheremustexistonereductiongivingthe thattheremustbeonereductiontoadisjunctivesystemhavingthe solvedinquadratictimeaccordingtoproposition6.6. samesolution.againadisjunctivebooleanequationsystemcanbe samesolution.accordingtoproposition6.5wecansolvethereduced thesolutionsoftheconjunctiveandthedisjunctiveone.hence,if reductions(outofexponentiallymany),onetoadisjunctivesystem, time.weknowthatthesolutionoftheoriginalsystemliesbetween GivenaBooleanequationsysteminstandardformwecanguesstwo weguessed\correctly"andbothsystemshavethesamesolution,this mustalsobethesolutionoftheoriginalsystem. theotheronetoaconjunctiveone.bothcanbesolvedinquadratic righthandsideremainunchanged.byconstructionanddenition tooneofthedisjuncts.theequationswithaconjunctiononthe adisjunctionontherighthandsidewereducetherighthandside Proof:WeguessaconjunctivesystemE0:ineachequationofEwith innp\co-np. Theorem6.8SolvingaBooleanequationsystemEiscontained 3.15followsthatE0E.Thereareexponentiallymanypossibilitiesto choosesuchaconjunctivesystem.analogouslyweguessadisjunctive systeme00e.againthereareexponentiallymanypossibilitiesto

96 guess.ingeneralthesolutionofe0ispointwiselowerorequaltothe solutionase. solutionofe(proposition3.16).proposition3.36saysthatthereexists aconjunctivesysteme0havingthesamesolutionase.thesolution 3.16).AndagainthereexistsadisjunctivesystemE00havingthesame ofe00ispointwisegreaterorequaltothesolutionofe(proposition Chapter6.SolvingBooleanequationsystems. problemtosolvinge,i.e.([[e]])(x)=falsei([[e]])(x)=true.from andhencesolvingeisalsoinco-np. theyhavethesamesolutionthenitmustbethesolutionofe. E0andE00canbesolvedinquadratictime(propositions6.5,6.6).If Inlemma3.35itwasprovedthatthesolvingEisthecomplementary theargumentationabovefollowsthatsolvingeisalsocontainedinnp

algorithm. Chapter7 Inthissectionwedemonstratetwothings:Anon-trivialapplicationof Peterson'smutex themodal-calculusandresultsfromvericationwithaprototypeimplementationofthelocalgaueliminationalgorithm.forthispurpose thealgorithmsformutualexclusion(mutex)seemtobeappropriate: ononehandtheyaremoreinterestingthanthecoeemachine,but itisinthecriticalsection.thetaskofmutexalgorithmsisnowto time.whenaprocesshasaccesstothecommonsourcethenwesay shareacommonsourcewhichmaybeusedbyoneprocessonlyatone formulae. Roughlythemutexproblemisthefollowing:two(ormore)processes theyaresmallenoughtocaptureconceptseasily,ontheotherhand organizetheavailabilityofthecommonsourceinsuchawaythatit thepropertiestobeprovedresultinrathersophisticated-calculus neverhappensthatbothprocesseshaveaccessatthesametime(safety ThebasisfortheexamplespresentedhereistheworkofWalker[Wal91], (livenessproperty). whoencodedthebestknownmutexalgorithmsasccsprocessesand property)andthatarequestingprocesscannotbedeniedaccessforever

teedwithoutfairnessassumptions.acommonpossibilityistorequire [Vog96]pointedout,livenessformutexalgorithmscannotbeguaran- hisproperties.askindlerandwalter[wal95a,kw97]andvogler safetypropertieshewassuccessful,thereremainedopenquestions 98 triedtoprovesafetyandlivenesspropertiesforthem.whereasfor concerningliveness.onereasonisthathedidnottreatfairnessin Chapter7.Peterson'smutexalgorithm. fairnessforeverything.ingeneral,thisisnotnecessaryformostcases, WeinvestigatePeterson'smutexalgorithm.Othermutexalgorithms examplespresentedherearecontainedin[km]. 7.1Modellingthealgorithm. sumptionsformutexalgorithmstofulllthelivenessproperty.the andourinteresthereistondoutwhataretheprecisefairnessas- canbetreatedanalogously. Peterson'salgorithmworksfortwoprocessesP1andP2,eachone havingabooleanvariable,b1orb2resp.,whichissettotrueifa readsb2.duallyprocessp2writestob2andreadsb1.bothprocesses readandwritetovariablek.leti;j2f1;2gandj6=i. processwishestoenterthecriticalsection.thereisaturnvariablek theprocesswiththecorrespondingindex.processp1writestob1and takingvaluesfromf1;2gandincaseofaconictitgivesapriorityto whiletruedo begin(noncriticalsection); TheprocessesaremodelledfollowingWalker's[Wal91]approach.He waituntilnotbjork=i; bi:=true; formulatedthetwoprocessesasccsagents[mil89].eachvariableis end; k:=j; (criticalsection); bi:=false

7.1.Modellingthealgorithm. representedbyitsownagentandwritingtoavariableorreadingit areactionswhereaprocessagentandavariableagentsynchronize. ModellingProcessP1: =req1:b1wt:kw2:p11+:p1 99 P22 P21 ModellingProcessP2: P12 P11 =enter2:exit2:b2wf:p2 =b1rf:p22+b1rt:(kr1:p21+kr2:p22) =req2:b2wt:kw1:p21+:p2 =enter1:exit1:b1wf:p1 =b2rf:p12+b2rt:(kr2:p11+kr1:p12) Modellingthewholeprocess: L Modellingthevariablesb1,b2andkbyprocessagents: Peterson=(P1jP2jK1jB1fjB2f)nL =fb1rf;b1rt;b1wf;b1wt;b2rf;b2rt;b2wf;b2wt; B1t =b1rf:b1f+b1wf:b1f+b1wt:b1t =b1rt:b1t+b1wt:b1t+b1wf:b1f kr1;kr2;kw1;kw2g B2f B2t =b1rf:b2f+b1wf:b2f+b1wt:b2t criticalsectionandmodelthisbehaviorbyadditional-loopsforprocessp1andprocessp2.anotherpointconcernsthesemanticsofthe wealsotakeintoaccountthataprocessmayneverwishtoenterthe However,therearesmalldierences:inadditiontoWalker'sversion K1 K2 =kr1k1+kw1k1+kw2k2 =kr2k2+kw2k2+kw1k1 =b1rt:b2t+b1wt:b2t+b1wf:b2f rithmwitha(non-busy)wait-statementgivingdierentprocessagents semanticsismodelled.alternativelywealsowanttolookatthealgo- wait-statementinthealgorithm.intheprocessabovethebusy-waiting

100 forp11andp21: P2=req2:b2wt:kw1:P21+:P2 P12=enter1:exit1:b1wf:P1 P11=b2rf:P12+kr1:P12 P1=req1:b1wt:kw2:P11+:P1 Chapter7.Peterson'smutexalgorithm. Wedistinguishthreeconcepts:progress,weakfairnessandstrongfairness.Theydescribeconditionsforaccesstocommonsources,which 7.2FairnessandLiveness. P22=enter2:exit2:b2wf:P2 P21=b1rf:P22+kr2:P22 volved.gettingaccesstoavariableiseitherreadingthevariableor arevariablesinthecasehere,whenevermorethanoneprocessisin- writingtoit. Progress:Wheneveraprocesscontinuouslywantstohaveaccessto avariabletheneitheriteventuallycanaccessorinnitelyoftensome otherprocessesaccess. Weakfairness:Wheneveraprocesscontinuouslywantstohaveaccess processp2.a-calculusformulaexpressingthispropertyis: Strongfairness:Wheneveraprocessinnitelyoftenwantstohave VerifyingitforprocessPetersongivesfalseforbothinterpretations 1Z:[ ]Z^[req1](X:[ ]X_henter1itt) propertyforprocessp1andbysymmetryargumentsitfollowsalsofor criticalsectiontheniteventuallymaydoso.wewanttoshowthe Thelivenesspropertytoproveis,thatifaprocesswishestoenterthe accesstoavariabletheniteventuallygetsit. donotincludesomeadditionalassumptions.forexampleitiseasyto seethatinaninterleavingbasedmodelwealsohavetomakeprogress ofthewaitstatementasexpected.thepropertydoesnotholdifwe explicit.afterrequestingthecriticalsectiononeprocesscouldstopdoinganything,whereastheotheroneisreadingvariablescontinuously.

conditionwith-calculusexpressionsforprocesspetersonasencoded Fromthetechnicalpointofviewwecannotformulateanyfairness wewanttomakeprecise. 7.2.FairnessandLiveness. Thewholesystemisdoingsomethingallthetime,but,ofcourse,we cannotprovethattheoneprocesseventuallyentersthecriticalsection.whatfurtherfairnesspropertiesarerequiredisthepointwhich 101 Wewillusethesametechniqueandaddvariousprobesforvariable whichprocessgotaccesstowhichvariable,orwhichprocesswould accessestotheprocesses. Apropertywewanttoproveisthefollowing: liketodoso.walkerusedadditionalactions,calledprobes,inorder tomakerequest,enteringandexitingofthecriticalsectionvisible. above.everyvariableaccessresultsina-actionanditisnotvisible k2.thenewagentsforprocessesp1andp2areforinterpretationwith Requiringprogressforallvariables,afterrequestingthecriticalsection aprocessmayeventuallyenter. busywaitingarebelow. cessareinvolved.theadditionalprobesareb11,b12,b21,b22,k1and Accordingtothedenitionofprogresswehavetoaddanindividual probetoeachvariableaccessindicatingwhichvariableandwhichpro- P1=req1:b1wt:b11:kw2:k1:P11+:P1 Theformulaexpressinglivenessunderprogressconditionsisquite Peterson2=(P1jP2jK1jB1fjB2f)nL P22=enter2:exit2:b2wf:b22:P2 P2=req2:b2wt:b22:kw1:k2:P21+:P2 P12=enter1:exit1:b1wf:b11:P1 P21=b1rf:b12:P22+b1rt:b12:(kr1:k2:P21+kr2:k2:P22) P11=b2rf:b21:P12+b2rt:b21:(kr2:k1:P11+kr1:k1:P12) tothepossibilityofenteringthecriticalsectionoritfails(oneof)the progressconditions.thepossibilityoffailingprogressconditionsconsiststheninfurtherdisjunctionsinthe\pure"livenessformula1. large,buttheconstructionisratheruniform,anditrytogiveamotivation.whatisactuallyexpressedistheproperty:always,aftera request,eachpathhastofulllthefollowing:eitheriteventuallyleads

afterwardstheindicatingprobe.forexampleatastatewhereprocess P2wantstohaveaccesstovariablekthe-calculusformulahihk2itt itcoulddoit.inaccsprocessthestates,whereaprocesscould haveaccesstoavariablearethosewhereitcoulddoa-actionand holds.accordingtothisadditionofprobeswealsohavetomodel 102 Itissupposedthataprocess\wishes"toreadorwriteavariable,if Chapter7.Peterson'smutexalgorithm. thatavariableaccessanditsprobehavetoperformedasanatomic action.pathswheretheseactionsarenotdirectlysubsequentshould notbeconsideredandtheyalsofailtheassumptions.intheformula (e.g.:::_(hb11itt^[b11]x):::).additionallyweassumethatifprocessp2mayenterthecriticalsectionorexitthenitwilleventuallydo thisconditionisexpressedas\wheneveraprobecanbeperformedand itisnotperformedimmediately,thenthispathwillnotbeconsidered" it. Wewillhaveacloserlooktooneofthesubformulaeexpressingthe access(by[b11;b12]x)andeventuallytherewillbealwaysnoaccess pointoperatorsexpressesan\eventuallyalways"property.itisful- Accordingtothediscussionsinsection4.2thiscombinationofx- possibilitytofailaprogresscondition,e.g. (by[ b11;b12]y).thedisjunction[ b11;b12](x_y)isnecessarybe- X::::Y:hihb11itt^[b11;b12]X^[ b11;b12](x_y)::: causeofthebranchingstructure:imagineapathfailingtheprogress- condition,butonpathsbranchingothereiseventuallyanenter1 hihb11itt),butonlynitelyoftenoneoftheprocessesperformsan lledonallpaths,wherealwaysaccesstovariableb11ispossible(by action. 02X:[ ]X_henter1itt 2Z:[ ]Z _Y:hihb22itt^[b21;b22]X^[ b21;b22](x_y) _Y:hihb21itt^[b21;b22]X^[ b21;b22](x_y) _Y:hihb12itt^[b11;b12]X^[ b11;b12](x_y) _Y:hihb11itt^[b11;b12]X^[ b11;b12](x_y) ^[req1]02

7.2.FairnessandLiveness. _Y:hihk1itt^[k1;k2]X^[ k1;k2](x_y) _Y:hihk2itt^[k1;k2]X^[ k1;k2](x_y) _Y:hexit2itt^[exit2]X^[ exit2](x_y) _Y:henter2itt^[enter2]X^[ enter2](x_y) 103 _(hk2itt^[k2]x)) _(hk1itt^[k1]x) _(hb22itt^[b22]x) _(hb12itt^[b12]x) _(hb21itt^[b21]x) _(hb11itt^[b11]x) notsucientforliveness,asexpected.havingtriedseveralfairness Verifying2forPeterson2showsthatonlyprogressconditionsare assumptions,thefollowingturnedouttobetheweakestonethatis sucientforprovingliveness:inadditiontothegeneralprogressassumptions,weakfairnessisnecessaryforwriteaccesstob1andb2and forbothreadandwriteaccessofvariablek.theprobeswhichhaveto readandwriteaccessforvariablesb1andb2gettingthesetofprobes b11w;b21r;b22w;b12r;k1;k2(theotherpossibilitiesdonotappearin beaddedtotheprocessagentsnowhavealsotodistinguishbetween thecasehere).wegetthefollowingprocess: P1=req1:b1wt:b11w:kw2:k1:P11+:P1 P2=req2:b2wt:b22w:kw1:k2:P21+:P2 P12=enter1:exit1:b1wf:b11w:P1 P11=b2rf:b21r:P12+b2rt:b21r:(kr2:k1:P11+kr1:k1:P12) The-calculusformula3expressingtheintendedlivenessproperty isconstructedanalogouslyto2.notethattheprogressconditions foractionsb12wetc.donotappearintheformula,simplybecause Peterson3=(P1jP2jK1jB1fjB2f)nL P22=enter2:exit2:b2wf:b22w:P2 P21=b1rf:b12r:P22+b1rt:b12r:(kr1:k2:P21+kr2:k2:P22)

resulttrue. 104 theydonotappearintheprocess.verifying3forpeterson3gavethe _Y:hihb11witt^ 03X:[ ]X_henter1itt 3Z:[ ]Z^[req1]03 [b11w]x^[ b11w](x_y) Chapter7.Peterson'smutexalgorithm. _Y:henter2itt^[enter2]X^[ enter2](x_y) _Y:hihk2itt^ _Y:hihk1itt^ _Y:hihb22witt^ _Y:hihb21ritt^[b21r;b22w]X^[ b21r;b22w](x_y) _Y:hihb12ritt^[b11w;b12r]X^[ b11w;b12r](x_y) _Y:hexit2itt^ [b22w]x^ [k2]x^ [k1]x^ [b22w](x_y) _(hb12ritt^[b12r]x) _(hb21ritt^[b21r]x) _(hb11witt^[b11w]x)[exit2]x^[ exit2](x_y) [ k2](x_y) [ k1](x_y) Forthecaseofinterpretingthewaitstatementnotwithbusywaiting toprogressonlyfairwritingforthevariablesb1andb2issucient thenecessaryrequirementsturnouttobemuchweaker.inaddition forliveness.herealsothepositionoftherequest-probemakesadifference.inwalker'sversionofpeterson'salgorithmtherequest-probe wasplacedafterwritingb1totrue.inthiscasewecanshowthat _(hk1itt^[k1]x) _(hk2itt^[k2]x) _(hb22witt^[b22w]x) requestprobebeforewritingtob1leavesthesolutionofthisproblem onlyprocessesandformulaeveried. tothefairnessconditions. Theprooftechniqueisthesameasinthecaseaboveandwepresent criticalsection,butisnotabletosetvariableb1totrue.placingthe oneconictishiddeninthisversion:processp1wishestogetintothe onlyprogressrequirementsaresucienttoproveliveness.however,

