TrinityHall, Cambridge, England.

Size: px
Start display at page:

Download "TrinityHall, Cambridge, England."

Transcription

1 usingrecurrentneuralnetworks HandwritingRecognition O-lineCursive AndrewWilliamSenior A TrinityHall, Cambridge, England. Thisthesisissubmittedforconsideration forthedegreeofdoctorofphilosophy attheuniversityofcambridge. September1994

2 Computerhandwritingrecognitionoersanewwayofimprovingthehumancomputerinterfaceandofenablingcomputerstoreadandprocessthemany handwrittendocumentsthatmustcurrentlybeprocessedmanually.this thesisdescribesthedesignofasystemthatcantranscribehandwrittendocuments. Summary forthenormalizationandrepresentationofhandwrittenwordsaredescribed, scannedfromahandwrittenpageandproducesword-leveloutput.methods nitionispresented,followedbyadescriptionofrelevantpsychologicalre- writingrecognitionarethendescribed.acompletesystemforautomatic, o-linerecognitionofhandwritingisthendetailed,whichtakeswordimages search.previousresearchers'approachestotheproblemsofo-linehand- First,areviewoftheaimsandapplicationsofcomputerhandwritingrecog- includinganoveltechniquefordetectingstroke-likefeatures.threeprobwritingrecognitioninvestigated.themethodofcombiningtheprobability estimatestochoosethemostlikelywordisdescribed,andperformanceimprovementsaremadebymodellingthelengthsoflettersandthefrequency ofwordsinthecorpus.thesystemistestedonadatabaseoftranscriptsfrom abilityestimationtechniquesaredescribed,andtheirapplicationtohand- acorpusofmodernenglishandrecognitionresultsareshown.recognition isdescribedbothwiththesearchconstrainedtoaxedvocabularyandwith anunlimitedvocabulary. beforeassessingwherefutureworkismostlikelytobringaboutimprovements. Keywords O-linecursivescript,handwritingrecognition,OCR,recurrentneuralnet- Thenalchaptersummarizesthesystemandhighlightstheadvancesmade works,forward-backwardalgorithm,hiddenmarkovmodels,durationmod- elling. O-linehandwritingrecognition 1

3 ThisthesisdescribesresearchcarriedoutatCambridgeUniversityEngineeringDepartmentbetweenOctober1991andSeptember1994.Itistheresult ofmyownworkandcontainsnoworkdoneincollaboration.thelengthof thisthesis,includingreferencesandgurecaptions,isthirty-seventhousand words. Acknowledgements Firstofall,IwouldliketoexpressmygratitudetothelateProfessorFrank Robinsonwhohassupervisedmeadmirablyforthelatterhalfofthisthesis vidingtheoriginalinspirationforthiswork.iamalsoindebtedtodrtony withenthusiasticguidanceandsupport,particularlyinthelastfewweeks. Fallside,forsupervisingmeduringthersthalfofthisthesisandforpro- groupwhichfrankfallsidecreated.thegrouphasbeenanidealenvironment,bothsociallyandtechnically,inwhichtoconductresearch.thosein thegroupwhohavehelpedinthecreationofthisthesisaretoonumerousto mentionindividually. IwouldliketothankeveryoneelseintheSpeech,VisionandRobotics Declaration whosefriendshiphasbeeninvaluableinthelastthreeyears. Fuzzywhoproof-readatsuchshortnotice,andparticularlytoTimJervis forprovidingthenancialsupportnecessaryformetocarryoutthiswork. AT&THolmdelforrecentfruitfuldiscussionsthathavehelpedshapethewritingofthisthesisoryofmyfather.MyparentshavealwayssupportedmeandtothemIowe everything. Finally,Iwouldliketodedicatethisthesistomymotherandtothemem- IwouldalsoliketothankeveryoneImetatLexicus,IBMHawthorneand TheformerScienceandEngineeringResearchCouncilistobethanked SpecialthanksmustgotoChenThamandAndyPiperforfriendship;to O-linehandwritingrecognition 2

4 Contents 1Introduction 2Handwritingrecognition 1.1Thisthesis::::::::::::::::::::::::::::::::8 1.2Originalcontribution::::::::::::::::::::::::::9 1.3Notation:::::::::::::::::::::::::::::::::9 2.1Ataxonomyofhandwritingrecognitionproblems::::::::: Applications::::::::::::::::::::::::::::::: On-lineversuso-line::::::::::::::::::::: Authoridenticationversuscontentdetermination:::: Writerindependence:::::::::::::::::::::: Vocabularysize::::::::::::::::::::::::: Isolatedcharacters::::::::::::::::::::::: Opticalcharacterrecognition::::::::::::::::: Cheques::::::::::::::::::::::::::::: Frompostcodestoaddresses:::::::::::::::::16 3Psychologyofreading 2.3Existingo-linehandwritingrecognitionsystems::::::::: Formprocessing::::::::::::::::::::::::: Otherapplications::::::::::::::::::::::: Isolatedcharactersordigits:::::::::::::::::: O-linecursivescript:::::::::::::::::::::19 4Overviewofthesystem 3.1Readingbyfeatures:::::::::::::::::::::::::::23 3.2Readingbylettersandreadingbywords::::::::::::::25 3.3Lexiconandcontext:::::::::::::::::::::::::::26 3.4Summary::::::::::::::::::::::::::::::::: Summaryofparts::::::::::::::::::::::::::::29 4.2Imageacquisitionandcorpuschoice:::::::::::::::::30 4.3Anoteonresults::::::::::::::::::::::::::::32 4.4Theremainingchapters::::::::::::::::::::::::33 O-linehandwritingrecognition 3

