On some Constructions of Shapeless Quasigroups
|
|
|
- Percival Norman
- 10 years ago
- Views:
Transcription
1 Aleksandra Mileva 1 and Smile Markovski 2 1 Faculty of Computer Science, University Goce Delčev, Štip 2 Faculty of Computer Science and Computer Engineering, University Ss. Cyril and Methodius - Skopje Republic of Macedonia Loops 11 July 25-27, Třešt, Czech Republic
2 Motivation Today, we can already speak about quasigroup based cryptography, because the number of new defined cryptographic primitives that use quasigroups is growing up: stream cipher EDON-80 (Gligoroski et al. (estream 2008)), hash functions EDON-R (Gligoroski et al. (SHA )) and NaSHA (Markovski and Mileva (SHA )), digital signature algorithm MQQ-DSA (Gligoroski et al. (ACAM 2008)), public key cryptosystem LQLP-s (for s {104, 128, 160}) (Markovski et al. (SCC 2010)), etc.
3 Motivation Different authors seek quasigroups with different properties. Definition (Gligoroski et al (2006)) A quasigroup (Q, ) of order r is said to be shapeless iff it is non-idempotent, non-commutative, non-associative, it does not have neither left nor right unit, it does not contain proper sub-quasigroups, and there is no k < 2r such that identities of the kinds x (x (x y)) = y, y = ((y x) x) x } {{ } } {{ } k k (1)
4 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
5 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
6 Complete mappings and orthomorphisms Definition (Mann (1949), Johnson et al (1961), Evans (1989)) A complete mapping of a quasigroup (group) (G, +) is a permutation φ : G G such that the mapping θ : G G defined by θ(x) = x + φ(x) (θ = I + φ, where I is the identity mapping) is again a permutation of G. The mapping θ is the orthomorphism associated to the complete mapping φ. A quasigroup (group) G is admissible if there is a complete mapping φ : G G.
7 Complete mappings and orthomorphisms If θ is the orthomorphism associated to the complete mapping φ, then φ is the orthomorphism associated to the complete mapping θ, The inverse of the complete mapping (orthomorphism) is also a complete mapping (orthomorphism) (Johnson et al (1961)), Two orthomorphisms θ 1 and θ 2 of G are said to be orthogonal if and only if θ 1 θ 1 2 is an orthomorphism of G too. Even more, every orthomorphism is orthogonal to I and θ 1 is orthogonal to θ if and only if θ 2 is an orthomorphism (Johnson et al (1961))
8 Sade s Diagonal method (Sade (1957)) Consider the group (Z n, +) and let θ be a permutation of the set Z n, such that φ(x) = x θ(x) is also a permutation. Define an operation on Z n by: x y = θ(x y) + y (2) where x, y Z n. Then (Z n, ) is a quasigroup (and we say that (Z n, ) is derived by θ).
9 Generalization Theorem Let φ be a complete mapping of the admissible group (G, +) and let θ be an orthomorphism associated to φ. Define operations and on G by x y = φ(y x) + y = θ(y x) + x, (3) x y = θ(x y) + y = φ(x y) + x, (4) where x, y G. Then (G, ) and (G, ) are quasigroups, opposite to each other, i.e., x y = y x for every x, y G.
10 Quasigroup conjugates Theorem Let φ : G G be a complete mapping of the abelian group (G, +) with associated orthomorphism θ : G G. Then all the conjugates of the quasigroup (G, ) can be obtain by the equation (4) and the following statements are true. a) The quasigroup (G, /) is derived by the orthomorphism θ 1 associated to the complete mapping φθ 1. b) The quasigroup (G, \) is derived by the orthomorphism θ( φ) 1 associated to the complete mapping ( φ) 1. c) The quasigroup (G, //) is derived by the orthomorphism φ( θ) 1 associated to the complete mapping ( θ) 1. d) The quasigroup (G, \\) is derived by the orthomorphism φ 1 associated to the complete mapping θφ 1. e) (G, ) = (G, ).