7.2.FairnessandLiveness. P12 P11 P21 =enter1:exit1:b1wf:b11:p1 =req1:b1wt:b11:kw2:k1:p11+:p1 =b2rf:b21:p12+kr1:k1:p12 =req2:b2wt:b22:kw1:k2:p21+:p2 =b1rf:b12:p22+kr2:k2:p22 105 (Peterson5),itisthecasethat2doeshold! 2expressessimplylivenessunderprogressassumptions.ItwasevaluatedtofalseforPeterson4andprocessesP1andP2asabove.Forthe P22 Peterson4=(P1jP2jK1jB1fjB2f)nL =enter2:exit2:b2wf:b22:p2 modicationofp1,wheretherequestprobereq1comesafterb1wt:b11 forvariablesb1andb2hastobeguaranteed.theprobesindicating Fortherequestprobereq1inthe\correct"placeasabovefairwriting write(andread)accessforb1andb2havetobeadded.theformula 4givingtruePeterson4isasfollows: _Y:hihb22witt^ _Y:hihb12ritt^[b11w;b12r]X^[ b11w;b12r](x_y) _Y:hihb21ritt^[b21r;b22w]X^[ b21r;b22w](x_y) _Y:hihb11witt^ 04X:[ ]X_henter1itt 4Z:[ ]Z^[req1]04 _Y:hihk1;k2itt^[k1;k2]X^[ k1;k2](x_y) [b22w]x^ [b11w]x^[ b11w](x_y) _Y:henter2itt^[enter2]X^[ enter2](x_y) _Y:hexit2itt^ _(hb11witt^[b11w]x)[exit2]x^[ exit2](x_y) [b22w](x_y) _(hk1itt^[k1]x) _(hk2itt^[k2]x) _(hb22witt^[b22w]x) _(hb12ritt^[b12r]x) _(hb21ritt^[b21r]x)

tion6.4wasimplementedbywallner[wal93]andtheprocessesand formulaeofthischapterhavebeenveriedusingthisimplementation. ThelocalversionoftheGaueliminationalgorithmpresentedinSec- 106 7.3ExperimentalResults. Chapter7.Peterson'smutexalgorithm. TheprogramiswritteninCandBinaryDecisionDiagrams(BDDs) suitablechoiceforouralgorithm:eachsubstitutionstepduringthealgorithmmakesacompositionofbbdsnecessary.thesizeofthebdds TheBBDpackagefromCarnegieMellonUniversitywasused.Thepro- agentstotransitionsystemsasinputfortheprogramwasperformed withtheedinburghconcurrencyworkbench. However,experimentsshowedthatBDDsareprobablynotthemost gramwasrunonasunultrasparc1.thetransformationfromccs [Bry86]havebeenchosenasdatastructureforBooleanexpressions. grewmorethanexpectedandmadefrequentandtime-consumingreorderingnecessary.belowwelisttheresultsfromtheverication procedures.bddsizesareincludedandhereandwetookonlyinto accountthesizeofthebddrepresentingtheright-handsideofthe VersionofPeterson states formula xpoints result timevericationofpetersons'smutexalgorithm equationscreated8min13min1min1min1min falsetruefalsetruetrue 203203139139139 352456236244185 2 102 3242 10101010 3 4 4 5 %ofallequations17%22%17%18%13% maximalbddsize5689986821232123289 averagebddsize substitutionsteps106508202121509465118223313 eliminationsteps1121911464507849464088 57742323117549

expressalways-properties,whichmakesanevaluationoftheformula gorithmcontainingtherelevantprobesforthiscase.allformulae 7.3.ExperimentalResults. isnoadvantageinthiscase.however,itturnedout,thatonly13-22% atallstatesnecessary.itistobeexpectedthatlocalmodelchecking variableofinterest(\therstequation").eachformulaintroduced intheprevioussectionwasveriedfortheversionofpeterson'sal- 107 ofthepossibleequationshadtobecreated.

108 Chapter7.Peterson'smutexalgorithm.

Chapter8 Equivalenttechniques. Themodelcheckingproblemforthemodal-calculushasbeentreated alsowithinotherframeworks,andthereexistreductionstoproblemsin automatatheoryandtheoryofgames.chapter5containsreductions versa.inthischapterwewillshowtheequivalenceofsolvingboolean ofthemodelcheckingproblemtobooleanequationsystemsandvice ustoapplythevariouspropertiesforbooleanequationsystemsfrom chapter3andsection3.2alsotothekindofalternatingautomataand itfollowsthatalgorithmssolvingoneproblemcanbetransformedin ordertosolvetheotherproblems.furthermoretheequivalenceallows playerhasawinningstrategy,ontheotherhand.fromtheequivalence equationsystemsononehand,andthenonemptinessproblemforalternatingautomataaswellasthedecisionproblemforgames,i.e.which gamesconsidered. natingautomataandthemodelcheckingproblemareequivalenttoo. resultsofsection5.2thatthenonemptinessproblemforthesealtertionandbooleanequationsystems.itfollowsthenaccordingtothe Inthissectionweshowtheequivalenceofalternatingautomataon 8.1Alternatingautomata. innitewordsovera1-letteralphabetwithaparityacceptancecondi-

Letbeanitenonemptyalphabet.Anitewordoverisanite Wordsandtrees. Foranoverviewoverautomataoninnitewordsandtreessee[Tho90], foralternatingautomataalso[var95]. 110 Chapter8.Equivalenttechniques. ofelementsof.thesetofinnitewordsoverisdenotedby!. sequencea0;:::;anofelementsof.thesetofnitewordsoveris denotedby.aninnitewordoverisainnitesequencea0;a1;::: arecalledleaves.abranchbofatreeisasequenceb1b2:::,such numberofitschildrenisthearityofanode.nodeswithoutchildren sor,itsparent,andanitenumberofsuccessors,itschildren.the predecessor,therootof.eachothernodehasoneuniquepredeces- nislabelledbyanelementof,writtenas(n)2.thesetof nodesmaybeeitherniteorinnite.thereexistsonenodewithout Atreeoverthealphabetisadirected,acyclicgraph.Eachnode Alternatingautomata. Alternatingautomataareageneralizationofnondeterministicautomata. thesetlim(b)asallelementsaofsuchthatinnitelymany thatb0istherootofandeachbiistheparentofbi+1.itiseither Forourpurposeautomataoveranalphabetcontainingasingleletter nite,endinginaleaf,ofinnite.givenabranchbofatreewedene aresucient. AnalternatingautomatonAisheredenedasatuple(fag;S;s0;;), nodesofbarelabelledwitha.notethatifbisnite,thenlim(b)=;. where isanacceptanceconditionwhichhastobespecied. fagisa1-letteralphabet, SisthesetofstatesofA, s02sistheinitialstate, :fags!b+(s)atransitionfunction,whichmapsastateof S(andthesymbola)toanegationfreeBooleanexpressionoverS,

SnS0.AsubsetS0ofSsatisesanegationfreeBooleanexpression disjunctivenormalform,allthestatesoccurringinonedisjunctform asetwhichsatisesf. fovers,iff(s0)=true.forexamplewhenfisrepresentedin alls2s0wehavethats0(s)=trueandfalseforallotherstatesin 8.1.Alternatingautomata. ForasubsetS0ofSdeneanenvironmentonstatesS0suchthatfor 111 therootofrislabelledbytheinitialstates0 treeroverswiththeproperties: ifanodenhasthechildrenn1;:::;nk,andnislabelledbyastate ArunofanautomatonAoverthe(innite)word!=a;a;a;:::isa whichcontainsforasubsetofcoloursallstatesofthesecolours.the acceptanceconditionis: everynitebranchendsinaleaflabelledwithastates,suchthat coloursf1;:::;mgforsomem2in,andanacceptancesetfs, ArunrofAisacceptingiftheacceptanceconditionholds,which hereisaparitycondition.includesalabellingofthestateswith s,where(a;s)=f,thenthelabelsetfr(n1);:::r(nk)gsatisesf. letteralphabetasdenedabovecanbeinterpretedasanon-deterministic tree-automatonandviceversa.inthiscasearunofanautomatona foreveryinnitebranchbthestatewiththeleastlabelinlim(b) Wemayalsomentionnowthatanalternatingautomatonoverasingle- Anautomatonisemptyifithasnoacceptingrun. (a;s)=true overthe(innite)treeisatreeroverswiththeproperties: therootofrislabelledbytheinitialstates0 iscontainedinf. Theacceptanceconditionforarunisasabove. denefors2stheautomatonasasa,butwithinitialstates;for ifanodenofrhasthechildrenn1;:::;nk,thenfor(a;r(n))=f thesetoflabelsfr(n1);:::r(nk)gsatisesf eachnodenofrwithchildrenn1;:::;nkthereexistsanoden0in withchildrenn01;:::;n0k,suchthateverysubtreeofrrootedwith niisarunofar(ni)overthesubtreeofrootedwithn0i.

FromBooleanequationsystemstoalternating 112nondeterministictree-automatonisnonempty. Proposition8.1AnalternatingautomatonAoverinnitestrings anda1-letteralphabetisnonemptyitheinterpretationofaas Chapter8.Equivalenttechniques. automata. GivenaBooleanequationsystemEandanenvironmentweconstruct SomevariableXiofEistakenasinitialstate. AE;=(fag;SE;Xi;E;;E;),where SEisthesetofallvariablesofE,i.e.SE=lhs(E)[rhs(E). IfX=fisanequationofE,wedene(a;X)=f,otherwise anautomatonae;asfollows. TheacceptancesetFcontainsallstatesXwhereX=fisan equationwithagreatestxpointoperatorine.thelabellingof (a;x)=(x). Theorem8.2ForaBooleanequationsystemEandanenvironment itisthecasethat([[e]])(xi)=trueiae;(fag;se;xi;e;;e;) isnonempty.moreoverae;hassizeofo(jej). getsthelabel1,thesecond2etc..stateswhichdonotcorrespond Hencetheirlabellingisirrelevant. toleft-handsidevariablesineareonlylabelsofleavesinallruns. thestatesfollowstheorderofthevariablesine:therstvariable Theproofisintheappendix. FromalternatingautomatatoBooleanequation phabetwithparityconditiontoabooleanequationsystemissimple. GivenanautomatonA(fag;S;s0;;)weconstructaBooleanequationsystemEAasfollows: systems. Thetransformationfromanalternatingautomatonovera1-letteral- ThesetofstatesSisinterpretedassetofBooleanvariables.

8.1.Alternatingautomata. Foreachs2S\Fthereisanequations=(a;s)inEA. Foreachs2SnFthereisanequations=(a;s)inEA. TheacceptanceconditionincludesalabellingofthestatesofS.If inea,i.e.theequationisi=(a;si)isbeforeisj=(a;sj)in forsi;sj2sthelabelofsiislowerthanthelabelofsjthensicsj 113 A(fag;S;s0;;)isnonemptyi([[EA]])(s0)=true. Theorem8.3Foranalternatingparityautomatonovera1-letter alphabeta(fag;s;s0;;)thereexistsabooleanequationsystem EAofsizeO(jAj),suchthatforanyenvironmentitis: EA.(Ifsiandsjcarrythesamelabelthentheyareinthesame blockandtheirorderisirrelevant.) andtransformitbacktoanautomatonaeaasintheprevioussection. Proof:TaketheBooleanequationsystemEAasconstructedabove Itiseasytoseethatwegettheoriginalautomatonuptolabelling. lemsfollowseasily: Theequivalencefollowsthenfromtheorem8.2. Nowtheequivalenceofalternatingautomataandmodelcheckingprob- Theorem8.4ForanalternatingparityautomatonA(fag;S;s0;;) somerenamingfunction:s!s,anyenvironmentandany overa1-letteralphabetthereexistsapropositionofthemodal -calculusandamodelmwiththestatespaces,suchthatfor (s0)2jjjjtvia(fag;s;s0;;)isnonempty.itisad()jfj+1 valuationvitis: Fromtheequivalenceprovedaboveandtheresultsfromsection6.5we knowthatthenonemptinessproblemforalternatingparityautomata Complexityandrelationtootherwork. Proof:Applytheorems8.2,8.3and5.2. andthemisofsizeo(jaj2). overa1-letteralphabetiscontainedinnp\co-np.inthissection

morestandardacceptanceconditions,thebuchiandrabinacceptance conditions. TheBuchiacceptanceconditionforarunrofan(alternating)automataconsistsofanacceptancesetFSandtherequirement,that wewanttorelatethisresulttoothercomplexityresultsforthesame 114 probleminthetheoryofautomata.forthatpurposeweconsider Chapter8.Equivalenttechniques. (Ln;Un)gandtherequirementforarunrtobeacceptedis:foreach lim(b)\f6=;foreverybranchbofr. TheRabinconditionincludesasetofacceptingpairsf(L1;U1);:::; overa1-letteralphabettheacceptanceconditionsmakeadierence. However,concerningtheemptinessproblemforalternatingautomata thesameforallthesethreeacceptanceconditions(seee.g.lindsay [Lin88]);itistheclassof!-regularlanguages. Thelanguagesacceptedbyalternatingautomataoninnitewordsare andlim(b)\li=;. branchbofrthereexistsani2f1;:::;ngsuchthatlim(b)\ui6=; statecontainedintheacceptancesetfgetsthelabel1andeach otherstatenotcontainedinfgetsthelabel2.thelabellingtogether labelsfromf1;2g.thelabelsarechoseninsuchaway,thateach sentiallyonlytransformationsoftheacceptanceconditions. ForthecaseofBuchiautomatathestateshavetobeequippedwith tomataandfromparityautomatatorabinautomata,whicharees- ThereexistlineartranslationsfromBuchiautomatatoparityau- initialstates0isnonemptyi([[ea]])(s0)=trueforanyenvironment ofconstructionofeaitfollowsthateahasalternationdepthofat.fromthestructureofbuchiacceptanceconditionsandtheway abooleanequationsystemea,suchthatthebuchiautomatonwith toanalternatingparityautomaton,andfurtherwiththeorem8.3to condition.thuseveryalternatingbuchiautomatonacanbemapped withtheacceptancesetfisthentheequivalentparityacceptance most2;therstequationshavegreatestxpointoperators,thelast [Var95],prop.5andproposition8.1. equationshaveleastxpointoperators.applyingcomplexityresults fromchapter6.2wegetthepropositionbelow.itfollowsalsofrom

ForthereductionofaparityautomatontoaRabinautomatonwe colouri2f1;:::;mgwedenelidef alsojusttheacceptanceconditionneedstobetransformed.foreach 8.1.Alternatingautomata. quadratictimeandspace. automataoninnitewordsovera1-letteralphabetisdecidablein Proposition8.5ThenonemptinessproblemforalternatingBuchi 115 andproposition8.1. pairs,becauseitacceptsnothing.itiseasytoseethatthisrabinconditionacceptsthesamerunsastheoriginalparityconditionandvice versa.however,herethenonemptinessproblemfollowsfrom[ej88] pair(li;ui)withli=;canberemovedfromthesetofaccepting anduidef =fs2sjshasalabellowerthanig.notethatanaccepting =fs2fjsislabelledwithig dition(e.g.[se84,niw88,ej91,kai96]).themodal-calculuswas Representing-calculusformulaeasautomataalreadyhasalongtra- showntobeexpressivelyequivalenttoautomataoninnitetrees. modelcheckingproblemandnonemptinessofnondeterministictreeautomatawithparityacceptanceconditionfromemerson,jutlaand automataoninnitewordsovera1-letteralphabetisnp-complete. Amongknownresultstheclosesttooursistheequivalenceofthe Proposition8.6ThenonemptinessproblemforalternatingRabin andtheirresultareinterderivable.anotherapproach(e.g.see[var95, Sistla[EJS93].Withproposition8.1theequivalencepresentedhere BVW94])istorepresentaformulaofthemodal-calculusandalsothe transitionsystemas(alternating,amorphous)rabintree-automata.if theproduct-automatonoftheseisnonempty,thentheformulaholds attheinitialstateofthetransitionsystem.however,thisemptiness InthisapproachtheNP\co-NPcomplexityofthemodelchecking problemfollowsfromcomplementationarguments. problemisnp-complete,andhencetheproblemsarenotequivalent.

closedandinstandardform. 8.2Graphgames. StartingfromtheframeworkofBooleanequationsystemswecanderivegraphgamesasdenedin[Sti96]andshowtheequivalenceofboth 116 approaches.inthissectionweassumebooleanequationsystemsbeing Chapter8.Equivalenttechniques. chosenbytwoplayers,playeriandplayerii.theplaystartsatsome AplayponthegamegraphGEisaninnitesequenceofvertices numberofedgesofg. carryingonelabelfromfi,iigandanotherfromf;g1thegraph Gcontainsoneortwoedgesoftheformi!jforeachvertexi.The sizejgjisdenedasusualassumofthenumberofverticesandthe AgamegraphGconsistsofasetofverticesf1;:::;ng,eachofthem initialvertexi.wheneverthecurrentvertexislabelledwithithen lim(p)ofallverticeswhichhavebeenvisitedinnitelyoften.ifthe Astrategyforaplayerisadecisionfunctionfromtheplaydoneso moveandchoosesasuccessor. thecurrentvertex.dually,ifitislabelledbyiithenplayeriihasto Decidingwhoisthewinnerofaplayprequiresconsideringtheset fartothenextmove. playerihastomoveandchoosesoneofthesuccessors,whichthenis Ahistoryfreewinningstrategyisawinningstrategywherethechoice ofasuccessordoesnotdependontheinitialsequenceoftheplaydone iifshecanwineveryplay. AplayerhasawinningstrategyforthegameonGEwithinitialvertex wins;ifitislabelledwiththenplayeriiwins. leastvertexofallverticesinlim(p)islabelledwiththenplayeri IIanda.Inbothcasesaextravertexhastobeintroducedwhichinheritsallthe I-nodewithaandeachII-nodewitha.Fortheotherwayroundwehaveto takecareoftwocases:verticescarryingaianda,and,duallyverticescarryinga successorsoftheoneconsidered,butisthentheonlyimmediatesuccessorofthe originalone.intherstcasetheoriginalvertexgetsthelabelii,itsnewsuccessor thelabeli,duallyinthesecondcase.inallothercasesthelabelsodmayjust beremoved. onelabelfromfi,iig.forgettingfromthedenitiontheretooursweequipeach 1In[Sti96]gamegraphsaredenedinsuchawaythateachvertexcarriesonly