5 5Normalizationandrepresentation 5.1Normalization::::::::::::::::::::::::::::::34 CONTENTS 5.2Parametrization::::::::::::::::::::::::::::: Baselineestimationandslopecorrection::::::::: Slantcorrection::::::::::::::::::::::::: Smoothingandthinning:::::::::::::::::::: Skeletoncoding:::::::::::::::::::::::::40 6Findinglarge-scalefeatureswithsnakes 5.3Findinghandwritingfeatures:::::::::::::::::::::45 5.4Summary:::::::::::::::::::::::::::::::::46 6.1Findingstrokes::::::::::::::::::::::::::::: Non-uniformquantization::::::::::::::::::43 6.2Snakes:::::::::::::::::::::::::::::::::: Analternativeapproach::::::::::::::::::::44 6.3Pointdistributionmodelsandconstraints:::::::::::::50 6.4Trainingfeaturemodels::::::::::::::::::::::::52 6.5Findingfeaturematches::::::::::::::::::::::::53 6.6Discussion:::::::::::::::::::::::::::::::: Recognitionmethods 7.1Recurrentnetworks:::::::::::::::::::::::::::58 7.2Time-delayneuralnetworks::::::::::::::::::::: Training::::::::::::::::::::::::::::: Networktargets::::::::::::::::::::::::: Generalization:::::::::::::::::::::::::: Understandingthenetwork:::::::::::::::::: Discreteprobabilityestimation::::::::::::::::::::74 8HiddenMarkovmodelling 7.4Summary::::::::::::::::::::::::::::::::: Asimplesystem:::::::::::::::::::::::::75 8.1AbasichiddenMarkovmodel:::::::::::::::::::: Vectorquantization::::::::::::::::::::::: Training::::::::::::::::::::::::::::: Discussion::::::::::::::::::::::::::::78 8.2Durationmodelling::::::::::::::::::::::::::: Labelling::::::::::::::::::::::::::::: Decoding::::::::::::::::::::::::::::: Enforcingaminimumduration:::::::::::::::: Parametricdistributions::::::::::::::::::::88 80 O-linehandwritingrecognition 8.3Targetre-estimation::::::::::::::::::::::::::90 8.4Languagemodelling:::::::::::::::::::::::::: Results:::::::::::::::::::::::::::::: Forward-backwardretraining:::::::::::::::::934

6 8.4.1Vocabularychoice:::::::::::::::::::::::: Grammars:::::::::::::::::::::::::::: Experimentalconditions:::::::::::::::::::: Coverage:::::::::::::::::::::::::::::102 CONTENTS 9Conclusions 8.5Rejection::::::::::::::::::::::::::::::::: Out-of-vocabularywordrecognition::::::::::::::::: Summary::::::::::::::::::::::::::::::::: Searchissues::::::::::::::::::::::::::103 Bibliography 9.1Furtherwork::::::::::::::::::::::::::::::: O-linehandwritingrecognition 5

7 Chapter1 Introduction Theworldisllingwithcomputers.Whetherwelikeitornot,theyare becomingubiquitous.asevermorepeopleareforcedintocontactwithcomputersandourdependenceuponthemcontinuestoincrease,itisessential thattheybecomeeasiertouse.asmoreoftheworld'sinformationprocessingisdoneelectronically,itbecomesmoreimportanttomakethetransfer Bythisartyoumaycontemplatethevariationofthe23letters. ofinformationbetweenpeopleandmachinessimpleandreliable. RobertBurton.TheAnatomyofMelancholy. andtoactinhumansocietyinalessconstrainedmannerthanhaspreviously computerindustrytomakecomputersincreasingly`userfriendly'.inthis uraltopeople.thuscomputersshouldbebetterabletointeractwithpeople beenpossible.theseaimsarereectedinthemoremodestattemptbythe intelligence,issimplytoenablecomputerstoaccomplishtaskswhicharenat- forthetimebeingthelonger-termgoalsofanalysingandemulatinghuman Oneoftheaspirationsoftheeldofarticialintelligence,ifoneignores vein,computershavecomeoutoflaboratoriesandintohomesandoces; wecommunicatewiththemusingmiceandkeyboardsratherthanpunched cardsandtoggleswitches.handwritingisanaturalmeansofcommunication whichnearlyeveryonelearnsatanearlyage.1thusitwouldprovideaneasy wayofinteractingwithacomputer,requiringnospecialtrainingtouseeectively.acomputerabletoreadhandwritingwouldbeabletoprocessahost ofdatawhichatthemomentisnotaccessibletocomputermanipulation. intothecomputerrecognitionofhandwriting.onereasonadvancedisthat theoptimismaboutthecapabilitiesofimminentspeechrecognitionmachines madepeoplefeelthatotherapproacheswereunnecessary.whilesomeof thepromisesofspeechrecognitionbymachinehavealreadybeenfullled, andresearchersarestilloptimistic,someofthebenetshavebeenslowto materializeandpeoplehavethoughtagainaboutwhatisrequiredofhuman- Afterthisargument,itseemssurprisinghowlittleresearchtherehasbeen O-linehandwritingrecognition peoplecomingintocontactwithcomputers,theguremustbehigher. computerinterfaces.thoughspeechisaveryconvenientformofcommu- 1DowningandLeong(1982:p.299)quoteanestimatedworldliteracyrateof71%.Inthose 6