11 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
12 If θ(0) 0 then the quasigroup (G, ) has no idempotent elements. (G, ) does not have a left unit and if θ is different to the identity mapping it does not have a right unit either. (G, ) is non-associative quasigroup. If θ(z) θ( z) z for some z G then (G, ) is non-commutative quasigroup.
13 The identity holds true in (G, ) iff θ l = I. The identity y = ((y x)... ) x } {{ } l x ( (x y)) = y } {{ } l holds true in (G, ) iff ( φ) l = I = (I θ) l.
14 If θ has a cycle containing 0 of length greater than G /2, then the quasigroup (G, ) cannot have a proper subquasigroup. The quasigroup (G, ) is without a proper subquasigroup if S G /2, where S = i=p+1 i=1 i=p+1 i=1 {θ i (0)} {λ i (0)} i=p+1 i=1 i=p+1 i=1 {θ(0) + θ i (0)} {λ(0) + λ i (0)} p = [ G /2] and λ = θ( φ) 1. i=p+1 i=1 i=p+1 i=1 {θ( θ i (0)) + θ i (0)} {λ( λ i (0)) + λ i (0)},
15 ((x x)... ) x = θ l (0) + x, } {{ } x ( (x x)) = ( φ) l (0) + x. } {{ } (5) l l ((x/ x)/... )/x = (θ 1 ) l (0) + x, } {{ } x/(... (x /x)) = (φθ 1 ) l (0) + x, } {{ } (6) l l ((x\x) \... ) \ x = ( θ( φ) 1 ) l (0)+x, x \ ( \ (x \x)) = (( φ) 1 ) l (0)+x, } {{ } } {{ } l l ((x// x)//... )//x } {{ } l ((x \\ x) \\... ) \\x } {{ } l (7) = ( φ( θ) 1 ) l (0)+x, x//(... //(x //x)) = ( ( θ) 1 ) l (0)+x, } {{ } l (8) = ( φ 1 ) l (0) + x, x \\( \\(x \\ x)) = (θφ 1 ) l (0) + x. } {{ } l (9)
16 (G, ) as an shapeless quasigroup Theorem Let θ be an orthomorphism of the abelian group (G, +), and let (G, ) be a quasigroup derived by θ by the equation (4). If θ is with the following properties: a) θ(0) 0 b) θ k I for all k < 2 G c) (I θ) k I for all k < 2 G d) θ(z) θ( Z) Z for some Z G e) S G /2, then (G, ) is a shapeless quasigroup.
17 Example of a shapeless quasigroup The abelian group (Z2 4, ) is given. x θ(x) φ(x) = x θ(x) We define the quasigroup operation as x y = θ(x y) y
18 Example of a shapeless quasigroup
19 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
20 Different generalizations of the Feistel Network Feistel Networks are introduced by H. Feistel (Scientific American, 1973). Parameterized Feistel Network (PFN) (Markovski and Mileva (QRS 2009)), Extended Feistel networks type-1, type-2 and type-3 (Zheng et al (CRYPTO 1989)), Generalized Feistel-Non Linear Feedback Shift Register (GF-NLFSR) (Choy et al (ACISP 2009)). We will redefine the last two generalizations with parameters and over abelian groups.
21 Parameterized Feistel Network (PFN) Definition Let (G, +) be an abelian group, let f : G G be a mapping and let A, B, C G are constants. The Parameterized Feistel Network F A,B,C : G 2 G 2 created by f is defined for every l, r G by F A,B,C (l, r) = (r + A, l + B + f (r + C)).
22 Parameterized Feistel Network (PFN) In (Markovski and Mileva (QRS 2009)) is shown that if starting mapping f is bijection, the Parameterized Feistel Network F A,B,C and its square F 2 A,B,C are orthomorphisms of the group (G 2, +). More over, they are orthogonal orthomorphisms.