I(II)thereexistsauniquechoiceofasuccessorateveryI-labelled 8.2.Graphgames. sofar.thismeansthatinahistoryfreewinningstrategyforplayer (II-labelled)vertex. FromBooleanequationsystemstographgames. 117 GivenaBooleanequationsystemEwewilldeneagamegraphGE. RecallthatforagivenBooleanequationsystemEthedependency graph(seesection6.1)consistsofasetofverticesf1;:::;n;true;falseg, label,truegetsthelabel.ifxi=xj^xkisanequationofe Xi=finEvertexiofGEislabelledwith.Vertexfalsegetsthe EssentiallythegamegraphGEforEisitsdependencygraphwhere additionallyeachvertexcarriestwomorelabels.foreveryequation edgesi!jandi!kinthedependencygraph. thereisanequationxi=xj_xk(xj^xk)inethentherewillbe oneforeachleft-handsidevariableofeandtwofortrueandfalse.if thenvertexiislabelledwithi,andallotherverticesarelabelledwith II.TwomoreedgesareaddedtoGEfortechnicalreasons:false!false andtrue!true. Theproofcanbefoundintheappendix. Theexistenceofhistory-freewinningstrategiesfollowseasilyfrom thecorrespondingpropertiesforbooleanequationsystems(seealso [Sti96]). Theorem8.7PlayerIIhasawinningstrategyforthegameonGE withinitialvertexii([[e]])(xi)=true.moreoverjgej=o(jej). Proof:Followsimmediatelyfromlemma3.36andtheorem8.7. gameongewithinitialvertexi,thenshehasalsoahistoryfree winningstrategy. Proposition8.8IfplayerI(II)hasawinningstrategyforthe

IfvertexihaslabelIandi!jandi!kareedgesinGthen IfvertexiofGislabelledwiththerewillbeanequationXi=fi FromagamegraphGwederiveaBooleanequationsystemEG. FromgraphgamestoBooleanequationsystems. 118inEG.Therewillbenoequationsfortrueandfalse. Chapter8.Equivalenttechniques. IfvertexihaslabelIIandthereareedgesi!jandi!kinG Fori<jitisXiCXjinEG. Xi=Xj_XkisanequationofEG. thenxi=xj^xkisanequationofeg.ifthereisjustoneedge Proof:Followsimmediatelyfromthefact,thatthegamegraphdened withinitialvertexii([[eg]])(xi)=true.moreoverjgj=o(jegj). Theorem8.9PlayerIIhasawinningstrategyforthegameonG i!jfromithenxi=xjisanequationofeg. byegisagaintheoriginalgamegraph,i.e.g=geg,togetherwith lenceofdeterminingwhetherthereexistsawinningstrategyforone playerinagameandsolvingbooleanequationsystems.thisisanotherproofthatthedecisionproblemforgraphgamesisinnp\ theorem8.7 Withlinearreductionsinbothdirectionswehaveshowntheequiva- co-np.withtheequivalenceofthelatterandthemodelcheckingprobleminthemodal-calculuswegetimmediatelyananswertoanopen questionin[sti96]. Theorem8.10ForagamegraphGthereexistsapropositionof Proof:Followsfromtheorems5.2,8.7and8.9. themodal-calculusandamodelmwiththestatespaces,such thatforarenamingfunction:f1;:::;ng!sandanyvaluation withinitialvertexi.moreoverjmj=o(jgj2). Vitis: (i)2jjjjtviplayeriihasawinningstrategyforthegameong

canbeinterpretedasabranchofarunonanalternatingautomation asdenedintheprevioussection.thebranchisacceptediplayerii tices.theanalogytotheautomataapproachisobvious:eachplay 8.2.Graphgames. Inthissectionaplayhasbeendenedasaninnitesequenceofver- Relationtoothertechniques. 119 thisdenitionaplayisequivalenttoapathinatableauasdened vertexwiththeleastlabelbetweentherstandsecondoccurrenceof avertexhasbeenvisitedtwice.playeriiwinssuchaniteplay,ifthe theonevisitedtwiceislabelledwith,otherwiseplayeriwins.with ofvertices([sti96]).thentheterminationconditionforaplayis,that EquallyaplayonagamegraphGcanbedenedasanitesequence winstheplay. volved.amoreecientandsimplealgorithmavoidingredundancyis However,thecriteriaforpossible\reuse"ofpriorinformationarein- analgorithmwhichsolvesthedecisionproblemforniteplayshasto solvingthisprobleminatop-downmanneriscontainedin[mad92]. dealwithsameredundancyproblemastableauxhave.onealgorithm egyforplayeriiorasuccessfultableauarethesame.consequently insection6.3.thequestionwhetherthereexistsawinningstrat- Gaueliminationofsection6.4.

120 Chapter8.Equivalenttechniques.

Chapter9 InniteBoolean equationsystems. Sofarwehavebeenconcernedwithmodelcheckingonlyfornitestate systems.ithasbeenshownthattheretheproblemsofsolvingboolean boundedbuersorprogramsusingrecursivedata-structuressuchas innitestatespaceeasilyarisewhene.g.consideringsystemswithun- equationsystemsandmodelcheckingareequivalent.modelswithan naturalnumbersortrees.inthischaptertheframeworkofboolean equationsystemsontheotherhandwillbeshowntobeequivalent. sibly)innitestatespaceononehand,andsolvinginniteboolean equationsystemswillbeextendedtotheinnitecase.themodel resentablemethodforsolvinginnitebooleanequationsystems.here checkingproblemforthemodal-calculusandsystemswith(pos- approximationtechniquesarenotapplicable.wepresentanelimina- However,suchanequivalenceisonlyuseful,ifthereexistsanitelyrep- equationsystems.thiseliminationmethodiscloselyrelatedtothe tionmethodsimilartogausseliminationinsection6.4basedonarep- resentationofinnitebooleanequationsystemsbysetbasedboolean Inatableauforaninnitestatesystemthesameeectcanoccuras inthenitecase:thetableaumightcontainmanycopiesofsimilar tableaumethodofbradeldandstirling[bs91,bra92].itcombines thetop-downapproachofthetableauwithabottom-upevaluation.

intheeliminationalgorithmpresentedhere.itisintendedthatan theeliminationmethodsimpliesthesuccesscriterion.thenondeterminismcontainedinthetableaumethodis,ofcourse,stillcontained 122 subtrees.thebottom-upevaluationavoidsthiskindofredundancy. Chapter9.InniteBooleanequationsystems. Todeterminewhetheratableauissuccessfulornotitisnecessaryto investigatesocalledextendedpaths.itturnsoutthatthestrategyof intelligentprovermakesuseofher(notgenerallyformalizable)knowledgeaboutsystemandpropertytoproveinordertodealwiththtationforinnitebooleanequationsystems.weshowasubstitution stepandeliminationstepsimilartotheonesinthegauelimination ofsection6.4.withtheseanalgorithmisformulateddescribingthe nondeterministicpartsofthealgorithm. WedeneinniteBooleanequationsystemsandshowhowproperties bottom-upversionofthetableaumethodin[bs91,bra92].small forthecaseofnitebooleanequationsystemscanbetransfered.set basedbooleanequationsystemsareintroducedasaniterepresen- examplesdemonstratethetechnique. 9.1Denitions. InthissectionwedenesyntaxandsemanticsofinniteBooleanequationsystems.Furthermore,weshowthatforeachinniteBoolean mayconsistofinniteconjunctionsordisjunctions.however,what ofequations,ontheotherhandtheright-handsidesofeachequation twokindsofinnity:ononehandtheremightbeaninnitenumber thereexisthistoryfreewinningstrategies. InthecaseofinniteBooleanequationsystemswehavetodealwith bothsystemshavethesamesolution.intermsofgamesthissaysthat equationsystemthereexistsasysteminconjunctiveformsuchthat nitesequenceofblocks,whereablockisapossiblyinnitesetof ofaninnitebooleanequationsystemisasfollows. systems.aninnitebooleanequationsystemthereforeconsistsofa stillhastobeniteisthenestingdepthofinnitebooleanequation Booleanequationsallhavingthesamexpointoperator.Thesyntax

9.1.Denitions. ofitselementsisoftheformwi2ixi,vi2ixiorxiwhereiisa Denition9.1ThesetofpositiveinniteBooleanexpressions overacountablesetxofvariablesisdenotedbyib+1(x).each countableindexsetandxi2x[ftrue;falseg. AninniteBooleanequationisoftheformX=f,where2f;g, 123 X2Xandf2IB+1(X). equationsystemtherearenotwoequationshavingthesamevariable Again,fortechnicalreasons,weassumethatinaninniteBoolean 1B1:::nBnforsomen2IN. AninniteBooleanequationsystemEisanitesequenceofblocks thesamexpointoperator,j2jandjisacountableindexset. AblockBisasetofinniteBooleanequationsXj=fj,allhaving Xi=trueor(Xi)=trueforsomei2I,andfalseotherwise.Dually (Vi2IXi)()=falseifforsomei2IeitherXi=falseor(Xi)=false. ontheleft-handside.thedenitionsofthesetofleft-handsidevariableslhs(e)andright-handsidevariablesrhs(e)ofaninnitebooleamultaneoussubstitutionofallxi2xbybifori2i,suchthat ForsomeindexsetIandbI2IBIwedenoteby[XI=bI]thesi- [XI=bI](Xi)=bifori2Iandotherwise[XI=bI](Xi)=(Xi). aredenedasinthenitecase.wehave(wi2ixi)()=true,if equationsystemareasinthenitecase.alsoenvironments:x!ib ThesemanticofaninniteBooleanequationsystemisdenedrecursively.IncontrasttothenitecaseineachstepaninniteBoolean equationsystemisnotreducedtosystemswithoneequationless,but withoneblockless. wherelhs(b)=fxi2xji2igforsomeindexseti,andb2ibi. XI:B([[E]])=\fb2IBIj8i2I:bifi([[E]][XI=b])g Denition9.2LetBEbeaninniteBooleanequationsystem, XI:B([[E]])=[fb2IBIj8i2I:bifi([[E]][XI=b])g [[BE]]=[[E]][XI=XI:B([[E]])],where [[]]=

124 Withthisdenitionofthesemanticwecanmakeuseofallthepropertiesprovedforxpointequationsystemsinchapter3.Inthiscasewe interpretablockaboveasonevectorvaluedxpointequation.how- Chapter9.InniteBooleanequationsystems. ever,weoftenwanttoargueaboutasinglebooleanequation,not fromablockandconsideritasoneblock.whenarguingaboutin- nitelymanybooleanequationsthenblockscontaininginnitelymany equationsshouldbesplitbeforeapplyingtherelevantlemmata. aboutawholeblock.thereforeweneedthepropertybelowabout splittingofblocks.thenitisalsopossibletosplitasingleequation Lemma9.3Let B,B1andB2beblocks,whereB=B1[B2. E1,E2beinniteBooleanequationsystems, andanenvironment. saysthatforeverybooleanequationsystemeandenvironmentthere fromxpointexpressionstoxpointequationsystems.detailsareleft tothereader. Wenowshowapropertywhichistheinniteversionoflemma3.36.It Proof:FollowsfromBekic'sTheorem2.24andthetransformation existsaconjunctivebooleanequationsysteme0suchthate0e,and Then[[E1BE2]]=[[E1B1B2E2]]. [[E0]]=[[E]].Intermsofgamesthismeansthatalsointheinnite casetherearehistoryfreewinningstrategies. Theorem9.4GivenaninniteBooleanequationsystemE= IfjXk=Vi2IXiisanequationinblockBjofEthenitisalso 1B1:::nBnandanenvironmentthereexistsaninniteBoolean junctionsontheright-handside,suchthat IfjXk=XiisanequationinblockBjofEthenitisalsoan equationsysteme0=1b01:::nb0nsuchthate0containsnodis- anequationinb0jofe0.

9.2.Equivalencetothemodelcheckingproblem. IfjXk=Wi2IXiisanequationinblockBjofEandIis [[E]]=[[E0]] blockb0jofe0.ifiisemptythenjxk=falseisanequationof nonempty,thenforsomei2itheequationjxk=xiisin 125 Aproofcanbefoundintheappendix. 9.2Equivalencetothemodelchecking ThetransformationfunctionE1mapsapair(;M)consistingofa systemsonlyoneconjunctoronedisjunctontheright-handsideof eachequationwehavetointroducenewvariables. nitestatespacestoinnitebooleanequationsystemsdoesnotdier fromthenitecase.however,asweallowforinnitebooleanequation Essentiallythetransformationofthemodelcheckingproblemforin- problem. statespacestoaninnitebooleanequationsystem. ThefunctionE1performsthetransformationsfromanestedxpoint formulatoaxpointequationsystemandcreatesthebasicblock modal-calculusformulaandamodelmwithapossiblycountable structureofthewholesystem.byintroductionofnewvariablesand constantsitalsoreduceseachright-handsideexpressiontoasingle variable,constant,modality,disjunctionorconjunction(andnocombinationofthose).e1referstoasetoffunctionsfe1;e2;:::g,which WeomittheargumentMofE1whenitisclearfromthecontext. relatedtostatesiofthetransitionsystem. createthebooleanequationswithinoneblock.eacheifori2inis E1(1_2)=E1(1)E1(2) E1(1^2)=E1(1)E1(2) E1([a])=E1() E1(X)= E1(Q)=

126 E1(X:1_2)=(X1=E1(X0_X00))(X2=E2(X0_X00))::: E1(X:1^2)=(X1=E1(X0^X00))(X2=E2(X0^X00))::: E1(hai)=E1() E1(X0=1)E1(X00=2)forfreshX0,X00 Chapter9.InniteBooleanequationsystems. andfori2in E1(X:)=(X1=E1())(X2=E2()):::E1() Ei(Q)=(trueifsi2V(Q) ifisnotaconjunctionordisjunction Ei(X:)=Xi Ei(hai)=_ Ei([a])=^ Ei(X)=Xi sia!sjej() falseelse V(Xi)=trueisi2V(X). ThetransformationfunctionE1alsomapstoavaluationVanenvironmentVdenedasfollows: Proposition9.5ThepropertyX:holdsatstatesioftransitionsystemTinthemodelM=(T;V),sij=MX:,ithe correspondinginnitebooleanequationsystemhasthesolutiontrue forxi,i.e.forallenvironmentsvitisthecasethat section5.2isimmediatelyapplicabletotheinnitecase. introductionofnewvariablesandequationsiscorrectduetolemma systemtoamodelcheckingproblemworkshere.theconstructionof Proof:Theproofisanalogoustotheoneofproposition5.1.The 3.25. AlsothebackwardstransformationfromaninniteBooleanequation ([[E1((X=);M)]]V)(Xi)=true.