8 wheresilenceisimportant,orwherealargenumberofpeoplemustwork withcomputers,itisclearthatvoiceinputisnotthebestsolution.though nication,itisnotalwaysthemostpractical.innoisyenvironments,those computerprofessionalsandsecretarieswouldbelothtogiveuptheconvenienceandspeedofakeyboard,forthosenotfamiliarwithkeyboards,and forportableoroccasionaluse,handwritingentryisclearlyofpracticalvalue. ofhandwrittendocumentsalreadyincirculation.fromchequesandletters totaxreturnsandmarketresearchsurveys,handwritingrecognitionhasa Thishasleadtothegrowthinthelastyearortwoof`pencomputing' the useofcomputerswhichallowinputfromanelectronicstylus(geake1992). hugepotentialtoimproveeciencyandtoobviatetedioustranscription.as theeconomistrecentlysuggested,\today'sbiggestprizeincomputervision, howeveristextandhandwriting..."(browning1992). Inadditiontoapotentialmodeofdirectcommunicationwithcomputers, CHAPTER1.INTRODUCTION handwritingrecognitionisessentialtoautomatetheprocessingofamyriad 1.1Thisthesis Thisthesisinvestigatestheuseofhandwritingrecognitionasamediumof contentsofthethesis.thenextchaptersummarizestheaimsandachievementsofotherworkintheeldofhandwritingrecognitionandestablishes handwrittendocuments.laterchapterspresentresearchcarriedouttode- communicationbetweenpeopleandcomputers.afterpresentingageneral overviewofhandwritingrecognition,itfocusesontheproblemofreading ataxonomyoftheeldintowhichtheoriginalworkofthisthesiscanbetted.applicationsforhandwritingrecognitionarealsoexamined.chaptervelopacomputersystemwhichtacklesthisproblem.thesystemhasbeen describedinearlierpapers(seniorandfallside1993a;senior1993). studiesworkinthepsychologyofreading,todiscoverknowledgewhichcan beputtouseinthedesignofamachinehandwritingrecognitionsystem. Thethesisisdividedinto9chapters.Thischapterdescribestheaimand ofindividualpartsofthatsystem,includingnormalizationandrepresentation(senior1994);feature-nding(seniorandfallside1993b);probabilitsentedandadiscussionoftheirvalidity. thathasbeendesigned,andthefollowingchaptersdescribetheworkings Chapter4presentsanoverviewofthehandwritingrecognitionsystem estimationandlanguagemodelling.eachofthesechaptersincludesdetails ofexperimentscarriedouttoassesstheperformanceofthetechniquespre- thehandwritingsystemandsummarizeswhathasbeenachievedinthisprogrammeofresearch.furtherworkwhichcouldbecarriedonfromthisthesis isalsosuggested. Thenalchapterdrawstogethertheconclusionsofthechaptersabout O-linehandwritingrecognition 7

9 Thisthesisdescribesanew,completeo-linehandwritingrecognitionsystem.Themajororiginalcontributionsdescribedinthisthesisareasfollows: CHAPTER1.INTRODUCTION 1.2Originalcontribution Thesystemappliesanovelapproach,usingrecurrentneuralnetworks Thepsychologyofreadingliteratureisreviewed,showinghowthestudy Thetrainingofarecurrentneuralnetworkwiththeforward-backward forprobabilityestimation.whiletherecurrentneuralnetworkhaspreviouslybeenusedforspeechrecognition,ithasnotbeforebeenapplied ofhumanreadingandwritinggivesanindicationofthecharacteristics totherecognitionofhandwriting. algorithmisdescribedhereforthersttime. Themethodsusedheretonormalizehandwrittenwordsareanoriginalsynthesisofnewandestablishedtechniques.Previouslypublished methodsarecomparedandimprovedupon. whichmightproveusefulinareadingmachine. Wordsareencodedinanoriginalmannerwhichisshowntobebetterthanthecommonbit-maprepresentation,andanovelmethodof featuredetection,basedupontheuseofsnakesisdescribed. Chapter8investigatestheuseofdurationmodellingforo-linehandwritingrecognitionandinvestigatestheproblemsofout-of-vocabulary Throughoutthisthesis,thedistinctionismadebetweenahandwrittenword, 1.3Notation andtheideaofthatword.tomakethisdistinction,thefollowingtypo- wordswithlexicaoflimitedsize. graphicalconventionisemployed.torepresentahandwrittenwordorlet- ter,thefollowingfontisused:`abc fghijklmnopqr uvwxyz';andtode- notethelettersorwordsasconcepts(mcgrawetal.1994),thisfontisused: `abcdefghijklmnopqrstuvwxyz'.thepurposeofthesystemdescribedhereis totranscribe`word'into`words'.whentheinternalrepresentationofthe systemisreferredto(section5.2),asingleframeofdataisshownthus:xt; andthedatarepresentingawholewordareshownasx0.thesetoflettersasconceptsisdenotedandanarbitraryindividualletterisshowni. i P(xtji)orP(xt0ji)respectively;theprobabilitythatframetrepresents ThediscreteprobabilitiesusedthroughoutaredenotedP.Theseincludethe probabilityofoneorseveralframesofdatagiventhatframetispartofletter letterigiventhedataoftheframe P(ijxt);andtheprobabilityofthejth elementofaframext,giventhatthatframerepresentsletteri P((xt)jji). O-linehandwritingrecognition 8