23 Parameterized Extended Feistel Network (PEFN) type-1 Definition Let (G, +) be an abelian group, let f : G G be a mapping, let A 1, A 2,..., A n+1 G are constants and let n > 1 be an integer. The Parameterized Extended Feistel Network (PEFN) type-1 F A1,A 2,...,A n+1 : G n G n created by f is defined for every (x 1, x 2,..., x n ) G n by F A1,A 2,...,A n+1 (x 1, x 2,..., x n ) = (x 2 + f (x 1 + A 1 ) + A 2, x 3 + A 3,..., x n + A n, x 1 + A n+1 ).
24 Parameterized Extended Feistel Network (PEFN) type-1
25 Parameterized Extended Feistel Network (PEFN) type-1 Theorem Let (G, +) be an abelian group, let n > 1 be an integer and A 1, A 2,..., A n+1 G. If F A1,A 2,...,A n+1 : G n G n is a PEFN type-1 created by a bijection f : G G, then F A1,A 2,...,A n+1 is an orthomorphism of the group (G n, +).
26 Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR) Definition Let (G, +) be an abelian group, let f : G G be a mapping, let A 1, A 2,..., A n+1 G are constants and let n > 1 be an integer. The Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR) F A1,A 2,...,A n+1 : G n G n created by f is defined for every (x 1, x 2,..., x n ) G n by F A1,A 2,...,A n+1 (x 1, x 2,..., x n ) = (x 2 + A 1, x 3 + A 2,..., x n + A n 1, x x n + A n + f (x 1 + A n+1 )).
27 Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR)
28 Parameterized Generalized Feistel-Non Linear Feedback Shift Register (PGF-NLFSR) Theorem Let we use the abelian group (Z m 2, ), let n = 2k be an integer and A 1, A 2,..., A n+1 Z m 2. If F A 1,A 2,...,A n+1 : (Z m 2 )n (Z m 2 )n is a PGF-NLFSR created by a bijection f : Z m 2 Zm 2, then is an orthomorphism of the group ((Z m 2 )n, ). F A1,A 2,...,A n+1
29 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
30 Quasigroups derived by the PFN F A,B,C Proposition Let (G, +) be an abelian group and let f : G G be a bijection. Let F A,B,C be a Parameterized Feistel Network created by f, and let (G 2, ) be a quasigroup derived by F A,B,C by the equation (4). If F A,B,C is with the following properties: a)a 0 or B f (C) b) F k A,B,C I for all k < 2 G 2 c) (I F A,B,C ) k I for all k < 2 G 2 d) S G 2 /2, then (G 2, ) is a shapeless quasigroup.
31 Quasigroups derived by the PFN F A,B,C We made a m-file in MatLab that produce a starting bijection f : Z2 n Z 2 n and parameters A, B and C for the orthomorphism PFN F A,B,C which produce a shapeless quasigroup. The group operation is XOR. For n = 3, 4, 5, 6 execution time is less than a minute and for n = 7 is less than five minutes. These results correspond to shapeless quasigroups of order 2 6, 2 8, 2 10, 2 12 and 2 14.
32 Quasigroups derived by the PEFN type-1 F A1,A 2,...,A n+1 Proposition Let (G, +) be an abelian group, let n > 1 be an integer, let A 1, A 2,..., A n+1 G and let f : G G be a bijection. Let F A1,A 2,...,A n+1 be a PEFN type-1 created by f, and let (G n, ) be a quasigroup derived by F A1,A 2,...,A n+1 by the equation (4). If F A1,A 2,...,A n+1 is with the following properties: a)a i 0 for some i {3, 4,..., n + 1} or A 2 f (A 1) b) FA k 1,A 2,...,A n+1 I for all k < 2 G n c) (I F A1,A 2,...,A n+1 ) k I for all k < 2 G n d) S G n /2, then (G n, ) is a shapeless quasigroup.