9.3.SetbasedBooleanequationsystems. ([[E]])(X)=([[E(;M)]])((X)) X2lhs(E)andenvironmentswehave Theorem9.6ForeachinniteBooleanequationsystemEthere existsapropositionofthemodal-calculusandamodelm,such thatforavariablerenamingfunctiononthevariablesofe,all 127 SofarwehaveintroducedinniteBooleanequationsystems,showed 9.3SetbasedBooleanequationsystems. Proof:SeeproofofTheorem5.2 thatvariouspropertiesofthenitecasealsoholdfortheinnite,and thatthemodelcheckingproblemforpossiblyinnitestatespacesand innitebooleanequationsystemsareequivalent.howeverthisresults ThereforehereTheorem9.4iscrucial.Foreverymodelcheckingprob- TheniterepresentationwegiveheredealsonlywithinniteBoolean onlybecomeuseful,ifwendaniterepresentationofinniteboolean equationsystems.thisistheaimofthissection. lemwegetaninnitebooleanequationsystem,andforeveryin- nitebooleanequationsystemethereexistsanotherinniteboolean existdisjunctions,thentheyconsistofnotmorethanonedisjunct). solutionaseandbeingnitelyrepresentable. equationsysteme0withoutproperdisjunctions,buthavingthesame equationsystemswhichcontainnoproperdisjunctions(i.e.ifthere ThekindofBooleanequationsystemswhichwillbeintroducedhere Herethisideageneralizestovariablesforpairsconsistingofasetof iscalled\setbased".intuitivelyinabooleanequationsystemderived statesandaxpointvariable,andthevariablewillbetrue,ifthe fromamodelcheckingproblemthereisonevariableforeachpair correspondingxpointformulaholdsatallstatescontainedintheset. consistingofastateandaxpointvariable.thevariablewillbetrue, Thesetsconsideredheremayofcoursecontaininnitelymanystates ifthexpointformulacorrespondingtothisvariableholdsatthestate. andthisisthetechniquewhereniterepresentationscanbeobtained.

thatpurposeweneedpartialmappings;1;:::.eachright-handside theinnitebooleanequationsystem,towhichitistransformed.for mationtoaninnitebooleanequationsystem.thesemanticsofa setbasedbooleanequationsystemisthendenedbythesemanticsof variableinasetbasedbooleanequationsystemwillbeequippedwith 128 EncodedinasetbasedBooleanequationsystemwillbeatransfor- Chapter9.InniteBooleanequationsystems. M!P(S).Thenwealsodene(N)=Ss2N(s)forNS. Theconcatenation21andunion1[2of2:M2!P(S)and 1:M1!P(S)aredenedintheusualway: ForthestatespaceSandsomeMSletthefunctionbe: suchamapping. Givenafunction:M!P(S)dene and1[2:(m1[m2!p(s) 21:(M1!P(S) s17!fs2sj9s22m2:s221(s1)ands22(s2)g i+1def 0def def =Id;theidentityfunction =[ =i i2ini s7!1(s)[2(s) wellfounded. WenowdenethesyntaxofsetbasedBooleanequationsystems. denes1<s2ifs12(s2).wewillsayiswellfounded,if<is Anorder<onMSisdenedbyafunction:fors1;s22M (X;M)2XisaBooleanvariable, (X;M)=Vj2J(Xj;Mj;j),where Denition9.7AsetbasedBooleanequationisoftheform: 2f;g, M;MjSforallj2J,

9.3.SetbasedBooleanequationsystems. Jisaniteindexset, (Xj;Mj)2X[ftrue;falseg, j:m!mjforallj2j. AsetbasedBooleanequationsystemisanitesequenceofsetbased Booleanequations. 129 viaatransformationtofetoaninnitebooleanequationsystem. ThesemanticsofasetbasedBooleanequationsystemEisdened Informally,asetbasedequation(X;M)=Vj2J(Xj;Mj;j)will bemappedtoasetofinnitebooleanequations,eachoftheform Xs=fs,wheres2Mandfsisaconjunctionwhichwillbedened T(((X;M)=^j2J(Xj;Mj;j))E)= below. AssumeM=fs01;s02;:::g.ThenT()= (Xs01=^j2J^ t2j(s01)xj;t)(xs02=^j2j^ Xj;t=trueifXj=true, where Xs0i2X, Xj;t2X[ftrue;falseg, t2j(s02)xj;t):::t(e) Xj;t=falseifXj=false. (Xj;Mj)=false,thentheinnitedisjunctionalsogetsfalse,i.e., Itiseasytosee,thatifinVj2J(Xj;Mj;j)foroneofthedisjuncts systemeisdenedrelativelytoanenvironmentandisitselfan [[E]]=0,where0((X;M))=(Vs2MXs)([[T(E)]]) environment. Denition9.8ThesemanticsofasetbasedBooleanequation ([[((X;M)=Vj2J(Xj;Mj;j))E]])((X;M))=false.

andstirling[bs91,bra92].intheirmethodthesuccessofatableau 130 abottom-upevaluationversionofthetableaumethodofbradeld 9.4Eliminationmethod. InthissectionwepresentaneliminationmethodforsetbasedBoolean equationsystems.similarlytothenitecaseitcanbeinterpretedas Chapter9.InniteBooleanequationsystems. methodthistaskissolvedbythemappingsinaverysimpleway. Analogouslytothenitecase(seesection6.4)wedeneasubstitution stepandaneliminationstepinasetbasedbooleanequationsystem, andshowthattheypreservethesolution. Firstweshowthesubstitutionstep.Whenperformingonesubstitution stepinasetbasedbooleanequationsystemethisstandsforapossibly requiresinvestigationofsocalledextendedpaths.intheelimination innitenumberofsimultaneoussubstitutionstepsinthecorresponding innitebooleanequationsystemt(e). Lemma9.9Let E1,E2,E3besetbasedBooleanequationsystems, M;N;N0S,whereNN0 assumingthatforallj2jitisy6=xj fn0=^ fm=(y;n;y)^^j2j(xj;mj;j); f0m=^ k2k(yk;nk;k); Theproofisintheappendix. anenvironment. Then[[E1(X(X;M)=fM)E2(Y(Y;N0)=fN)E3]] =[[E1(X(X;M)=f0M)E2(Y(Y;N0)=fN)E3]]. k2k(yk;nk;yk)^^j2j(xj;mj;j); mayjustbesubstitutedbytrueorfalse.herewheneliminatingavariableadditionallythemappingsofallotherright-handsidevariables systemstheright-handsideoccurrencesoftheleft-handsidevariable Nextweshowtheeliminationstep.IncaseofniteBooleanequation

vestigationofextendedpathsinthetableaumethod. 9.4.Eliminationmethod. ofthisequationareextended.intuitivelythiscorrespondstothein- Lemma9.10Let E1andE2besetbasedBooleanequationsystems, (X;M)=(X;M;)^Vi2I(Xi;Mi;i)asetbasedBoolean 131 anenvironment,and 0def equation, Aproofcanbefoundintheappendix. BasedonthesebothlemmataisthealgorithminFigure9.1.Itstask If=then0=[[E1((X;M)=Vi2I(Xi;Mi;i))E2]]. If=andiswellfoundedthen0isasinthecasefor=, ifisnotwellfoundedthen0((x;m))=false. =[[E1((X;M)=(X;M;)^Vi2I(Xi;Mi;i))E2]] collectedintheblockt((z;s0)=g).evaluationevalofconjunctions allotherequationszs=gsremainunchanged.alltheseequationsare ronmentitis([[e]])(xs)=true.creatinganequation(z;s0)=g handsideofanequationzs=gsineonedisjunctisselected,whereas istoshowthatforaninnitebooleanequationsystemeandenvi- isheredonebythefollowingrules: includesanondeterministicchoice:fromeachdisjunctionontheright- Thealgorithminpseudocodeisasfollows: (false;)^^i2i(xi;mi;i)=(false;) (true;)^^i2i(xi;mi;i)=^i2i(xi;mi;i) systemsandproveditcorrect.thequestionisstill,whetheritisalways SofarwepresentedanalgorithmforsolvingsetbasedBooleanequation possibletondarepresentationofaninnitebooleanequationsystem assetbasedbooleanequationsystemsuchthatfromsolvingthelatter ^;=(true;)forany thesolutionoftherstcanbederived.

132 Apply,ifpossible,aneliminationstep; fx:=eval(fx); E0:=X(X;M)=fX; whilenotfx=(true;)orfx=(false;) CreateanequationX(X;M)=fX,suchthats2M; Chapter9.InniteBooleanequationsystems. doselect(y;n;y)fromfx; Figure9.1.EliminationalgorithmforinniteBooleanequationsystems. odevaluateeachequationz(z;m0)=eval(fz); CreateanequationY(Y;N0)=fY,whereNN0; InsertY(Y;N0)=fYinE0accordingtothetransformation; Proposition9.11ForaninniteBooleanequationsystemEand Applyallpossibleeliminationstepsandsubstitutionsteps; consistsintheselectionofasetofstateswhencreatinganewequation. suchthatthesolutionispreserved.theothernondeterministicchoice systeme.theorem9.4saysthatthereexistsachoiceofdisjuncts TheoneisthechoiceofdisjunctsintheinniteBooleanequation Proof:Thealgorithmincludestwosortsofnondeterministicchoices. canevaluateavariable(x;m)totrue,wheres2m. environment,where([[e]])(xs)=truethealgorithminfigure9.1 method.)wehavetomakesurethatthereexistchoices,suchthatthe (Notethatthischoiceiscomparabletothethinruleinthetableau variablesofthesystemewhichhavethesolutiontrue.hencethereare thesolutiontrue,i.e.nydef Thesimplestchoiceiscollectingallvariablesofablock,whichhave nitenumberofthesesets.whenrestrictingthechoiceofsetstothese blockofethereexistsonesetofthiskind,andthereforethereisjusta resultingsetbasedsystemcontainsonlyanitenumberofequations. NYtheresultingsetbasedsystemE0isnite.Notethatitcontainsall =fs2sj([[e]])(ys)g=true.foreach

9.5.Examples. enoughequationsinordertoapplythesubstitutionandelimination steps,whicharecorrectaccordingtolemmata9.10and9.9. 9.5Examples. 133 Wewanttodemonstratetheeliminationmethodbytwoexamples. Theproblemsarebothcontainedin[Bra92]. -calculusthisis:s2jjz:[ ]ZjjTV. everypathstartingatshasonlynitelength.intermsofmodal ForthetransitionsystemTbelowwewanttoshowthepropertythat sbbbbbp @@@@@ TTTTTTTTB Xs11 s33 s00 s22xxx s10 InarststepwederivetheinniteBooleanequationsystemforthe s21 s32xx s31 s20 modelcheckingproblemabove. Xs30 Zsij=Zsi(j 1) Zs=Vi2INZsiifori;j2INand0<ij andpropertytoprovecomesin.ononehandineachdisjunction ThenextstepistondarepresentationassetbasedBooleanequation system.ingeneralthisisthepartwheretheknowledgeaboutsystem oftheinnitesystemonedisjuncthastobeselected,whichisnot innitesystemasuitablepartitionofthestatespacehastobefound. necessaryinthecasehere.ontheotherhandforeachblockofthe Zsi0=true fori2in

134 Asabbreviationweintroducethesetsandmappings M1def M2def M3def 0:s7!f(0;0)g =f(i;i)ji2innf0gg =f(i;j)2ininj0<jig =f(i;0)2iningchapter9.innitebooleanequationsystems. 2:8><>:M2!P(M2) 1:s7!M1 (i;j)7!f(i;j 1)gforj>1 ThesetbasedBooleanequationsystemisthen: 3:8><>:M2!P(M3)? willdenoteanarbitrarymapping (i;1)7!f(i;0)g (i;j)7!;forj>1 (i;1)7!; Theprocedureofsolvingthisequationsystemisnowdoneindetail. Wesubstitutetheright-handsideofequation9.3intoequation9.2 gettingforequation9.2: (Z;M2)=(Z;M2;2)^(Z;M3;3) (Z;M3)=(true;?) (Z;fsg)=(Z;M1;1)^(Z;f(0;0)g;0) (9.1) (Z;M2)=(Z;M2;2)^(true;?) (9.2) (9.3) Inthelaststepwesubstitutetheright-handsidesofequations9.5and Nextweapplyaneliminationsteptoequation9.4.Because2is wellfoundedweget: 9.3intoequation9.1. (Z;M2)=(true;?) (9.5) (9.4) (Z;fsg)=(true;?)^(true;?) (9.6) (9.7)

9.5.Examples. whichgivestheexpectedresultzs=trueors2jjz:[ ]ZjjTV.C ThesecondexampleisoriginallyaPetriNetexamplein[Bra92].Here wedemonstrateitsversionbasedonatransitionsystem.theproperty Thiswillbeshownfortheinitialstates00ofthetransitionsystembelowandthecorrespondingexpressioniss002jjY:Z:[c]Y^[ c]zjjtv. 135 toproveisthatonallpathsac-transitionoccursonlynitelyoften. s00 c s01 s11 c s02 c s03 c i2f1;2g,j;k2inandk>0.denethemappings Weimmediatelypresentasetbasedsystem,whereitisassumedthat s101((1;j))=(f(1;j)gforj1 ;forj=0 s12 s13 ::: 5((1;k))=(f(1;k 1)g)fork>1 3((0;j))=f(0;j+1)g 4((0;j))=f(1;j)g 2((1;j))=(;forj1 f(1;0)gforj=0 ThenasetbasedBooleanequationsystemequivalenttothemodel checkingproblemis: (Y;f(0;j)g)=(Z;f(0;j)g;id) 6((1;1))=f(1;0)g; fork=1 (Z;f(0;j)g)=(Z;f(0;j)g;3)^(Y;f(1;j)g;4)(9.10) (Y;f(1;j)g)=(Z;f(1;k)g;1)^(Z;f(1;0)g;2)(9.9) (9.8)

136 Aftersubstitutionofequation9.12intoequations9.11and9.9and eliminationstepsinequations9.10and9.11weget: (Z;f(1;k)g)=(Z;f(1;k)g;5)^(Z;f(1;0)g;6)(9.11) (Z;f(1;0)g)=(true;?) Chapter9.InniteBooleanequationsystems. (Y;f(0;j)g)=(Z;f(0;j)g;id) (Y;f(1;j)g)=(Z;f(1;k)g;1)^(true;?) (9.12) (9.13) 9.13andalso9.16in9.14. Nowwesubstitutetheright-handsideofequation9.15inequation (Z;f(1;k)g)=(true;?) (Z;f(1;0)g)=(true;?) (Z;f(0;j)g)=(Y;f(1;j)g;43) (9.15) (9.16) (9.17) (9.14) Thelastsubstitutionof9.19in9.18givestheresult (Y;f(0;j)g)=(Y;f(1;j)g;id43) (Y;f(1;j)g)=(true;?) ::: (9.18) anditisprovedthats002jjy:z:[c]y^[ c]zjjtv. (Y;f(0;j)g)=(true;?) (9.19) tionsystemscanbeextendedinordertodealalsowithinnitestate spaces.themodelcheckingproblemforinnitestatespacesandsolvingbooleanequationsystemswereshowntobeequivalent.whilstthe tofullyautomaticproving.therstallowstoconsideronlyarelevant thetableaumethodthereandtheeliminationmethodpresentedhere arecloselyrelated.themainadvantagesofthetableaumethodarethe theoreticalapproachdiersverymuchfromtheonein[bs91,bra92], 9.6Conclusion. InthischapterweshowedthatthetechniquesforniteBooleanequa- C onesoflocalmodelcheckingandcomputerassistedprovingincontrast

9.6.Conclusion. partofthestatespace,whichispossiblyamuchsmallersubset.the lattergivesthepossibilitytosetupaprooffollowingtheknowledge aboutthespecialstructureandpropertiesofasystemincontrastto traversingawholestatespaceandtryingtoproveeverysubformula ateverystate,whichmakesprovingpropertiesimpossibleforinnite systems.theeliminationalgorithmcombinesthetop-downstrategy 137 wegettheadvantagesofthetableaumethod,butwearealsoableto ofthetableauwithabottom-upevaluation.withthiscombination avoidtheinherentredundancyoftableauxaswellasexplorationof Andersen[And94b]describedanothermethodforperformingmodel extendedpathsforthesuccesscriterion. -calculustoinnitebooleanequationsystems,butdidnotderivea andalsosimilartothetableausystemof[bs91,bra92].itimproves checkingoninnitestatesystems,presentedasasetofrewritingrules niterepresentation. thetableaumethodinthesensethatthesuccesscriterionforaleafis derivablefromthepathleadingtothatleafratherthanbyanexplorationofpossiblythewholetableau. AlreadyWallner[Wal94]transformedmodelcheckingforthemodal

138 Chapter9.InniteBooleanequationsystems.

Chapter10 Conclusion. showntobeequivalentforboth,modelswithinniteandwithnite statespace. Theapproachwasanalgebraicone:modelcheckingwastransformed tosolvingbooleanequationsystemsandbothproblemshavebeen Inthisthesisweattackedmodelcheckinginthemodal-calculus. 10.1Finitestatespacemodelchecking EquivalencetosolvingBooleanequationsystems themodelcheckingproblem:right-handsidesofequationsarenegationfreebooleanexpressions,theequationsareorderedlinearly,and eachequationisequippedwithaminimalityormaximalitycondition; thelogicalmodalitiesdisappear,andthemodelisencodedintheequa- Booleanequationsystemsasusedherehaveasimplerstructurethan checkingproblemtoabooleanequationsystem.withthisresult anyalgorithmsolvingoneoftheproblemsalsosolvestheotherone. theequivalenceofbothproblemsbyareductionwhichmapsamodel spacestosolvingbooleanequationsystems.furtherwehaveshown Otherpeoplehavereducedthemodelcheckingproblemfornitestate tionsystem.booleanequationsystemsareinterpretedovercomplete