10 Chapter2 Handwritingrecognition Ascomputerpowerhasincreasedovertheyears,andtheirrangeofapplicabilityhassimilarlyincreased,oneofthemajorgoalsofresearchintocomputershasbeentomakecomputerseasiertocommunicatewithandthusto :::avastpopulationabletoreadbutunabletodistinguishwhatis maketheirbenetsavailabletoamuchgreaternumberofpeople.oneof worthreading. themajorobstaclestotheintegrationofcomputersasuniversalinformation G.M.Trevelyan.EnglishSocialHistory. annotationstoprinteddocuments,maybehandwritten;inmanysituations itwouldbehighlydesirabletoprocessthecontentsofthesedocumentsby machine,forwhichhandwritingrecognitionisessential. onpaper.particularlywhendealingwiththegeneralpublic,ahugeamount ofocepaperworkishandwritten.lettersandfaxes,aswellasformsor processingsystemsisthefactthatmostusefulbusinessdataisstillstored havebeendeveloped,andmuchworkhasbeencarriedoutintocomputer municationbetweencomputersandawiderclassofusersinagreatervariety ofcircumstances.whileideassuchasthemouseandtouch-sensitivescreens speechrecognition,thereisstillmuchscopeformakingtheinterfacemore naturalforuserswhoarenotfamiliarwithcomputers.handwritingranks veryhighlyasawayofcommunicatinglinguisticinformationinawaywhich Similarly,computeruserinterfacesneedtobeimprovedtoenablecom- isnaturaltoverymanypeople.thoughspeechrecognitionhasbeenclaimed asthepanaceaforuser-interfaceproblems,ithasbeenslowtoachieveits promise,particularlyinnoisyenvironments,andthelimitationsofspeech morepopular.notonlyaremoreresearcherstryingtotackletheproblems recognitionhavebecomeclearerasresearchhasadvanced. havebecomeavailablewithhandwritingrecognitionsoftwareforisolated charactersandmorerecentlyforcursivescript.handwritingrecognitionsystemshavealreadystartedtobeusedforreadingzipcodesonenvelopesanableandareactuallybeingsoldasusefulproducts.oflate,pencomputers Inthelastfewyearstheeldofhandwritingrecognitionhasbecomemuch thatitpresents,butsolutionstotheseproblemsareslowlybecomingavail- O-linehandwritingrecognition 9

11 itisworthpresentingheretheeldofautomatichandwritingrecognitionin itsentirety.afterdescribingataxonomyoftheeld,applicationsenvisaged amountsoncheques. Beforedescribinganewhandwritingrecognitionsysteminlaterchapters, CHAPTER2.HANDWRITINGRECOGNITION Havingestablishedtheneedforautomatichandwritingrecognitioningeneral,itisusefultoexaminetheeldmorecloselyandtoidentifyseveral 2.1Ataxonomyofhandwritingrecognitionproblems ispresentedtodemonstratetheapproachestaken. forhandwritingrecognitionsystemsarediscussedandworkbyotherauthors areaswithdierentapplicationsandrequiringdierentapproaches.though methodscouldbedistinguished,handwritingrecognitionsystemsaregenerallypolarizedbetweenthosereceivingtheirdatadirectlyfromsomesortof researchers,eachconcentratingonaspecialareaofhandwritingrecognition On-lineversuso-line Themajordivisionisbetweenon-lineando-linesystems.Whileother manytechniquescanbeshared,theliteraturetendstodivideintogroupsof line,problemwherethetimeorderingofstrokesisavailableaswellaspen up/downinformation;overlappingstrokescaneasilybedistinguishedand matter.intheliteraturedynamicissometimesusedtomeanon-lineand statico-line.sofar,themajorityofsystemshavetackledtheeasier,on- pendeviceattachedtothecomputer,andthosewhichrecognizehandwritingalreadypresentonapieceofpaper ahandwritingequivalentofoptical CharacterRecognition(OCR)whichisalreadywidelyusedforreadingprinted strokepositionsareaccuratelyknown.ontheotherhand,o-linesystems streamofinformation,techniquesfromspeechrecognitionhavebeensuccessfullyappliedtothisproblem,includinghiddenmarkovmodels(bellegardaetal.1994)andtime-delayneuralnetworks(schenkeletal.1994).the datafromthetabletareusually(x;y)coordinatessampledataconstantfre- hasseenmuchinvestmentinon-linesystems,andthedicultyofo-line recognitionhasdeterredresearchuntilrecently. quencyintime,thoughtheyareoftenre-parametrizedtobeequally-spaced, andrepresentedintermsofarc-length,curvature,andangle,withinforma- Sincetheon-linedatafromanelectronicstylusareaone-dimensional overlapandalackoforderinginformation.thegrowthofpencomputing havetocopewiththevagariesofdierentpentypes,widestrokeswhich tionaboutwhetherthepenistouchingthetablet.aparticularproblemof on-linerecognitionishowtohandledelayedstrokes strokeswhichare writtenaftertherestoftheword,asindotting`i'sandcrossing`t's.some authorschoosetomanagewithoutthisextradata;schenkeletal.record itsexistenceasa`hat'featureassociatedwiththestrokesoverwhichthe O-linehandwritingrecognition 10