33 Quasigroups derived by the PGF-NLFSR F A1,A 2,...,A n+1 Proposition Let we use the abelian group (Z m 2, ), let n = 2k be an integer, let A 1, A 2,..., A n+1 Z m 2 and let f : Z m 2 Z m 2 be a bijection. Let F A1,A 2,...,A n+1 be a PGF-NLFSR created by f, and let ((Z m 2 ) n, ) be a quasigroup derived by F A1,A 2,...,A n+1 by the equation (4). If F A1,A 2,...,A n+1 is with the following properties: a) A i 0 for some i {1, 2,..., n 1} or A n f (A n+1) b) F k A 1,A 2,...,A n+1 I for all k < 2 G n c) (I F A1,A 2,...,A n+1 ) k I for all k < 2 G n d) S G n /2, then ((Z m 2 ) n, ) is a shapeless quasigroup.
34 1 2 3 Different generalizations of the Feistel Network as orthomorphisms 4 5
35 We give some constructions of shapeless quasigroups of different orders by using quasigroups produced by diagonal method from orthomorphisms. We show that PEFN type-1 produced by a bijection is an orthomorphism of the abelian group (G n, +) and that PGF-NLFSR produced by a bijection is an orthomorphism of the ((Z m 2 )n, ). Also, we parameterized these orthomorphisms for the need of cryptography, so we can work with different quasigroups in every iterations of the future cryptographic primitives.
36 THANKS FOR YOUR ATTENTION!!!
arxiv:1010.3163v1 [cs.cr] 15 Oct 2010
The Digital Signature Scheme MQQ-SIG Intellectual Property Statement and Technical Description 10 October 2010 Danilo Gligoroski 1 and Svein Johan Knapskog 2 and Smile Markovski 3 and Rune Steinsmo Ødegård
(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),
2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of
Groups in Cryptography
Groups in Cryptography Çetin Kaya Koç http://cs.ucsb.edu/~koc/cs178 [email protected] Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2013 1 / 13 Groups in Cryptography A set S and a binary
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur
Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)
Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives
CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash
Lukasz Pater CMMS Administrator and Developer
Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign
A NOVEL STRATEGY TO PROVIDE SECURE CHANNEL OVER WIRELESS TO WIRE COMMUNICATION
A NOVEL STRATEGY TO PROVIDE SECURE CHANNEL OVER WIRELESS TO WIRE COMMUNICATION Prof. Dr. Alaa Hussain Al- Hamami, Amman Arab University for Graduate Studies [email protected] Dr. Mohammad Alaa Al-
EXAM questions for the course TTM4135 - Information Security May 2013. Part 1
EXAM questions for the course TTM4135 - Information Security May 2013 Part 1 This part consists of 5 questions all from one common topic. The number of maximal points for every correctly answered question
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer
Overview of Cryptographic Tools for Data Security. Murat Kantarcioglu
UT DALLAS Erik Jonsson School of Engineering & Computer Science Overview of Cryptographic Tools for Data Security Murat Kantarcioglu Pag. 1 Purdue University Cryptographic Primitives We will discuss the
On the Influence of the Algebraic Degree of the Algebraic Degree of
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 1, JANUARY 2013 691 On the Influence of the Algebraic Degree of the Algebraic Degree of Christina Boura and Anne Canteaut on Abstract We present a
Network Security Technology Network Management
COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission
Cryptography and Network Security Chapter 3
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 3 Block Ciphers and the Data Encryption Standard All the afternoon
Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002
Secret File Sharing Techniques using AES algorithm C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 1. Feature Overview The Advanced Encryption Standard (AES) feature adds support
Finite dimensional C -algebras
Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n
CS 758: Cryptography / Network Security
CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: [email protected] my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html
Cryptography and Network Security
Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard
A NEW HASH ALGORITHM: Khichidi-1
A NEW HASH ALGORITHM: Khichidi-1 Abstract This is a technical document describing a new hash algorithm called Khichidi-1 and has been written in response to a Hash competition (SHA-3) called by National
A Factoring and Discrete Logarithm based Cryptosystem
Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques
Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures
Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch
CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher
ss. Cyril and Methodius University Faculty of Computer Science and Engineering Skopje, Macedonia
ss. Cyril and Methodius University Faculty of Computer Science and Engineering Skopje, Macedonia Prof. Dimitar Trajanov, THE UNIVERSITY Ss. Cyril and Methodius University in Skopje is oldest and the biggest
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Textbooks: Matt Bishop, Introduction to Computer Security, Addison-Wesley, November 5, 2004, ISBN 0-321-24744-2.