140 latticesandresultsoflatticetheorygivesupportinndingnewalgorithms. Algorithmsandcomplexity Thereexistseveralalgorithmswhichsolvethemodelcheckingproblem Chapter10.Conclusion. standing.weintroducedanewalgorithm,similartogauelimination plexity.themodel-checkingproblemisknowntobeinnp\co-np, ingallofthemwithinoneframeworkhelpedtogetaclearerunder- anditisbelievedthatthereexistsanalgorithmsovingtheproblemin polynomialtime.butsofar,nopolynomialalgorithmhasbeenfound. Existingmodel-checkingalgorithmsusevarioussettings,andinterpret- fornitestatespaces.however,theyallhaveexponentialtimecom- alongtimetondanexamplewherethisalgorithmhasexponential behaviour,i.e.theexpressionscreatedhaveexponentialsize.while forlinearequationsystems,inaglobalandalocalversion.ittook lookingforitmanyexamplesoccurredwherethetableaumethodand theapproximationtechniquehaveexponentialtimecomplexity(and alsospaceforthetableau),butgaueliminationsolvestheminlineartimeandspace.thedicultyinndinganexponentialexample GaueliminationisindependentofthealternationdepthofaBoolean equationsystemora-calculusformula(butdependsonthestructure mightindicatethattheaveragecomplexityoftheproblemismuch betterthanexponential.furthermore,weshowedthatcomplexityof alternationdepth.obviously,isnotinherenttotheproblemthatalgorithmssolvingitareexponentialinthealternationdepth.thisgives anargument,thattherecouldbeapolynomialalgorithmcombining ideasofapproximationandeliminationapproach. Application Fairnesspropertiesarequitediculttoexpressinthemodal- -calculusallowstoexpress\innitelyoften"andthisisanecessary oftheexpressions).approximationalgorithmsareexponentialinthe calculus.usuallystatementsarerestrictedtothefactthatthemodal

ingredientforfairnessproperties.wegaveinsection*7examples whichallowthederivationofaschemeforengineering\real"liveness propertieswithfairnessassumptions.somefairnessandliveness propertiescanalsobeexpressedinothertemporallogics,suchas 10.1.Finitestatespacemodelchecking CTL*,buttranslationfromtheselogicstomodal-calculusisfor allinterestinglogicsexponentialorevenworse.thereforeitisuseful 141 exampleshelpwithengineeringofnewformulae. Otherframeworks Modelcheckinginthemodal-calculushasalreadybeentreatedin toformulatepropertiesdirectlyinthemodal-calculusandour otherframeworks.welookedatthemfromtheperspectiveofboolean equationsystemsandcouldshowequivalencesforautomata-theoretic andgame-theoreticproblems. Automatatheory modelcheckinginthemodal-calculustoautomata-theoreticprob- Wewereabletoshowanewresult:theequivalenceofsolvingBoolean Mapping-calculusformulaetoautomataalreadyhasalongtradition. automata.thereisastrongclaim,thatmodal-calculusexpressions dition.theequivalencetomodelcheckingfollowsimmediatelywith lems.however,allautomatapreviouslyconsideredhavebeentree- resultsfromchapter5.inotherworktherearevariousreductionsof equationsystemsandtheemptinessproblemforalternatingautomata correspondtotree-automata,andthisideahasbeentransferredto oninnitestringsovera1-letteralphabetandparityacceptancecon- modelcheckingwork.ourresultdemonstratesthatthisisnotanecessaryfeature.nonewcomplexityresultsfollowdirectlyfromour tondasolution. equivalence,butnowalsoresultsofalternating!-automatamayhelp

142 WehaveshowntheequivalenceofsolvingBooleanequationsystems andgraphgames.indoingthiswegaveananswertotheopenquestion Gametheoryisanactiveareaofresearchandthereexistreductionsof ofwhethergraphgamesarereducibletomodelcheckingproblems. Chapter10.Conclusion. 10.2Innitestatespacemodelchecking answertothecomplexityofthemodelcheckingproblem. thatanswerstoopencomplexityquestionsingametheorywillgivean \subexponential"algorithm(2opn)(see[sti96]).thereissomehope graphgamestoe.g.simplestochasticgame,forwhichthereexistsa ForthecaseofinnitestatespacesweintroducedinniteBoolean Translatingintogame-theoreticterms,wealsoshowedtheexistenceof EquivalencetosolvingBooleanequationsystems equationsystemsandshowedtheequivalenceofmodelcheckingin themodal-calculusandsolvinginnitebooleanequationsystems. theexistenceofhistory-freewinningstrategieswasacrucialconditionforrepresentinginnitebooleanequationsystemsbynite,set basedbooleanequationsystems.thealgorithmiscloselyrelatedto thetableaumethodofbradeldandstirling[bs91,bra92],but,like inthenitecase,avoidingredundancyoftableaux.thebottom-up eliminationalgorithmforinnitebooleanequationsystems.here, history-freewinningstrategiesforthecaseofinnitestatespaces. Algorithm AnalogouslytoGaueliminationforthenitecasewederivedan strategyforsolvingsetbasedbooleanequationsystemsgaveanother Likeinthetableausystemthereisahighgradeofnondeterminism minesuccessofaleafisreplacedbyiterativefunctioncompositions whichseemstobeeasiertreatableforanimplementation. advantage:thecomplicatedexplorationofextendedpathstodeter-

inherentintheeliminationalgorithm.theideaofmakinguseof knowledgeaboutasystemandapropertytodirectaproofisquite attractive.ifthesupposedpropertiesaboutasystemandthesystem 10.2.Innitestatespacemodelchecking donotcoincidethenthesolutionofthesetbasedsystemconstructed willbefalse.thisalsoimmediatelygivesdiagnosticinformation.it wouldbeinterestingtotrythisapproachwithrealworldexamples. 143

144 Chapter10.Conclusion.

AppendixA A.1ProofsofChapter3. Thesolutionof[(X=f)E]isthelexicographicallyleast Proposition3.5Thesolutionof[]is. (w.r.t(x=f)e)environment1satisfying: (1)f(1)=1(X)and (2)1isthesolutionof[E][X=1(X)]. Proof:Assumethat=.Thecase=isdually. (8)01(X)1(X) (7)f(01)=01(X) ontheotherhandfor (6)01def (5)1(X)Tfajaf([E][X=a])gfrom(3)and(4) (3)1=[E][X=1(X)] (4)1(X)=f([E][X=1(X)]) =[E][X=X:f([E])] 1islex.leastenv. from(1) from(2) (9)1(X)=X:f([E])] from(5)and(8) fullling(1)and(2)

Proof:Followsdirectlyfromproposition3.5 146 Corollary3.7If[E]=0then[E(i)]0=0for1in. AppendixA.Appendix equationsystemsconcerningtheindependenceofequationswithdifferentvariables. Lemma3.10LetE1andE2bexpoint-equationsystems,suchthat lhs(e2)\rhs(e1)=;. Then[E1][E2]=[E1E2]. Theproofofproposition3.9isnowbyinductiononthestructureof E. AssumeX:fisanunnestedexpression,i.e.E(X:f)=X:f,and Proposition3.9LetX:fbeaxpointexpressionoveralattice(A;) andanarbitraryenvironment. Then(X:f)()=([E(X:f)])(X). Proof:FortheproofofthispropositionweneedapropertyofBoolean lhs(e1)\rhs(e2)=;, lhs(e1)\lhs(e2)=;, Nowassumethat1X1:f1;:::;lXl:flarethedirectxpointsubformulaeofX:f(andbyassumptionthenamesofvariablesin xpointexpressionsareunique,suchthatx1doesnotoccurin =([X=X:f()])(X) ThesameholdsforunnestedX:f ([X:f])(X)=([][X=X:f([])])(X) anenvironment. 2X2:f2;:::;lXl:fletc.).Furthermoreletfor1ilandSA [E(iXi:fi)][X=S]def =(X:f)() ([X:f])(X)=([(X:E0(f))E(1X1:f1):::E(lXl:fl)])(X) =([(X:E0(f))E1:::El])(X) =([E1:::El][X=X:(E0(f)([E1:::El]))])(X) =[Ei][X=S]=(iXi:fi)([X=S])

A.1.ProofsofChapter3. AgainthesameholdsfornestedX:f. =X:(E0(f)([E1:::El]))(lemma3.10) =X:(E0(f)([E1]:::[El]) =X:(E0(f)([X1=1X1:f1;:::;lXl:fl)) =(X:f)() 147 inductionstep:[e]1[e]2 Lemma3.11If12then[E]1[E]2. inductionhypothesis:assumethatforall12itis[e]1[e]2. Forall12itisthecasethat[]1=12=[]2. Proof:byinduction. [E]1[X=X:f([E]1)][E]2[X=X:f([E]1)](ind.hyp.) 1[X=X:f([E]1)]2[X=X:f([E]1)](denitionof) [(X=f)E]1[(X=f)E]2 X:f([E]1)X:f([E]2) (fandx: aremonotone) Proof:Forthesecondpartweshow[(X=f)E1][(X=f)E2]. Thelemmaasstatedfollowsthenfromiterativeapplicationofthe Lemma3.14IfE1E2thenEE1EE2. IfE1-E2thenEE1-EE2. (denitionof semantics) weakerstatement. Therstpartfollowstheimmediately. [(X=f)E1]=[E1][X=X:f([E1])] =[(X=f)E2]: [E2][X=X:f([E2])] [E1][X=X:f([E2])]

148 Lemma3.16IfE1E2thenalsoE1-E2 Assumefg.Then [X=f]=[X=(X:f)()] Proof:bystructuralinduction [X=(X:g)()] AppendixA.Appendix AssumefgandE1E2with[E1][E2]. [(X=f)E1]=[E1][X=X:f([E1])] =[X=g] [E1][X=X:g([E1])] Lemma3.18If([(X=f)E])(X)=([(X=g)E])(X) [E1][X=X:g([E2])] Proof:Followsdirectlyfromproposition3.5. then[(x=f)e]=[(x=g)e]: [E2][X=X:g([E2])] =[(X=g)E2] Lemma3.19Let EE1(X=f)E2, ([E])(X)=a,and E0E1(X=a)E2. Then[E]=[E0]. Proof:Notethatherewecannotsimplyapplyproposition3.5or is016=1andderiveaninnitenumberofsubsystemsofeande0, Theproofisdonebycontradiction.Weassumethatfor[E0]def whichmusthavedierentsolutions. lemma3.14,becausetheequivalence[(x=f)e2]=[(x=a)e2] doesnotholdforallenvironments. =01it

orderofequationsine),forwhichholds1(y)6=01(y),suchthat forallpreviousvariables1and01coincide.fixtheisuchthat respectively.letnbethenumberofequationsofe.foralli,1in A.1.ProofsofChapter3. NowchoosetherstvariableYofvar(E)(rstwithrespecttothe holds,[e(i)]1=1. 1and01coincideinallvariableswhicharenotboundinE,orE0 149 E(i)(iY=g)E(i+1),andE0(i)(iY=g)E0(i+1). 1=[E(i)]1 =[(iy=g)e(i+1)]1 Hence,because1(Y)6=01(Y)also 01=[E0(i)]1 =[E(i+1)]1[Y=iY:g([E(i+1)]1)] iy:g([e(i+1)]1)]6=iy:g([e0(i+1)]1)], Ontheotherhandstill1(X)=aandalso00 andtherefore[e(i+1)]16=[e0(i+1)]1def =[(iy=g)e0(i+1)]1 canapplythesameargumentationtoe(i+1),1,e0(i+1)and00 =[E0(i+1)]1[Y=iY:g([E0(i+1)]1)] on.altogetherwecanderivethattheremustbeaninnitenumberof subsystemse(i)ande0(i)havingdierentsolutionsrelativeto1. Lemma3.20[E1(X=a)E2]=[E1E2][X=a]. =00 1 Proof:Forallenvironmentswehave[(X=a)E2]=[E2][X=a]. 1(X)=a.Thereforewe ForsomeE;E0andallenvironmentslet[E]=[E0][X=a].Then 1,andso [(Y=f)E]=[E][Y=Y:f([E])] =[E0][X=a][Y=Y:f([E0][X=a])] =[(Y=f)E0][X=a]:

150 Lemma3.21Let 1def 2def Proof:followsfromBekic'stheoremandthetransformationfrom Then1=2. =[E1(X1=f1)(X2=f2)E2],and =[E1(X2=f2)(X1=f1)E2]. AppendixA.Appendix nestedxpointstoxpoint-equationsystemsinproposition3.9. Lemma3.22If X1isnotfreeinf2, showsthat [(1X1=f1)(2X2=f2)E2]=(2X2=f2)(1X1=f1)E2] X2isnotfreeinf1, 1def forallenvironments.thenlemma3.14canbeapplied. 2def Proof:Straightforwardapplicationofthedenitionofthesemantics Then1=2. =[E1(1X1=f1)(2X2=f2)E2] =[E1(2X2=f2)(1X1=f1)E2] Lemma3.23Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen =[E1(X1=f1)(X2=f2)E2],and =[E1(X2=f2)(X1=f1)E2]. propositiontoshowthatforallenvironmentsitis Proof:Accordingtolemma3.14itsucesfortherstpartofthe 1(X1)<2(X1)and1(X2)<2(X2). [(X1=f1)(X2=f2)E2][(X2=f2)(X1=f1)E2]. Duetoproposition3.5thesearethetwopropertieswhichthesolution Let[(X1=f1)(X2=f2)E2]def f2(01)=01(x2)(proposition3.5), 02of[(X2=f2)(X1=f1)E2]musthave,andfurthermorethe [(X1=f1)E2]01=01(lemmata3.19,3.20) =01.Weknowthat

solution02isthelexicographicleastoneofthoseenvironments0 havingtheseproperties.hencethesolution02islexicographically A.1.ProofsofChapter3. lowerorequalto1,i.e.02(x2)01(x2). solutionsmustbeequal. If02(X2)=01(X2)thenapplyinglemmata3.19,3.20showsthatboth 151 andwithlemma3.11also 01=[(X1=f1)(X2=f2)E2] 02=[(X1=f1)E2][X2=02(X2)] If02(X2)>01(X2)then0201and[X2=02(X2)]>[X2=01(X2)] =[(X1=f1)E2][X2=01(X2)] =[(X1=f1)E2][X2=02(X2)] =01: [(X1=f1)E2][X2=01(X2)] =[(X2=f2)(X1=f1)E2]: Lemma3.24Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen =[E1(X=f)E2],and =[E1(X=f)E2]. lemma3.14itsucestoshowthat[(x=f)e2][(x=f)e2]. Proof:Inordertoprovetherstpartofthelemmaandaccordingto 1(X)<2(X). 1(X)=2(X)=aintheequationsystemsduetolemma3.19and [(X=f)E2]=[E2][X=X0:f([E2][X=X0])] eliminateitwithlemma3.20: Forthesecondpartofthelemmaassumethatthesolutionscoincideat Xandshowthatthentheymustbeidentical.Substitutethesolution [E2][X=X0:f([E2][X=X0])] =[(X=f)E2]:

152 [E1(X=f)E2]=[E1(X=a)E2] =[E1E2][X=a] =[E1(X=f)E2]: =[E1(X=a)E2] AppendixA.Appendix wherex0isanewvariable,i.e.(*)x0doesnotoccurontheright ([(X=f1_f2)E])(Y)=([(X=f1_X0)(0X0=f2)E])(Y), Lemma3.25 ([(X=f1^f2)E])(Y)=([(X=f1^X0)(0X0=f2)E])(Y), handsideofeorinf1orf2,and(**)y6=x0. Proof:bystraightforwardapplicationofthedenitionofthesemantics. ([(X=f1^X0)(0X0=f2)E])(Y) =([(0X0=f2)E][X=X:(f1^X0)([(0X0=f2)E])])(Y) =([(0X0=f2)E][X=X:(f1([E])^f2([E]))])(Y)() =([(0X0=f2)E][X=X:(f1([E])^0X0:f2([E]))])(Y) =([(0X0=f2)E][X=X:(f1^f2)([E])])(Y) [X=X:(f1([(0X0=f2)E])^X0([(0X0=f2)E]))])(Y) [X=X:(f1([E][X0=:::])^X0([E][X0=0X0:f2([E])]))])(Y) Lemma3.26Let Theprooffor_isanalogous. =([E][X=X:(f1^f2)([E])][X0=:::])(Y) =([E][X=X:(f1^f2)([E])](Y) =([(X=f1^f2)E])(Y) 1def ()() 2def Then1=2. 02def =[E1(X1=f)(X2=f)E2] =02[X1=02(X2)] =[E1[X1=X2](X2=f[X1=X2])E2[X1=X2]]

caseof=isdual.moreovertheproofisdonefore1.the Fortheproofherethealternativecharacterizationofthesolutionof generalizationtoarbitrarye1followsthenbylemma3.14and3.19. suitable. Proof:Wewillshowthelemmaforthecaseof=.Theother A.1.ProofsofChapter3. axpoint-equationsysteminproposition3.5turnedouttobemore 153 Showthat21: Hence,withproposition3.5,itis21. Showthat12: (1) (2) (3) (4) [E2[X1=X2]]1=[E2]1(1),(2),proposition3.5 1(X1)=1(X2)proposition3.5 (1) 1(X2)=f(1)proposition3.5 (2) (3) [E2[X1=X2]]2=2 2(X1)=2(X2)bydenition [E2]1=1 [E2]2=2 (1),(2),lemma3.19 corollary3.7 (4) (5) (7)X1:f([(X2=f)E2]2)2(X1)(2),(4),(6),Theo.2.16 (6) (8) (9) f([(x2=f)e2]2)f(2)(5),monotonicityoff [(X2=f)E2]22 [(X2=f)E2]1[(X2=f)E2]2 1(X1)2(X1)(7) f(2)=2(x2)proposition3.5 (3),(4),proposition3.5 Booleanequation,anenvironment,b=falseandb=true.Then forthesolutionofabooleanequationsystemholds: Proposition3.30LetEbeaBooleanequationsystem,X=fa (10)1=[(X2=f)E2]12 (8)&proposition3.11 [[]]= (9),(5),prop3.5 Proof:Applylemma3.29todenition3.3. [[(X=f)E]]=[[E]][X=f([[E]][X=b])].