12 CHAPTER2.HANDWRITINGRECOGNITION RECOGNITIONTEXTON-LINEOFF-LINE HANDWRITING IDENTIFICATIONSIGNATURE delayedstrokesoccur,andbengioetal.(1994a)representthesurrounding Figure2.1:Subdivisionsofmachinehandwritingrecognition(afterPlamondonandLorette(1989)). VERIFICATION asinthemodellingofhandwritingproductionorintheapplicationofprobabilisticrecognizersandgrammaticalconstraintscernedwitho-linehandwritingrecognition,parallelworkfromon-lineresearchisbroughtinthroughoutwhenthereisacommunityofinterests,such ingure2.1anddescribedinthefollowingsection.whilethisthesisiscononomyofbotho-andon-linehandwritinganalysisissimilar;asisshown Althoughapplicationsandtechniquesvaryconsiderably,thegeneraltax- visualcontextofallstrokessothatthedotisseenabovethecuspofthe`i' Authoridenticationversuscontentdetermination Aseconddichotomyintheeld,orthogonaltotheon-line/o-linedivision isaccordingtotheinformationtobeextractedfromthehandwriting.from bothon-lineando-linedata,itmaybenecessarytodeterminetheauthorshipofthewriting,thecontentofwhathasbeenwritten,orboth.inboth approaches.techniquesalsodierdependingonwhethertheauthoristobe recognizedfromasignatureorfromapieceoftext. cases,theeectsofsomevariationsshouldbeignored.todeterminetheauthorship,dierencesinpersonalstyleshouldbehighlighted,tocapturewhat ischaracteristicaboutoneperson'swriting(theiridioscript).conversely,to determinethecontentofthewriting,thevariationsduetoidioscriptshould beeliminatedandignored.thesetworequirementsresultinverydierent poolofknownauthors,forinstanceinawriter-adaptivehandwritingrecognitionsystemwhichusesdierentparametersforwordrecognitionaccording Iftheauthorofapieceoftextorsignaturemustbedetermined,thedis- totheauthor.theformeristhemoreuseful,butofcoursetheharder,prob- tinctionismadebetweenverifyingthattheauthoristheclaimedauthor(for instanceinsecurityorbankingapplications)ormerelydecidingbetweena O-linehandwritingrecognition 11

13 andathoroughreviewofsignaturevericationsystems Writerindependence lem.plamondonandlorette(1989)giveanoverviewofhandwritingsystems, CHAPTER2.HANDWRITINGRECOGNITION continuousspeech.analoguestoeachoftheseexistinhandwritingrecognition,andarediscussedinthisandthefollowingsections. Thewholeeldofhandwritingrecognitionissimilartothealreadywelldevelopedsubjectofautomaticspeechrecognition,whichisoftenclassied alongthelinesofspeakerdependence,vocabularysizeandisolatedwordvs. whichneedonlyrecognizethewritingofasingleauthor.insteadofcreating diculttodeviseasystemtorecognizemanypeoples'handwritingthanone asystemwhichcanrecognizeanybody'shandwriting,theproblemofmultiplewriterscouldbetackledbyasystemwhichisabletoadapttothecurrent (correspondingtospokenaccentsandidiolects).becauseofthis,itismore usedtoteachhandwritingtoanindividualandontheindividual'sidioscript Handwritingstylesareextremelydiverse,dependingbothonthepattern lotofmaterialbythesameauthor,butwouldbeofnousewhenidentifyingthecitynamesonenvelopes.alternatively,manysimilarsubsystems writer.adaptationtothewriter'sstylecouldbeusedwhenrecognizinga couldbecreated,eachrecognizingonestyleofhandwriting(oroneindividual'shandwriting).thenaglobalsystemwouldselectthesubsystemwhich alargelexicon(wherewordsaremorelikelytobesimilartoeachother). Thetaskofrecognizingwordsfromasmalllexiconismucheasierthanfrom 2.1.4Vocabularysize correspondedtoaparticularhandwritingsample. Thus,animportantcriterioninassessingsystemperformanceisthesizeofthe lexiconused.thelexiconwilldependontheapplicationoftherecognition system.forageneraltexttranscriptionsystem,alexiconof60,000words words,orpostaltownsfromenvelopes,thevocabularycanbemuchsmaller. Alternatively,itmaybenecessaryforthesystemtorecognizenon-wordsif (thenumberofreferencesinamedium-sizeddictionary),wouldcoverabout 98%ofoccurrences,andforspecicdomains,suchasreadingchequevaluesin tobeverydicultsinceinnaturalspeechwordsruntogetherwithnosilence foreignwordsornames.thisissueisdiscussedagaininsection Isolatedcharacters Segmentationofcontinuousspeechintoitscomponentwordshasbeenfound theuserislikelytowritewordsnotinthelexicon,suchasabbreviations, O-linehandwritingrecognition tinguishtheboundariesbetweenletters thedierencebetween`ui'and between.forsimplertaskstherecognitionismadeeasierbyforcingthe speakertopausebetweenwords.similarly,incursivescriptitishardtodis- 12