CSET 4850 Computer Network Security (4 semester credit hours) CSET Elective IT Elective Current Catalog Description: Theory and practice of network security. Topics include firewalls, Windows, UNIX and
Abstract Algebra Cheat Sheet
Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide
Prof. Jadranka Dabovic - Anastasovska, PhD Ass. Neda Zdraveva, MSci. Faculty of Law Iustinianus Primus Skopje
Teaching Intellectual Property at Law Schools in the Republic of Macedonia Prof. Jadranka Dabovic - Anastasovska, PhD Ass. Neda Zdraveva, MSci Faculty of Law Iustinianus Primus Skopje On the roots. Introduced
Lecture 9: Application of Cryptography
Lecture topics Cryptography basics Using SSL to secure communication links in J2EE programs Programmatic use of cryptography in Java Cryptography basics Encryption Transformation of data into a form that
Network Security: Cryptography CS/SS G513 S.K. Sahay
Network Security: Cryptography CS/SS G513 S.K. Sahay BITS-Pilani, K.K. Birla Goa Campus, Goa S.K. Sahay Network Security: Cryptography 1 Introduction Network security: measure to protect data/information
INFORMATION SECURITY A MULTIDISCIPLINARY. Stig F. Mjolsnes INTRODUCTION TO. Norwegian University ofscience & Technology. CRC Press
DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN A MULTIDISCIPLINARY INTRODUCTION TO INFORMATION SECURITY Stig F. Mjolsnes Norwegian University ofscience & Technology Trondheim
VALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE (A member of SRM Institution) SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year and Semester : I / II Section : 1 Subject Code : NE7202
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION
EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Solutions to Problem Set 1
YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose
Elements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
Group Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay
Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Computer Security: Principles and Practice
Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography
Public Key Cryptography and RSA. Review: Number Theory Basics
Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
CIS433/533 - Computer and Network Security Cryptography
CIS433/533 - Computer and Network Security Cryptography Professor Kevin Butler Winter 2011 Computer and Information Science A historical moment Mary Queen of Scots is being held by Queen Elizabeth and
Chapter 7: Products and quotients
Chapter 7: Products and quotients Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 7: Products
Network Security. Gaurav Naik Gus Anderson. College of Engineering. Drexel University, Philadelphia, PA. Drexel University. College of Engineering
Network Security Gaurav Naik Gus Anderson, Philadelphia, PA Lectures on Network Security Feb 12 (Today!): Public Key Crypto, Hash Functions, Digital Signatures, and the Public Key Infrastructure Feb 14:
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Lecture 4 Data Encryption Standard (DES)
Lecture 4 Data Encryption Standard (DES) 1 Block Ciphers Map n-bit plaintext blocks to n-bit ciphertext blocks (n = block length). For n-bit plaintext and ciphertext blocks and a fixed key, the encryption
Cryptography and Network Security, PART IV: Reviews, Patches, and11.2012 Theory 1 / 53
Cryptography and Network Security, PART IV: Reviews, Patches, and Theory Timo Karvi 11.2012 Cryptography and Network Security, PART IV: Reviews, Patches, and11.2012 Theory 1 / 53 Key Lengths I The old
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10
with Embedding Degree 10 University of California, Berkeley, USA ANTS-VII, 2006 Outline 1 Introduction 2 The CM Method: The Basic Construction The CM Method: Generating Families of Curves 3 Outline 1 Introduction
Elliptic Curve Cryptography
Elliptic Curve Cryptography Elaine Brow, December 2010 Math 189A: Algebraic Geometry 1. Introduction to Public Key Cryptography To understand the motivation for elliptic curve cryptography, we must first
SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES
www.arpapress.com/volumes/vol8issue1/ijrras_8_1_10.pdf SECURITY IMPROVMENTS TO THE DIFFIE-HELLMAN SCHEMES Malek Jakob Kakish Amman Arab University, Department of Computer Information Systems, P.O.Box 2234,
Talk announcement please consider attending!