154 BooleanequationsystemE0instandardformandarenamingfunction Proposition3.31ForeachBooleanequationsystemEthereexistsa standardformisperformedbyintroductionofadditionalvariables,suchthat([[e]])(x)=([[e0]])((x)),ande0hassizelinearinthe Proof:ThetransformationfromaBooleanequationsystemEinto sizeofe. AppendixA.Appendix Lemma3.35([[E]])(X)=falsei([[E]])(X)=true. expressionsofe.renamingdoesnotinuencethesize. sizeoftheright-handsideexpressionsofe.thesizeoftherighthandsideexpressionsofe0islinearinthesizeoftheright-handside ([[]])(X)=(X) (proposition3.25).thenumberofadditionalvariablesislinearinthe Proof:byinductiononthestructureofE Show([[(Y=f)E]])(X)=([[(Y=f)E]])(X) inductionhypothesis:([[e]])(x)=([[e]])(x) =([[]])(X) =[[E]][Y=f([[E]][Y=false])])(X)inductionhypothesis =([[E]][Y=f([[E]][Y=false])])(X)inductionhypothesis =([[E]][Y=f([[E]][Y=false])])(X)complementationof =([[E]][Y=f([[E]][Y=false])])(X)deMorgan =([[E]][Y=f([[E]][Y=false])])(X)denitionofsemantics =[[E]][Y=f([[E]][Y=true])(X) =([[(Y=f)E]])(X) denitionofsemantics

Proposition3.36GivenaBooleanequationsystemEandanenvironmentthereexistBooleanequationsystemsE0andE00withthe 155 A.1.ProofsofChapter3. properties: E0isinconjunctiveform, E0E,and [[E0]]=[[E]]. ForE00thedualpropertieshold: E00isindisjunctiveform, E00E,and [[E00]]=[[E]]. FortheproofofthispropositionweneedlemmataA.1andA.2. LemmaA.1GivenBooleanequationsystemsE;E1;E2withthe properties: (1)E1;E2areinconjunctiveform, (2)E1E,E2E, (3)[[E1]][X=false]=[[E]][X=false], (4)[[E2]][X=true]=[[E]][X=true]. ThenthereexistsaBooleanequationsystemE3inconjunctiveform, [[E3]][X=false]=[[E]][X=false], suchthate3eand ByconstructionofE3follows ixi=gi,if([[e1]][x=false])(xi)=false. Proof:Assume E1=(1X1=f1):::(nXn=fn)and LetiXi=fibeanequationofE3,if([[E1]][X=false])(Xi)=trueand E2=(1X1=g1):::(nXn=gn). [[E3]][X=true]=[[E]][X=true]. (7)E3isinconjunctiveform. (6)E3E,and (5)[[E1]][X=false][[E3]][X=false],

156 Wealsoknowthat[[E2]][X=true][[E3]][X=true],becauseatthe With(4)and(6)followsthat[[E3]][X=true]=[[E]][X=true]. From(3),(5),(6)andproposition3.16followsthat [[E3]][X=false]=[[E]][X=false]. variableswheree2ande3diere3hasthesolutiontruefor[x=false] andhencealsofor[x=true]. AppendixA.Appendix LemmaA.2GivenBooleanequationsystemsE;E1;E2withthe (2)E1E,E2E, properties: (1)E1;E2areindisjunctiveform, (3)[[E1]][X=false]=[[E]][X=false], (4)[[E2]][X=true]=[[E]][X=true]. Proofofproposition3.36:byinduction ProofanalogoustotheproofoflemmaA.1 ThenthereexistsaBooleanequationsystemE3indisjunctiveform, [[E3]][X=false]=[[E]][X=false], suchthate3eand haveadisjunctionasrighthandsideandshowthatwecanselectone HereweassumethattheBooleanequationsystemisinnormalform, i.e.eachrighthandsideexpressioniseitheraconjunctionoradisjunctionoftwovariables.thenwehavetoinvestigatetheequationswhich [[E3]][X=true]=[[E]][X=true]. ofthedisjunctspreservingthesolution. [[X=(Xi_Xj)]]=[X=(Xi_Xj)([X=b])] =[X=[X=b](Xi)_[X=b](Xj)] =[X=[X=b](Xi)] =[[X=Xi]]: thenassumewlogxi(0)=true) (if(xi_xj)(0)=true

3def 1def 2def NowassumethatforE;thereexistsE1suchthat[[E]]=[[E1]].Let A.1.ProofsofChapter3. =[X=b]; =[X=(Xi_Xj)([[E]][X=b])] wheretrue=falseandfalse=true157 Wehavetoconsidertwocases: [[(X=Xi_Xj)E]]=[[E]][X=(Xi_Xj)([[E]][X=b])] (i)(xi_xj)([[e]]1)=b,andhence1=2.thenthereexistse1 suchthat[[e]]i=[[e1]]ifori=1;2. =[[E]]2 =[[E]][X=(Xi_Xj)([[E]]1)] ()=[[E1]][X=(Xi_Xj)([[E1]][X=b])] =[[E1]][X=(Xi)([[E1]][X=b])] =() (ii)(xi_xj)([[e]]1)6=b,andhence2=3.nowthereexistsa ande3with[[e]]3=[[e3]]3. dierentequationsystemforeitheri,e1with[[e]]1=[[e1]]1 =[[(X=Xi)E1]] (asinthebasecase: ThenduetopropositionA.1thereexistsE4with[[E4]]1=[[E]]1 chooseadisjunctwhichgivesthecorrectresult) ()=[[E4]][X=(Xi_Xj)([[E4]][X=b])] and[[e4]]3=[[e]]3.hence whichhasthesamesolutionaseworksanalogously. Theproofforthedualfact,thatthereexistsaconjunctivesystem =[[(X=Xi)E4]]: =[[E4]][X=(Xi)([[E4]][X=b])] (againchooseasuitabledisjunct)

158 A.2ProofsofChapter5. Theorem5.1LetX:beaformulaofthemodal-calculus,M= ThenforallenvironmentsVitisthecasethat (T;V)amodelandsiastateofT. AppendixA.Appendix thesecondtoaequationsystemoverthepowerspaceofthestate rstleadsfroma-calculusformulatoa-calculusequationsystem, arereducedstepwise. space,thelastonetobooleanequationsystems.foreachdomainwe giveasemanticsandshowthatineachcasetheproblemstobesolved sij=mx:i([[e((x=);m)]]v)(xi)=true. Thersttransformation,E,leadsfromthesetof-calculusformulae, Proofoftheorem5.1:ThemappingEisdividedinthreesteps:the Thistransformationwasalreadygivenandprovedindenition3.8and Ltosequencesofunnested-calculusformulae,denotedbyL1. provedinproposition3.9.herewejustpresentthetransformationfor theactualscenario. E:L!L1isbasedonamappingE0andisdenedasfollows: E(1_2)=E(1)E(2) E(1^2)=E(1)E(2) E(hai)=E() E([a])=E() E(X)= E(Q)= E0(1^2)=E0(1)^E0(2) E0(1_2)=E0(1)_E0(2) E(X:)=(X:E0())(E()) E0([a])=[a]E0() E0(X)=X E0(Q)=Q

NotethathereweinterpretthevaluationfunctionVasanenvironment. A.2.ProofsofChapter5. E0(X:)=X E0(hai)=haiE0() 159 Fromproposition3.9follows:s2jjX:jjVis2([[E(X:)]]V)(X). laetoaxpoint-equationsystemoverthepowersetofthestatespace. Thesecondtransformation,EM,mapsasequenceof-calculusformu- LetX:beanunnested-calculusformulaandEasequenceof Formally,thisisthestepfromthelogicalformulaetotheirsemanticdomain.Technically,weperformonlyasyntacticaltransformation P(S)isbasedonamappingE0Manddenedasfollows. fromlogicalvariablestosetvariables,fromthebooleanconnectives_ and^tothesetoperations[and\,fromthemodaloperators[a]and haitosetoperators[[a]]tandhhaiit. unnested-calculusformulae.thetransformationem:l1! EM((X:)E)=(X=E0M())EM(E) E0M(1^2)=E0M(1)\E0M(2) E0M(X)=X E0M(Q)=V(Q) EM()= Recallthatthesemanticsofaxpoint-equationsystemwasgivenin denition3.3.herefdenotesamonotonesetfunctiononp(s). E0M(1_2)=E0M(1)[E0M(2) E0M(X:)=X=E0M() E0M(hai)=hhaiiT(E0M()) E0M([a])=[[a]]T(E0M()) [[(X=f)E]]V=[[E]]V[X=\fSSjSf([[E]]V[X=S])g [[(X=f)E]]V=[[E]]V[X=[fSSjSf([[E]]V[X=S])g [[]]V=V

expressions.accordingtobekic'stheoremsuchasimultaneousxpointexpressioncanbeeliminatedandsubstitutedbyasequenceof simplexpointexpressions.inadditionthesetoperators[[a]]tand hhaiitcanbeeliminatedbyevaluation,becausehereeachboolean asabooleanvectorexpressionandequivalentlyasavectorofboolean spaceandabooleanvectorspaceallowstorepresentasetexpression Inthelaststeptheisomorphismbetweenthepowersetofthestate 160 nitionsofthesemantics:[[(x:)e]]v=[[(x=e0m())em(e)]]v Correctnessofthetransformationfollowsimmediatelyfromthede- AppendixA.Appendix expressiondescribesasetexpressionataparticularstateoftheunderlyingtransitionsystemandateachsinglestatethesetoperators canbeevaluatedeasily. AltogetherthetransformationfunctionEIB:P(S)!IBmaps system.itreferstoasetoffunctionsfeib;1;:::;eib;ng,wheren=jsj axpoint-equationsystemoversetsofstatestoabooleanequation EIB((X=f)E)=(X1=E1(f)):::(Xn=En(f))EIB(E) EIB;i(S)=(trueifsi2S EIB()= isthesizeofthestatespace. EIB;i(A1\A2)=EIB;i(A1)^EIB;i(A2) EIB;i(A1[A2)=EIB;i(A1)_EIB;i(A2) EIB;i(hhaiiTA)=_ EIB;i([[a]]TA)=^ EIB;i(X)=Xi falseelse InordertoshowthecorrectnessofthetransformationEIBwehaveto above: V(Xi)=trueisi2V(X) ThesemanticofaBooleanequationsystemwasalreadygiveninsection 3.2.TheenvironmentVderivedfromthevaluationVisdenedas sia!sjeib;j(a)

si2([[e]]v)(x)i([[eib(e)]]v)(xi)=true. proveforasetequationsystemeandavaluationv: ofann-arysimultaneousxpointtoanestedxpointandthetransformationofanestedxpointtoaxpoint-equationsystemgivenin denition3.8andproposition3.9. A.3.ProofsofChapter8. TheproofhererequiresBekic'stheorem2.24forthetransformation 161 tothesemanticsgivenwecanconcludethat tions,andfromthecorrectnessofthesetransformationwithrespect [[E(X:)]]V(Xi)=trueisi2jjjjTV. E()=(EIBEME)()whereistheusualcompositionoffuncsionandamodeltoaBooleanequationsystemcanbecomposedby thetransformationse;em,andeibasdenedabove,anditholds: AltogetherthetransformationfunctionEfroma-calculusexpres- MoreoverAE;hassizeofO(jEj). A.3ProofsofChapter8. itis([[e]])(xi)=trueiae;(fag;se;xi;e;;e;)isnonempty. Theorem8.2ForaBooleanequationsystemEandanenvironment intheirinitialstate,butcoincideinthesetofstatesse,thetransition Proof:Inthefollowingweoftenarguewithautomatawhichdieronly relatione;andtheacceptingconditione;.thenwewillexplicitly NowthproofisbyinductiononE. branchbofr,i.e.b0=bfb,thenb0fulllsalsotheacceptancecondition E;andhencer0isanacceptingrunofAE;withinitialstateXj. initialstatexiandarunr0ofae;withinitialstatexj,suchthat (*)Note,ifwehaveanacceptingrunroftheautomatonAE;with everybranchb0ofr0consistsofaniteinitialpartbfcontinuedbya talkabouttheautomatonae;withinitialstatexi. ia;withinitialstatexihasanacceptingrun. i;(a;xi)=true i(xi) ([[]])(Xi)=true

162 inductionhypothesis:8xi;eoflengthn,:([[e]])(xi)=truei AE;withinitialstateXihasanacceptingrun. Show8Xi;Eoflengthn,;;X;f: ([[(X=f)E]])(Xi)=trueiA(X=f)E;withinitialstateXiis nonempty. (=)) AppendixA.Appendix case1([[(x=f)e]])(xi)=true=([[e]][x=f([[e]][x=true])])(xi) 1.1([[E]][X=false])(Xi)=true ThenthereexistsanacceptingrunronAE;[X=false]withinitial ThetreeristhenalsoanacceptedrunofA(X=f)E;withinitialstateXi,becauseE;[X=false]and(X=f)E;coincideonall thisnodewouldbealeafandthisbranchnotaccepted. statexiandnonodeofrislabelledwithx,becauseotherwise 1.2([[E]][X=false])(Xi)=false acceptedbythe\weaker"acceptancecondition(x=f)e;. Furthermore,ifarunisacceptedbyE;[X=false])thenitisalso statesdierentfromxandnonodeofrislabelledwithx. automatonae;[x=true]withinitialstatexjl. asatisfyingsetofffxj1;:::;xjkgitisthat ([[E]][X=true])(Xjl)=truefor1lk.ForeachXjlthereis (1)Thenitmustbethecasethatf([[E]][X=true])=true,i.e.for ConsideratreerX0wheretherootislabelledwithXandthesuccessorsoftherootarerj1;:::;rjkfrom(1).LetrX00bethetree (2)WeshownowthatthereexistsanacceptingrunrXon accordingtotheinductionhypothesisanacceptingrunrjlofthe A(X=f)E;withinitialstateX. labelledwithxthesucessorsarelabelledwithasatisfyingset rx0.continuesubstitutionofx-labelledleavesbyrx0getting nallythetreerx.itiseasytoseethatrxfollowsthetransitionfunction(x=f)e;becauseitcoincidesonallrj1;:::;rjk withe;[x=true]onallstatesapartfromxandatthenodes rx0whereallleaveslabelledwithxaresubstitutedbyacopyof

A.3.ProofsofChapter8. eachbranchbxofrxconsistseitherofaniteinitialpartfollowedbyabranchfromsomerjl,where1lk,inwhichno labelledwithx.intherstcasebxisacceptedbythefactthat ItremainstoshowthattherunrXisalsoaccepted.Notethat nodeislabelledwithx,orbxcontainsinnitelymanynodes offaccordingtothetransitionfunction(x=f)e;(a;x)=f. 163 bxisacceptedbytheacceptancecondition(x=f)e;,because withinitialstatexjlandargument(*)above.inthelattercase AE;[X=true]withinitialstateXjlisalsoacceptedbyA(X=f)E; Xisa-variableandgetstheleastindex. (3)Wenallyhavetoshowthatthereisanacceptingrunron eachbranchcontainingnox-labellednodewhichisacceptedby A(X=f)E;withinitialstateXi.Accordingtotheassumptions itmustbethecasethat([[e]][x=true])(xi)=trueandwiththe inductionhypothesisweknowthattheremustbeanaccepting case2([[(x=f)e]])(xi)=([[e]][x=([[e]][x=false])])(xi)=true r0andsubstituteeachleaflabelledwithxbytherunrxfrom (X=f)E;.Eachbranchofr0containingnoXandacceptedbt (2).ItiseasytoseethatrXfollowsthetransitionfunction E;[X=true]isalsoabranchofrandacceptedby(X=f)E;. Allotherbranchesareacceptedbyargument(*)above. runr0ofae;[x=true]withinitialstatexi.nowtaketherun 2.1([[E]][X=false])(Xi)=true withx,sincesuchanodewouldbealeafofanotaccepted branch.hencerisalsoanacceptingrunofa(x=f)e;with AE;[X=false]withinitialstateXi.Nonodeofrislabelled Accordingtotheinductionhypothesisthereisanacceptingrunr 2.2([[E]][X=false])(Xi)=false E;[X=false]. initialstatexi,because(x=f)e;ande;[x=false]coincide onallstatesapartfromxandxdoesnotappearinr. Then(X=f)E;acceptseverybranchthatisacceptedby