14 `iu'orbetween`v]'and`^'isveryslight.thetaskcanbesimpliedbyforcing thewritertoseparateletters(discretehandwriting),towriteincapitalsorfor thegreatestclarity,towriteclearlyseparatedcapitalsinpre-printedboxes. Whenhighreliabilityisrequired,thelatterconstraintsmaybeunavoidable CHAPTER2.HANDWRITINGRECOGNITION sincetheyarealreadynecessarytoenablehumanreaderstodecipherresponsesonforms.anumberofauthorshaveinvestigatedtheproblemof writeeachwordinaseparatebox,oronaguideline.theseconstraintsare mustbeseparate)orpurecursivescript. mainlytoencourageclaritysincethewordsegmentationproblemprovesless recognizingisolatedcharacters(section2.3.1),particularlyfortheproblem ofreadingpostalcodes.otherauthorshaveresearchedtherecognitionof discretehandwriting(`handprint'wherelower-caselettersarewrittenbut dicultthansegmentationintocharacters,andlessstrictconstraintscould stillensurehighaccuracysegmentationofapageintoitscomponentwords. Otherauthorshavedescribedmethodsofsegmentingpagesintowordsand distinguishingbetweengapsinwordsandgapsbetweenwords(sriharietal. Similarconstraintscanbeplacedoncursivescript,forcingtheauthorto 1993) Opticalcharacterrecognition O-linehandwritingrecognitionhasmuchincommonwithopticalcharacter recognition(ocr) thereadingofprintbycomputer.thisapplicationreceivedmuchattentionduringthe1980sandsuccessfulsolutionshavebeen found,withcommercialpackagesavailableformicrocomputerswhichcan readtypeinavarietyoffontsandinacertainamountofnoise.thehistory (1993).Inmoredicultsituations,thesecommercialpackagesarestillnot satisfactory.authorsdescribeproblemsworkingwithunusualcharactersets andfonts,poorqualitydocumentsordocumentsinspecialformats(bosand vandermoer1993;mcveigh1993).indeed,itisnotclearthatocriseconomicallyviableinagreatmanycaseswhenhighaccuracyisessential(olsen andcurrentstatusofocrarereviewedbymorietal.(1992)andpavlidis formssuchasblurring,mergingandslightpositionalvariations.theprocess ofhandwritingismuchmorevariableinalloftheseprocessesandsuers fromvariationsduetoothereectssuchasco-articulation theinuence onthepage,onlybeingcorruptedbyarelativelysmallamountofnoisein allletters`a'areproducedfromasinglearchetype,andthusareverysimilar recognitionisthegreatvariabilityinhandwriting.fortypeinaxedfont, ThereasonwhythesuccessofOCRhasnotcarriedoverintohandwriting ofoneletteronanother.also,withtype,thesymbolsareusuallydistinct (exceptcertainligatures,as`',whichcanbelearntasaseparatesymbol)so theproblemofsegmentationisnotpresent. suchastemplatematching,areinadequatewhenpresentedwiththegreater O-linehandwritingrecognition AsaconsequenceofthistherelativelysimpletechniquesusedinOCR, 13