Talk announcement please consider attending! Where: Maurer School of Law, Room 335 When: Thursday, Feb 5, 12PM 1:30PM Speaker: Rafael Pass, Associate Professor, Cornell University, Topic: Reasoning Cryptographically
The Advanced Encryption Standard: Four Years On
The Advanced Encryption Standard: Four Years On Matt Robshaw Reader in Information Security Information Security Group Royal Holloway University of London September 21, 2004 The State of the AES 1 The
Implementation of Elliptic Curve Digital Signature Algorithm
Implementation of Elliptic Curve Digital Signature Algorithm Aqeel Khalique Kuldip Singh Sandeep Sood Department of Electronics & Computer Engineering, Indian Institute of Technology Roorkee Roorkee, India
Network Security. Chapter 2 Basics 2.1 Symmetric Cryptography. Cryptographic algorithms: outline. Basic Terms: Block cipher and Stream cipher
Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Cryptographic algorithms: outline Network Security Cryptographic Algorithms Chapter 2 Basics 2.1 Symmetric
Software implementation of the geodatabase model of the Republic of Macedonia
Software implementation of the geodatabase model of the Republic of Macedonia Blagoj Delipetrov 1, Dragan Mihajlov 2, Marjan Delipetrov 3 1,3 University Goce Delcev, 1 Faculty of Informatics, 3 Faculty
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION
FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: [email protected] Every day, millions of people
The Stream Cipher HC-128
The Stream Cipher HC-128 Hongjun Wu Katholieke Universiteit Leuven, ESAT/SCD-COSIC Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium [email protected] Statement 1. HC-128 supports 128-bit
LUC: A New Public Key System
LUC: A New Public Key System Peter J. Smith a and Michael J. J. Lennon b a LUC Partners, Auckland UniServices Ltd, The University of Auckland, Private Bag 92019, Auckland, New Zealand. b Department of
Index Calculation Attacks on RSA Signature and Encryption
Index Calculation Attacks on RSA Signature and Encryption Jean-Sébastien Coron 1, Yvo Desmedt 2, David Naccache 1, Andrew Odlyzko 3, and Julien P. Stern 4 1 Gemplus Card International {jean-sebastien.coron,david.naccache}@gemplus.com
Implementing Network Security Protocols
Implementing Network Security Protocols based on Elliptic Curve Cryptography M. Aydos, E. Savaş, and Ç. K. Koç Electrical & Computer Engineering Oregon State University Corvallis, Oregon 97331, USA {aydos,savas,koc}@ece.orst.edu
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation
CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of
Lesson 9: Radicals and Conjugates
Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
CrypTool. www.cryptool.de www.cryptool.com www.cryptool.org. Claudia Eckert / Thorsten Clausius Bernd Esslinger / Jörg Schneider / Henrik Koy
CrypTool A free software program for creating awareness of IT security issues for learning about and obtaining experience of cryptography for demonstrating encryption algorithms and analysis procedures
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
CRYPTOGRAPHY AND NETWORK SECURITY
CRYPTOGRAPHY AND NETWORK SECURITY PRINCIPLES AND PRACTICE SIXTH EDITION William Stallings International Edition contributions by Mohit P Tahiliani NITK Surathkal PEARSON Boston Columbus Indianapolis New
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES
NEW DIGITAL SIGNATURE PROTOCOL BASED ON ELLIPTIC CURVES Ounasser Abid 1, Jaouad Ettanfouhi 2 and Omar Khadir 3 1,2,3 Laboratory of Mathematics, Cryptography and Mechanics, Department of Mathematics, Fstm,
Digital Signature For Text File
Digital Signature For Text File Ayad Ibrahim Abdulsada Dept. of Computer Science, College of Education, University of Basrah, Basrah, Iraq. E-mail: [email protected] Abstract: Digital signatures
Cryptography and Network Security Block Cipher
Cryptography and Network Security Block Cipher Xiang-Yang Li Modern Private Key Ciphers Stream ciphers The most famous: Vernam cipher Invented by Vernam, ( AT&T, in 1917) Process the message bit by bit
Lecture 9 - Message Authentication Codes
Lecture 9 - Message Authentication Codes Boaz Barak March 1, 2010 Reading: Boneh-Shoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