164(1)Thenitmustbethecasethatf([[E]][X=false])=true,i.e. theremustbeasatifyingsetfxj1;:::;xjkgforsomek2inof fsuchthat([[e]][x=false])(xjl)=truefor1lk.accordingtotheinductionhypothesisforeach1lkthereisan acceptingrunrjlonae;[x=false]withinitialstatexjl.sinceno nodeislabelledwithxeachtreerjlisalsoanacceptingrun AppendixA.Appendix ingrunrx.letrxbethetreewheretherootislabelledwith ofa(x=f)e;withinitialstatexjl,becausethetransitionfunctionse;[x=false]and(x=f)e;coincideonallstatesapartfrom (1).SincefXj1;:::;Xjkgisanacceptingsetoff,rXfollows accepts. (2)ShownowthatA(X=f)E;withinitialstateXhasanaccept- Xandthesuccessorsoftherootarethetreesrj1;:::;rjkfrom Xand(X=f)E;acceptseveryinnitebranchthatE;[X=false] thetransitionfunction(x=f)e;(a;x)=f,whichcoincides withe;[x=false]onallstatesotherthanx.withargument(*) runr0ofae;[x=true]withinitialstatexiletrbeasr0where followsthatrxisalsoacceptedbya(x=f)e;. allleaveslabelledwithxaresubstitutedbyrxfrom(2).note accordingtotheinductionhypothesistheremustbeanaccepting (3)ItremainstoconstructanacceptingrunrofA(X=f)E;with initialstatexi.weknowthat([[e]][x=true])(xi)=trueand thatallbranchesofr0containingnoxarealsoacceptedby A(X=f)E;withinitialstateXi.Allotherbranchesareaccepted statexiisnonempty.thecomplementationofalternatingautomata accordingtotherstpartoftheproofweknowthatae;withinitial Assume([[E]])(Xi)=false,thenbylemma3.35([[E]])(Xi)=trueand andalternatingautomatawithparitycondition. ((=)WemakeuseofcomplementationofBooleanequationsystems byargument(*). withinitialstatexiisae;withinitialstatexi,andifae;hasan withparityconditioniseasy(see[ej91]):thecomplementofae; acceptingrun,thenae;isempty.

((=) Proof:ItfollowsimmediatelyfromconstructionthatthesizeofGEis linearinthesizeofe. initialvertexii([[e]])(xi)=true.moreoverjgej=o(jej). Theorem8.7PlayerIIhasawinningstrategyforthegameonGEwith A.3.ProofsofChapter8. 165 Assume([[E]])(Xi)=true.Accordingtolemma3.36thereexistsa BooleanequationsystemE0inconjunctiveform,whereE0Eand and[[e0]]=[[e]].allconjunctionsofearecontainedine0,butfrom ningstrategyforplayeriiistochooseineveryi-labelledvertexthis initialvertexlabelledwithiplayeriiwinseveryplay.thenawin- with_. WenowwanttoshowbycontradictionthatforthegameonGE0with playeriinevertakesamove,becausetherearenoverticeslabelled equationofe0.considerthegamegraphge0.ineveryplayonge0 eachdisjunctionofethereisonlyonedisjunctinthecorresponding lim(p)nfjgfor0<j<n.wenowwanttoshowthatintheboolean asubsequencep0=v0;v1;:::;vnofp,wherev0=vn=jandvk2 andalso(atleast)oneofitspredecessors.moreovertheremustbe I.Letjbetheleastvertexinlim(p).Foreachvertexinlim(p)it mustbethecasethatthereis(atleast)oneofitssuccessorsinlim(p) AssumepisaplayofGE0withinitialvertexiwhichiswonbyplayer successorwhichisalsocontainedinge0. f1j,thentheequationcorrespondingtovertexv2intof1jgivingxj= equationcorrespondingtovertexv1issubstitutedintofjgivingxj= p0denesasequenceofsubstitutionsteps(lemma6.3)ine0:rstthe j,istheleastonewithrespecttoeamongtheseequations.now lim(p).weknowthatxj=fj,theequationcorrespondingtovertex j6=false.considerallequationsxk=fkine0wherekisavertexin equationsysteme0thevariablexihasthesolutionfalse.assume adisjunctionorasinglevariabletheequationevaluatestoxj=false aneliminationstep(lemma6.2).becausef(n 1)jandmayapply thevariablexjontheright-handsideofxj=fn 1 anditisthecasethat([[e0]])(xj)=([[e]])(xj)=false.theinitial f2jandsoon.aftern 1substitutionstepswehaveanoccurrenceof jcanonlyconsistof

166 partofpdenesasequencefromxitotherstoccurrenceofxjinp andgoingthisinitialsequencebackwardsapplyingsubstitutionsteps (=)) havetoapplythelastargumentaboveandgetthesamecontradiction. forconstants(lemma3.19)wegetthat([[e0]])(xi)=([[e]])(xi)= falsewhichcontradictstheassumption.forthecasej=falsewejust AppendixA.Appendix rstcaseoftheproofwecanshowthatfrom([[e]])(xi)=falseit Theotherdirectionfollowsbydualityarguments.Analogouslytothe followsthatplayerihasawinningstrategy.sinceonlyoneofthe playerscanhaveawinningstrategyand([[e]])(xi)mustbeeither A.4ProofsofChapter9. trueorfalsetheproofiscomplete. 1B1:::nBnandanenvironmentthereexistsaninniteBoolean Theorem9.4GivenaninniteBooleanequationsystemE= equationsysteme0=1b01:::nb0nsuchthate0containsno disjunctionsontheright-handside.inparticular: IfkXj=Vi2IXiisanequationinblockBjofEthenitisalso IfkXj=XiisanequationinblockBjofEthenitisalsoan IfkXj=Wi2IXiisanequationinblockBjofEandIis anequationinb0jofe0. Theargumentationhereissimilartotheoneintheproofforthenite case(proposition3.36).thereintheinductionstepwehavetoconstructonebooleanequationsystembasedontwoothers(lemmaa.1). nonempty,thenforsomek2itheequationkxj=xiisinblock Proof:byinductiononthestructureofE. [[E]]=[[E0]] IncontrasttothenitecaseherewehavetoconstructoneBoolean B0jofE0.IfIisemptythenkXj=falseisanequationofB0jofE0. equationsystembasedoncountablenumberofotherones.however, theideaandtechniqueisverymuchthesame.

fewerblocksthannandenvironmentwecanndaninniteboolean equationsysteme0havingnodisjunctionswithmorethanonedisjunct onitsright-handsideand[[e]]=[[e0]]. requirements. inductionhypothesis:foreachinnitebooleanequationsystemewith basecase:lete=andbeanenvironment.thene0=fulllsthe A.4.ProofsofChapter9. 167 Dene inductionstep:assumethatbeisaninnitebooleanequationsystem,thatforsomeindexsetilhs(b)=fxiji2ig,andthatisan environment.then [[BE]]=[[E]][XI=XI:B([[E]])] Nowweproceedasfollows:,andsincethebformanascendingchainintheproductlatticeIBI, iscountable. foranordinal,alimitordinal.byproposition2.20,b=bforsome b+1def bdef b0def =B([[E]][XI=b =_<b =falsei solutionaseforall[xi=b].thene0andealsohavethesame ClimbingupthebwerstconstructasystemE0havingthesame B([[E]][XI=b])=B0([[E]][XI=b]).ThenwegetalsoB([[E]][XI=b]= terwardsweconstructablockb0,alsoclimbinguptheb,suchthat solutionfortheleastxpointb,i.e.[[e]][xi=b]=[[e0]][xi=b].af- B0([[E0]][XI=b]=bThetheoremfollowsthenbyapplicationofthedefinitionofthesemantic. WerstconstructasystemE0,suchthat Forthisweusethefactthataccordingtotheinductionhypothesisfor knowthatthenalso([[e0]][xi=b0])(x)=true.foreachofthesexlet (1)[[E]][XI=b]=[[E0]][XI=b]forall. For=0selectallX2lhs(E)where([[E]][XI=b0])(X)=true.We TheconstructionofE0worksasfollows: [[E0]][XI=b]. eachthereexistsane0havingtherequiredformand[[e]][xi=b]=

168 theequationx=f0frome0beanequationofe0inthecorresponding block.whatevertheremainingequationsofe0willbe(theymightall (*)([[E0]][XI=b0])(X)=true=([[E]][XI=b0])(X). befalse,see3.19),wehave ForeachselectallvariablesXj2lhs(E)suchthat AppendixA.Appendix ([[E]][XI=b+1])(Xj)=true andforallthesexjlettheequationxj=f0jine0beanequation ofe0,suchthatxj=f0jiscontainedinthecorrespondingblockto (havinglowersignature) Theargumentnowisbyinduction.AssumethatforallotherXk theoneofecontainingxj=fj. ([[E]][XI=b])(Xj)=false if([[e]][xi=b])(xk)=true if([[e0]][xi=b])(xk)=true then([[e0]][xi=b])(xk)=true; Thisis,becauseofmonotonicity,forall HenceweknowthatforalltheseXk,where ([[E0]])(Xk)=true=([[E]])(Xk)thatalso([[E0]])(Xk)=true. then([[e0]][xi=b])(xk)=true: thenb([[e]][xi=b])=b([[e0]][xi=b])=b+1 Furthermore if Withthebasecase(*)wecannowconclude(1).(SeealsotheargumentationforlemmaA.1incombinationwithlemma9.3). (2)XI:B([[E]])=XI:B([[E0]]) Fromtheabovewealsocanconclude NextweconstructB0insuchaway,thatforeach B([[E]][XI=b])=B0([[E]][XI=b]). LeteachequationX=Vj2JXjforsomeindexsetJinBbe [[E]][XI=b]=[[E0]][XI=b] alsoanequationofb0.

IfthereisanequationinBoftheformX=XiorX=WXi, A.4.ProofsofChapter9. IfthereisanequationinBoftheformX=Wj2JXjforsome wherethedisjunctioncontainsonlyasingledisjunct,thenletx= indexsetjandthereisoneofthedisjunctstrue,thenletx=true XibeanequationofB0. 169 ForeachequationX=Wj2JXjinBwhere([[BE]])(X)= InallothercasesforXi2lhs(B)wehave([[BE]])(Xi)=true X=XjbeanequationofB0. indexsetj.foreachofthesexithereexistsansuchthat andtheequationforxiisoftheformxi=wj2jxjforsome falsechooseanyofthedisjunctsfromwj2jxj,sayxj,andlet Altogetherwehavethenthat Itfollowsfromtheconstructionthat (3)B([[E]][XI=b+1])=B0([[E]][XI=b+1]) accordingtothechoiceofxj. letx=xjanequationinb0.hence(b0([[e]][xi=b]))i=true Wj2JXjavariableXj,suchthat([[E]][XI=b])(Xj)=trueand ([XI=b+1])(Xi)=trueand([XI=b])(Xi)=false.Selectfrom [[BE]]=[[E]][XI=XI:B([[E]])] =[[E]][XI=XI:B0([[E]])](3) =[[E0]][XI=XI:B0([[E0]])](1);(2) assumingthatforallj2jitisy6=xj Lemma9.9Let E1,E2,E3besetbasedBooleanequationsystems, M;N;N0S,whereNN0 ThedualcaseforBEworkssimilarly. fm=(y;n;y)^^ =[[B0E0]] j2j(xj;mj;j); fn0=^ k2k(yk;nk;k);

anenvironment. Then[[E1(X(X;M)=fM)E2(Y(Y;N0)=fN)E3]] 170f0M=^ =[[E1(X(X;M)=f0M)E2(Y(Y;N0)=fN)E3]]. k2k(yk;nk;yk)^^ j2j(xj;mj;j); AppendixA.Appendix XXm=^ Form2Mandn2NE4containstheequations systemse4ande5. Proof:TransformbothequationsystemstoinniteBooleanequation n2y(m)yn^^j2j^ alltheyn,andgettingthenewequation stitutionstepsintheinnitebooleanequationsysteme4substituting ine4.accordingtolemmata9.3,6.3wecanapplyinnitelymanysub- YYn=^ k2k^ n02k(n)yk;n0t2j(m)xj;tand ThisisanequationoftheinniteBooleanequationsystemE5. XXm=^ n2y(m)^ k2k^ n02(ky)(m)yk;n0^^j2j^ k2k^ n02k(n)yk;n0^^j2j^ Lemma9.10Let E1andE2besetbasedBooleanequationsystems, t2j(m)xj;t (X;M)=(X;M;)^Vi2I(Xi;Mi;i)asetbasedBooleanequation, anenvironment,and 0def If=then0=[[E1((X;M)=Vi2I(Xi;Mi;i))E2]]. If=andiswellfoundedthen0isasinthecasefor=, ifisnotwellfoundedthen0((x;m))=false. =[[E1((X;M)=(X;M;)^Vi2I(Xi;Mi;i))E2]]

Proof:Inarststepthesetbasedequationsystemistransformedto aninnitebooleanequationsystem,wherethesetequation (X;M)=(X;M;)^^i2I(Xi;Mi;i) fors2mismappedtoablockbcontainingtheequations A.4.ProofsofChapter9. 171 Xs=^ Theequation (X;M)=^i2I(Xi;Mi;i) ismappedtoablockbinaninnitebooleanequationsystem, s02(s)xs0^^i2i^ containingtheequationss02i(s)zi;s0: Xs=^i2I^ onlyforthecasee1=,i.e.[[be02]]=[[be02]],andaccordingto Wewillabbreviatethe(innite)vectorofallXifori2IbyX. or=wehavetoshowthat[[e01be02]]=[[e01be02]]and LetE01def accordingtolemma3.14wejusthavetoshowtheequivalenceabove =T(E1)andE02def s02(i)(s)zi;s0 thedenitionofthesemanticsitsucestoshowthatx:b([[e02]])= X:B([[E02]]) NowwewanttoapplyasubstitutionsteptoeachXs0.ForapplyinginnitelymanysubstitutionswithinblockBweneedproposition 2.17(6)andlemma9.3ratherthanlemma9.9. Xs=^ =^ s002((s))xs00^^i2i^ s02((s))xs0^^i2i^ s02(s)(^ s002(s0)xs00^^i2i^ s02((i)[i)(s)zi;s0 s002(i)(s)zi;s00^^i2i^ s002i(s0)zi;s00)^^i2i^ s02i(s)zi;s0 =T(E2).Forthecasesthatiswellfounded :::applyingthesesubstitutionstepslog2(n)times

172 LettheseequationsbecollectedinablockBnforn22m;m2IN Itfollowsfromproposition2.17(6)that[[BnE02]]=[[BE02]]forall =^ s02n(s))xs0^^i2is02(i(0[1[:::n 1))(s)Zi;s0 ^AppendixA.Appendix soldef soldef Bn. Dene bdef bdef b=x:bn([[e]]02) anditfollowsthat =[[BE02]] =X:B([[E02]] =X:B([[E02]] Weabbreviatesol[X=b](Xs)bybsandsol[X=B(sol)](Xs)by b=b(sol),andalsosol=[[b]]solandb=b(sol) Withlemmata3.19and3.20itisthecasethatsol=[[B]]soland ShownowX:B(sol)=b (i)becauseinbthereisnofreexsontheright-handside,itisthe Itsucestoshowthatb=bandforthatpurposeweshowthat (2)impliesthatB([[E]]02[X=b])=bandhencebb. (1)X:B(sol)=band(2)X:B(sol)=b (1)impliesthatB([[E]]02[X=b])=bandhencebb, (B(sol))(Xs),andanalogouslyforbandB.Nowweassume=. casethatx:b(sol)=b(sol) IfforB(sol)andanequationXs=Vi2IVs02(i)(s)Zi;s0inB wehavethat(vi2ivs02(i)(s)zi;s0)(sol)=falsethenthereforsome Zi;s0itmustbethatsol(Zi;s0)=false.ThenwecanndaBn,where theequationforxshasthiszi;s0onitsright-handsideandalso (Bn(sol))(Xs)=falseandhencewehavealso(X:Bn(sol))(Xs)= (ii)deneb0def Assumethat(X:B(sol))(Xs)=false. falseandalso(x:b(sol))(xs)=bs=false.thereforeisbb(sol). =trueiandb+1def =B(sol[X=b]).