15 carriesovertohandwritingrecognition. variabilityinhandwritingsorelativelylittleresearchintheocrliterature CHAPTER2.HANDWRITINGRECOGNITION 2.2Applications befordata-entrytoobviateakeyboardasinpencomputers,butcanalsobe usedforspecialpurposessuchasusingdynamicsignaturestoverifyidentity. Thissectionreviewssomeofthemoreimportantapplicationsthatmaybe envisagedforo-linehandwritingrecognition.on-linerecognitiontendsto developmentcosts.thisconvergencecanbeseeninthemodel-basedapproachesnowbeingused(pettierandcamillerapp1993;doermann1993), foron-linehandwritingrecognition.currently,o-lineperformancelagsbehindthatofon-linerecognitionsystems,butoverthenextfewyears,asthingrecognitionwillconverge,leadingtomoregeneralsystemsandreduced technologyimprovesitislikelythatmethodsforbothtypesofhandwrit- Onepotentialapplicationinthelongtermisinusingo-linetechniques whichinterpreto-linehandwritingasapathofinklaiddownovertime, bylookingatthepsychologyofreading(chapter3) thewaypeopleread treatbotho-lineandon-linewordsasatwo-dimensionalimage,andnotas aone-dimensionalstreamoftrajectorydata.thereasonforthiscanbeseen duction.thedatathatcanbederivedbysuchalgorithmsisverysimilarto thedataavailabletoanon-linerecognizer. ratherthanasanimagetobeanalysedindependentlyofitsmethodofpro- thewriting.sincethisinvolvesignoringthetimeinformation,atrstthis seemstobeapoormethodofanalysingon-linedata.however,theinformationinhandwritingisnottransmittedinthetimingofthepentrajectory.it isbylookingatanimage,notbyanalysingthepenpathusedtoproduce Inthelongertermthough,itwouldseemthattheconvergenceislikelyto linesystems,an`o'writtenclockwisemustberecognizeddierentlyfroman `o'writtenanticlockwise,forinthetimesequenceinformation,theyappear dierent.someonewhowrites` a'maysubsequentlyreturntoextendthe doesnotmatterwhetherthestrokesofawordarewrittenquicklyorslowly, nal`a'stroketomakethewordread` d',butthischangewouldbeloston withchangingspeed,oreveninrandomorder,sinceitistheappearanceof amachinerelyingonthetime-orderingofstrokes.ano-lineapproachignoresthesefactorsandsimplylooksatthenalpositionofthestrokes,just sourceofmis-informationisactuallyavoided.forinstance,incurrenton- thenishedwordthatmatters.thus,bydiscardingthetimesequence,a inginformationisveryusefulwhencreatinganauthorvericationsystem totheproblemofdelayedstrokes(section2.1.1).afterthesearguments,it maybeseenthat,whileon-linerecognitionisbetterthano-linenow,becausethetiminginformationgenerallyisconsistent,agoodo-lineapproach mightultimatelycopewithawidervarietyofvariation.conversely,thetim- asahumanreaderwould.thisapproachalsogivesasatisfactorysolution O-linehandwritingrecognition 14

16 on-linesignaturesaremuchhardertoforgethano-linesignatures,sincethe dynamicsofstrokes(withpenbothupanddown)arehardertoforgethan thenishedappearance. CHAPTER2.HANDWRITINGRECOGNITION 2.2.1Cheques Oneimportantcommercialapplicationforo-linecursivescriptisinthemachinereadingofbankcheques.Whiletheamountinguresiseasiertoread, alsoincludesignatureverication,bringingaboutanincreaseinsecuritywith thepayeecorrespondedtotheaccounttobecredited.suchasystemmight thereductionindrudgeryandtime.giventhenumberofchequespassing itshouldbecheckedthattheamountinwordsisthesame,andthiscanbe throughthebankingsystemeachday,achequereadingsystem,evenifonly asystemthatachievedhighaccuracywithoutalexicon,onecouldcheckthat usedforconrmationwherethenumericalamountisunclear.suchasystem abletocondentlyverifyhalfofthecheques,wouldsavemuchlabouron wouldonlyneedtohaveasmallvocabulary(aboutthirty-vewords).given ofachievinga1in100,000errorratefromthecombinedrecognitionofliteralandnumericalamounts,butpermitting50%ofchequestoberejectedfor manualsorting(lerouxetal.1991). maintained.theprojectsupportedbythefrenchpostocehasthegoal atediousandunpleasantjob.chequeswhichcouldnotbecondentlyveriedbymachinewouldstillbeprocessedmanually,soaccuracywouldbe 2.2.2Frompostcodestoaddresses O-linesystemscapableofrecognizingisolatedhandwrittendigitshavealreadybeencreatedandinstalledinmanypostocesaroundtheworld,as partofautomaticmail-sortingmachines.givenasystemtolocatethepostcodeonanenvelope(wangandsrihari1988;martinsandallinson1991; Palumboetal.1992)thiscanbereadandusedtodirectmailautomatically. ClearlycertaincountriessuchastheUSAareatanadvantageinhavingdigitonlyzip-codesandmanyresearchershavealreadytackledthisproblemwith thepostalcodeclassicationtoberemovedbycomparingcandidatezipcodes withcandidateaddressesinadatabaseofalladdress/zipcodecombinations, givingmorehighcondenceclassications.furthermore,forcountrieswith limitedresolutioninthepostcode,theaddresscanbeusedtoincreasethe reasonablesuccess(section2.3.1). mationcontainedintherestoftheaddress.thisallowstheuncertaintyin resolutionofsorting.u.s.postalserviceprojectsaimtousetheaddressto Toprocessmor automatically,systemsmustbegintousetheinfor- whenonlythevedigitzipcodewasprovided. handwritingrecognition,sinceithasawidevarietyoflevelsofdiculty,from determinean11digitdeliverypointcodewhichspeciesasinglehouseeven O-linehandwritingrecognition Mailsortingcanbeseenasanidealapplicationforwriter-independent 15