1 A duality between descents and connectivity.
The Descent Set and Connectivity Set of a Permutation 1 Richard P. Stanley 2 Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, USA [email protected] version of 16 August
Network Security. A Quick Overview. Joshua Hill [email protected] http://www.untruth.org
Network Security A Quick Overview Joshua Hill [email protected] http://www.untruth.org Security Engineering What is Security Engineering? "Security Engineering is about building systems to remain dependable
ECE 428 Network Security
ECE 428 Network Security 1 Learning objectives Security requirements and tools Symmetric-key (secret key) cryptography Substitution, transposition, and product ciphers (DES) Public key cryptography: RSA
3 1. Note that all cubes solve it; therefore, there are no more
Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if
Chapter 7. Permutation Groups
Chapter 7 Permutation Groups () We started the study of groups by considering planar isometries In the previous chapter, we learnt that finite groups of planar isometries can only be cyclic or dihedral
Lecture 1: Introduction. CS 6903: Modern Cryptography Spring 2009. Nitesh Saxena Polytechnic University
Lecture 1: Introduction CS 6903: Modern Cryptography Spring 2009 Nitesh Saxena Polytechnic University Outline Administrative Stuff Introductory Technical Stuff Some Pointers Course Web Page http://isis.poly.edu/courses/cs6903-s10
NOTES ON GROUP THEORY
NOTES ON GROUP THEORY Abstract. These are the notes prepared for the course MTH 751 to be offered to the PhD students at IIT Kanpur. Contents 1. Binary Structure 2 2. Group Structure 5 3. Group Actions
Cryptosystems. Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K.
Cryptosystems Bob wants to send a message M to Alice. Symmetric ciphers: Bob and Alice both share a secret key, K. C= E(M, K), Bob sends C Alice receives C, M=D(C,K) Use the same key to decrypt. Public
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Chapter 13: Basic ring theory
Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring
A New Generic Digital Signature Algorithm
Groups Complex. Cryptol.? (????), 1 16 DOI 10.1515/GCC.????.??? de Gruyter???? A New Generic Digital Signature Algorithm Jennifer Seberry, Vinhbuu To and Dongvu Tonien Abstract. In this paper, we study
CSCE 465 Computer & Network Security
CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Exploring Students' use of e-learning systems in Higher education
ICT Innovations 2011 Web Proceedings ISSN 1857-7288 67 Exploring Students' use of e-learning systems in Higher education Maja Ristova 1, Biljana Citkuseva 1, Vladimir Trajkovik 2, 1 Faculty of Electrical
Cryptography Lecture 8. Digital signatures, hash functions
Cryptography Lecture 8 Digital signatures, hash functions A Message Authentication Code is what you get from symmetric cryptography A MAC is used to prevent Eve from creating a new message and inserting
Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.math.colostate.
Finding Subgroups Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.math.colostate.edu/~hulpke I A Popular Problem Given a finite (permutation,
VoIP Security. Seminar: Cryptography and Security. 07.06.2006 Michael Muncan
VoIP Security Seminar: Cryptography and Security Michael Muncan Overview Introduction Secure SIP/RTP Zfone Skype Conclusion 1 Introduction (1) Internet changed to a mass media in the middle of the 1990s
Lightweight MDS Involution Matrices
Lightweight MDS Involution Matrices Siang Meng Sim 1, Khoongming Khoo 2, Frédérique Oggier 1, and Thomas Peyrin 1 1 Nanyang Technological University, Singapore 2 DSO National Laboratories, Singapore [email protected],