If>1thentheremustbeaX0sforsomes02(s)withsol(Xs0)= sol(zi;s0)=false.butthenitisalso(b(sol))(xs)=false. If=1thentheremustbeaZi;s0forsomei2I,s02i(s),where Xs.) suchthatbs=falseandb 1 Showthatthenalso(B(sol))(Xs)=false.Thentheremustbesome A.4.ProofsofChapter9. s=true.(iscalledthesignatureof 173 falseandhenceb(sol)b. Altogetherfrom(X:B(sol))(Xs)=falsefollowsthat(B(sol))(Xs)= From(i)and(ii)wecanconcludethatB(sol)=b Henceitis(B(sol))(Xs)=false. forsomei2i,s02(in)(s),forsomen,suchthatsol(zi;s0)=false. falseandx0shavingasignature0<.applyingthisargumentrepeatedlythenthesignatureeventuallyreaches0,andthenwehaveazi;s0 Whenshowingthatb=B(sol)applythesameargumentsasabove tosolinsteadofsol.from(i)followsthenthatx:b(sol)b, andletbeitssignature.foralls002(s0)xs00mustbetrueand B(sol[X=b]).AssumeanXs0beingtrueattheleastxpoint Ifisnotwellfoundedthendeneb0=falseIandb+1= existssomen2insuchthatn(s)=;andtheequivalenceofbnand Bfollowsimmediately. Forthecase=notethatifiswellfoundedforeachS2Mthere from(ii)thatbx:b(sol). notwellfoundedwecanndaninnitechainofdecreasingsignatures, whichisacontradiction. havealowersignature.repeatthisargumentforxs00.becauseis

174 AppendixA.Appendix

Bibliography [AKM95]S.Ambler,M.Kwiatkowska,andN.Measor.Dualityand [AC88]A.ArnoldandP.Crubille.Alinearalgorithmtosolve [And92]H.R.Andersen.Modelcheckingandbooleangraphs.In ComputerScience,151(1):3{27,1995. ProcessingLetters,29:57{66,1988. thecompletenessofthemodalmu-calculus.theoretical xed-pointequationsontransitionsystems.information [And94a]H.R.Andersen.Modelcheckingandbooleangraphs.TheoreticalComputerScience,126(1):3{30,1994currentsystems.PhDthesis,AarhusUniversity,1993ence,1992. ESOP'92,volume582ofLectureNotesonComputerSci- Proceedingsof4thEuropeanSymposiumonProgramming, [And93]H.R.Andersen.Vericationoftemporalpropertiesofcon- [And94b]H.R.Andersen.Onmodelcheckinginnite-statesystems. [BC96]G.BhatandR.Cleaveland.Ecientlocalmodel-checking [BCM+92]J.R.Burch,E.M.Clarke,K.L.McMillan,D.L.Dill,and ComputerScience,pages8{17.Springer,1994. InProceedingsofLFCS'94,volume813ofLectureNotesin forfragmentsofthemodal-calculus.inproceedingsof TACAS'96,volume1055ofLectureNotesinComputerScience,pages107{126.Springer,1996. 1992. yond.informationandcomputation,98(2):142{170,june L.J.Hwang.Symbolicmodelchecking:1020statesandbe-

176 [BK95]M.BonsangueandM.Kwiatkowska.Re-interpretingthe [Bek84]H.Bekic.HansBekic:ProgrammingLanguagesandTheir Denition,volume177ofLectureNotesinComputerScience,chapterDenableoperationsingeneralalgebras,and thetheoryofautomataandowcharts.springer,1984. modal-calculus.inmodallogicandprocessalgebra, Bibliography [Boc70]I.M.Bochenski.AHistoryofFormalLogic.ChelseaPublishingCompany,NewYork,secondedition,1970. Birkhauser,1992. 342/12/93A,TechnischeUniversitatMunchen,1993. [BM93]D.BarnardandA.Mader.Modelcheckingforthemodal mu-calculususinggauelimination.technischerbericht CSLILectureNotes,pages65{83,1995. [Bra92]J.C.Bradeld.VerifyingTemporalPropertiesofSystems. [Bra96]J.C.Bradeld.Themodalmu-calculusalternationhierarchyisstrict.InProceedingsofCONCUR'96,volume 1119ofLectureNotesinComputerScience,pages233{246. [Bri96]E.Brinksma.personalcommunication.1996. [Bry86]R.E.Bryant.GraphbasedalgorithmsforBooleanfunc- Springer,1996. 35(8):677{691,1986. tionmanipulation.ieetransactionsoncomputers,c- [BVW94]O.Bernholtz,M.Y.Vardi,andP.Wolper.Anautomatatheoreticapproachtobranching-timemodelchecking.Itiesofprocesses.InProceedingsofCONCUR`90,volume [BS91]J.BradeldandC.Stirling.Localmodelcheckingforin- [BS90]J.C.BradeldandC.Stirling.Verifyingtemporalproper- nitestatespaces.theoreticalcomputerscience,1991. Springer,1990. ProceedingsofCAV'94,volume818ofLectureNotesin 458ofLectureNotesinComputerScience,pages115{125. ComputerScience,pages142{155.Springer,1994.

[CE81]E.M.ClarkeandE.A.Emerson.Designandsynthesisof Bibliography [CES86]E.M.Clarke,E.A.Emerson,andA.P.Sistla.Automatic synchronisationskeletonsusingbranchingtimetemporal pages52{71.springer,1981. vericationofnite-stateconcurrentsystemsusingtem- logic.volume131oflecturenotesincomputerscience, 177 [CKS92]R.Cleaveland,M.Klein,andB.Steen.Fastermodel minglanguagesandsystems,8:244{263,1986. porallogicspecications.acmtransactionsonprogram- [Cle90]R.Cleaveland.Tableau-basedmodelcheckinginthepropositionalmu-calculus.ActaInformatica,27:725{747,1990. Springer,1992. andd.k.probst,editors,proceedingsofcav'92,volume 663ofLectureNotesinComputerScience,pages410{422. checkingforthemodalmu-calculus.ing.v.bochmann [CS91]R.CleavelandandB.Steen.Alineartimemodel-checking [DP90]B.DaveyandH.Priestley.Introductiontolatticesand [Dam92]M.Dam.CTL*andECTL*asfragmentsofthemodalcalculus.Technicalreport,UniversityofEdinburgh,June cation,2:79{92,july1991. ceedingsofthethirdworkshoponcomputeraidedveri- algorithmforthealternationfreemodalmu-calculus.pro- 1992. [EH86]E.A.EmersonandJ.Halpern.\sometimes"and\not [EJ88]E.A.EmersonandC.S.Jutla.Thecomplexityoftreeautomataandlogicsofprograms.InProceedingsofthe29th 368{377,1991. anddeterminacy.inproceedingsofthe32ndfocs,pages order.cambridgeuniversitypress,1990. [EJ91]E.A.EmersonandC.S.Jutla.Treeautomata,mu-calculus never"revisited:onbranchingversuslineartime.journal oftheacm,33:151{178,1986. IEEEFOCS,pages328{337,1988.

[EL86]A.EmersonandC.Lei.Ecientmodelcheckinginfragmentsofthepropositionalmu-calculus.Proceedingsof Springer,1993. fragmentsof-calculus.inproceedingsofcav'93,volume 697ofLectureNotesinComputerScience,pages385{396. Bibliography 178 [EJS93]E.Emerson,C.Jutla,andA.Sistla.Onmodelcheckingfor [Eme96]E.Emerson.LogicsforConcurrency,volume1043ofLec- [Eme91]E.A.Emerson.Temporalandmodallogic.InJ.van ence,volumeb.elsevier/north-holland,1991. Leuwen,editor,HandbookofTheoreticalComputerSci- 1stAnnualSymposiumonLogicinComputerScience, poralreasoningaboutreactivesystems,pages41{101. turenotesincomputerscience,chapterautomatedtem- LICS'86,pages267{278,1986. [Flo67]R.Floyd.Assigningmeaningstoprograms.InJ.T. [EN94]J.EsparzaandM.Nielsen.DecidabilityissuesforPetri 160,1994. Schwartz,editor,MathematicalAspectsofComputerScience,pages19{32.AmericanMathematicalSociety,1967. ofregularprograms.journalofcomputerandsystemscience,18:194{211,1979. nets-asurvey.j.inform.process.cybernet.,30(3):143{ Springer,1996. [HM85]M.HennessyandR.Milner.Algebraiclawsfornondeterminismandconcurrency.JournaloftheACM,32:137{162, 1985. ming.communicationoftheacm,12:576{580,1969. ComputerScience,74:239{248,1990. [FR79]M.J.FischerandLadnerR.E.Propositionaldynamiclogic [Har95]C.Hartonas.Stonedualityformodal-logics.1995. [Hut90]H.Huttel.SnScanbemodallycharacterized.Theoretical [Hoa69]C.A.R.Hoare.Anaxiomaticbasisforcomputerprogram- [Kai96]R.Kaivola.Usingautomatatocharacterisexedpointtemporallogics.PhDthesis,UniversityofEdinburgh,1996.

[Koz83]D.Kozen.Resultsonthepropositionalmu-calculus.The- substitutions.1996.submittedforpublication. 179 [KM]E.KindlerandA.Mader.Trappingfairness.toappear. [Kal96]K.Kalorkoti.Modelcheckinginthemodal-calculusby BibliographyoreticalComputerScience,27:333{354,1983. [KP83]D.KozenandR.Parikh.Adecisionprocedureforthe [KW97]E.KindlerandR.Walter.Mutexneedsfairness.InformationProcessingLetters,62(31{39),1997ingsofCAV'92,volume663ofLectureNotesinComputer Science.Springer,1992. recursion.inproceedingsofcaap'88,volume299oflec- [Koz88]D.Kozen.Anitemodeltheoremforthepropositional [Lar92]K.Larsen.Ecientlocalcorrectnesschecking.InProceed- Programs,1983. propositional-calculus.insecondworkshoponlogicsof -calculus.studialogica,47:233{241,1988. [Lar95]K.G.Larsen.ProofsystemforHennessy{Milnerlogicwith [Len96]G.Lenzi.Ahierarchytheoremforthe-calculus.InProceedingsofICALP'96,volume1099ofLectureNotesin Animprovedalgorithmfortheevaluationofxpointexpressions.InProceedingsof6thInternationalConference ofcomputer-aidedverication,cav'94,volume818of [LBC+94]D.Long,A.Browne,E.Clarke,S.Jha,andW.Marrero. LectureNotesinComputerScience,pages338{350,1994. turenotesincomputerscience,pages215{230,1995. [LNS82]J.-L.Lassez,V.L.Nguyen,andE.A.Sonenberg.Fixed [Lin88]P.Lindsay.Onalternating!-automata.JournalofComputerandSystemSciences,36:16{24,1988. pointtheoremsandsemantics:afolktale.information volume663oflecturenotesincomputerscience,pages [Mad92]A.Mader.Tableaurecycling.InProceedingsofCAV'92, ComputerScience,pages87{97.Springer,1996. ProcessingLetters,14(3):112{116,May1982. 330{342.Springer,1992.

[Mil89]R.Milner.CommunicationandConcurrency.Prentice 180 [Mad95]A.Mader.Modal-calculus,modelcheckingandGau LectureNotesinComputerScience,pages72{88.Springer, elimination.inproceedingsoftacas'95,volume1019of 1995. Hall,1989. Bibliography [MP69]Z.MannaandA.Pnueli.Formalizationofpropertiesof [MP83]Z.MannaandA.Pnueli.Howtocookatemporalproof recursivelydenedfunctions.inproceedingsoftheacm SymposiumonTheoryofComputing,pages201{210,1969. [Niw88]D.Niwinski.Fixed-pointsvs.innitegeneration.InPro- [Niw86]D.Niwinski.Onxedpointclones.InProceedingsofthe ACMonPrinciplesofProgrammingLanguages,pages141{ Science,pages402{409.Springer,1986. 13thICALP,volume226ofLectureNotesinComputer systemforyourpetlanguage.inproceedingsofthe10th puterscience,pages402{409,1988. ceedingsofthethirdieeesymposiumonlogicincom- 154,1983. [Par70]D.M.R.Park.Fixpointinductionandproofofprogram [Pra76]V.Pratt.SemanticalconsiderationsofFloyd-Hoarelogic. [Ros96]P.Rossmanith.personalcommunication.1996. [Rud74]S.Rudeanu.BooleanFunctionsandEquations.North- InProceedingsofthe1stIEEESymposiumonFoundations ofcomputerscience,pages109{121,1976. semantics.machineintelligence,5:59{78,1970. [SE84]R.S.StreettandE.A.Emerson.Anautomatatheoretic [Sti93]C.Stirling.Modalandtemporallogics.InS.Abramsky, HollandPublishingCompany,1974. decisionprocedureforthepropositionalmu-calculus.informationandcomputation,81:249{264,1984. D.Gabbay,andT.Maibaum,editors,HandbookofLogic incomputerscience,volume2,pages447{463.oxford UniversityPress,1993.

[Sti96]C.Stirling.Modelcheckingandothergames.Notesfor [Str81]R.S.Street.Propositionaldynamiclogicofloopingand Bibliographymathtworkshoponnitemodeltheory,Universityof Wales,Swansea,1996. Computing,pages375{383,1981. converse.inproceedings13thsymposiumontheoryof 181 [Str82]R.S.Street.Propositionaldynamiclogicofloopingand [SW89]C.StirlingandD.Walker.Localmodelcheckinginthe [Tar55]A.Tarski.Alatticetheoreticalxpointtheoremandits modalmu-calculus.inj.dazandf.orejas,editors, ComputerScience,pages369{383,1989. ProceedingsofTAPSOFT,volume351ofLectureNotesin 54:121{141,1982. converseiselementarydecidable.informationandcontrol, [Var95]M.Y.Vardi.ComputerScienceToday.RecentTrendsand [Tho90]W.Thomas.HandbookofTheoreticalComputerScience, 191.Elsevier/North-Holland,1990. volume2,chapterautomataoninniteobjects,pages133{ 1955. Developments.,volume1000ofLectureNotesinComputer applications.pacicjournalofmathematics,5:285{309, [VL92]B.VergauwenandJ.Lewi.Alinearalgorithmforsolvingxed-pointequationsontransitionsystems.InJ.-C. Science,chapterAlternatingautomataandprogramveri- [Ver95]B.Vergauwen.manuscript.1995. AlgebraandProgramming,CAAP'92,volume581ofLectureNotesinComputerScience,pages322{341.Springer, cation,pages471{484.springer,1995. Raoult,editor,Proceedingsof17thColloquiumonTreesin [VL94]B.VergauwenandJ.Lewi.Ecientlocalcorrectness 1992. tems.inproceedingsoficalp'94,volume820oflecture checkingforsingleandalternatingbooleanequationsys- 1994. NotesinArticialIntelligence,pages302{315.Springer,

[Vog96]W.Vogler.Eciencyofasynchronoussystemsandread 182 [VLAP94]B.Vergauwen,J.Lewi,I.Avau,andA.Pote.Ecientcomputationofnestedx-pointswithapplicationstomodel Bibliography checking.ind.gabbayandh.j.ohlbach,editors,pro- cialintelligence,pages165{179.springer,1994. ceedingsofictl'94,volume827oflecturenotesinarti- [VW83]M.VardiandP.Wolper.Yetanotherprocesslogic.InProceedingsoftheWorkshoponLogicsofPrograms,volume [Wal91]D.Walker.AutomatedanalysisofmutualexclusionalgorithmsusingCCS.TechnicalReportECS-LFCS-89-91, 1996. arcsinpetrinets.technicalreport,universitataugsburg, [Wal93]F.Wallner.EinlokalermodelcheckermitGau- Springer,1983. Elimination.Fortgeschrittenenpraktikum,1993. UniversityofEdinburgh,1991. 164ofLectureNotesinComputerScience,pages501{512. [Wal94]F.Wallner.ModelCheckingimModalen-Kalkul [Wal95a]R.Walter.PetrinetzmodelleverteilterAlgorithmen,volume2ofEditionVersal.BertzVerlag,1995.Dissertation. ofthepropositional-calculus.inproceedingsoflics'95, marbeit. [Wal95b]I.Walukiewicz.CompletenessofKozen'saxiomatization furunendlichesystememithilfesymbolischergau- Elimination.Master'sthesis,TUMunchen,1994.Diplo- [ZSS94]S.Zhang,O.Sokolsky,andS.A.Smolka.Ontheparallel [Win89]G.Winskel.Anoteonmodelcheckingthemodalcalculus.InG.Ausiello,M.Dezani-Ciancaglini,and complexityofmodelcheckinginthemodalmu-calculus. S.RonchiDellaRocca,editors,Proceedingsof16thICALP, InProceedingsofthe9thIEEESymposiumonLogicin volume372oflecturenotesincomputerscience,pages 761{772,1989. ComputerScience,pages154{163,1994.