17 pletedeterminationofanaddresswithoutapostcode.addressrecognition isolateddigitswrittenatpredeterminedlocationsonanenvelope,uptocom- alsoadmitsofacertainamountoferrorwhileallowingalargerejectionrate. Sincetherewillalwaysbesomeaddressesthatareillegibleorincomprehensibletoamachine,a`don'tknow'answercanbegivenandtheitemsentto CHAPTER2.HANDWRITINGRECOGNITION Anothermajorapplicationwhichisnowreceivingattentionistheautomatic postalserviceisconsideredfallibleandtheconsequentdelaysarealready tolerated Formprocessing abinforhumansorting.further,som isalreadymisrouted,sothe public.foranythingmorethanthemostsimpleinformation,forwhichcheck boxescanbeused,repliesarehandwritteninspacesprovided.muchofthis processingofforms.formsarewidelyusedtocollectdatafromthegeneral informationmustbestoredindatabasesandcanbeprocessedautomatically onceenteredintothecomputer.dataentryiscurrentlythebottle-neckinthe process.severalauthorshavewrittensystemstosegmentthehandwritten datafromthepre-printedformandthentotranscribethehandwrittendata. Insomeapplications,thismaybeisolatedcapitalletterswritteninboxes, butworkisnowmovingontohandprint(breuel1994;garrisetal.1994). Althoughformsmustusuallybehandprintedtokeepthewritingaslegibleas possible,forhumanaswellasmachineprocessing,cursiverecognitionwould stillbeusefulforprocessingthoseformsthathavemistakenlybeenlledout incursivescript Otherapplications recordingthestyleofwriting).documentswouldthenbeeasilysearchable writingrecognitioncaneasilybeenvisaged.alreadymanycompaniesuse agesofdocumentsratherthanthedocumentsthemselves.thisisclearlya verydata-intensivetask,butonewayofreducingthedatastorageistoextracttheinformationandstoretextinascii(orperhapsinaricherformat Avarietyofotherocedocumentprocessingsystemsusingo-linehand- andindexconstructionwouldbemadepossible.furtherpossibilitiesexistin readinghandwrittendocumentsfortheblindorinautomaticreadingoffaxes. electronicdocumentprocessingsystemswhichmanipulatethescannedim- Faxedorderscouldbeprocessedanddispatchedautomaticallyandstandard mostresearch.intheliteraturethereisawiderangeofpapersdescribing enquiriesrepliedtowithouthumanintervention.otherfaxescouldbefed directlyintoanelectronicmailsystem,providingattheveryleastautomatic O-linehandwritingrecognition noticationoffaxarrivalbyreadingthecoversheet,ifnotthefulltextofthe toenglishortotheromanalphabet,thoughthesehaveprobablyattracted document. Ofcourse,theadvantagesofhandwritingrecognitionarenotrestricted 16

18 handwritingrecognitioninamultitudeoflanguages.thebasicproblems ofhandwritingrecognitionarecommontoalllanguages,butthediversity ofscriptsmeansthatverydierentapproachesmaybeused.forexample, JapaneseKanji(MoriandYokosawa1988)andChinese(Luetal.1991)charactersarestronglystroke-based,andcharactersareeasytosegmentfrom CHAPTER2.HANDWRITINGRECOGNITION somehebrewrequireaccuraterecognitionofdiacriticmarks.govindanand Shivaprasad(1990)citemanymorelanguages. todistinguish.arabicandromanalphabetscanbecursive,andarabicand oneanother,butcharactersareverycomplexandtherearemanyclasses Thissectionreviewssomeoftheo-linehandwritingsystemswhichhave beendetailedinprint.todothisitisconvenienttoclassifythem,asdescribedabove,intoisolatedcharacterandcursivescriptsystems.hereonly 2.3Existingo-linehandwritingrecognitionsystems 2.3.1Isolatedcharactersordigits Suenetal.(1980)provideagoodreviewofhandwritingrecognitionupto laterchapterswhenparticularissuesarediscussed. 1980,concentratingonisolatedcharacterrecognition whichhadbeenthe abriefoverviewofthesesystemsisgiven.specicdetailsareprovidedin focusofresearchuntilthen.theydescribeavarietyoffeaturebasedapproachesanddividetheseintoglobalfeatures(templatesortransformations suchasfourier,walshorhadamard);pointdistributions(zoning,moments, n-tuples,characteristiclociandcrossingsanddistances)andgeometricalor lartechniques,andinvolveseparatedetectorsforeachofseveraltypesof topologicalfeatures.thelatterwere,andhaveremained,themostpopu- featuressuchasloops,curves,straightsections,endpoints,anglesandintersections.forinstance,impedovoetal.(1990)usecross-points,end-points andbend-pointsastheirfeatures,codingtheseastotheirlocationinthree horizontalandthreeverticalzoneswithineachcharacter.theencodedcharactersarethenidentiedusingadecisiontreeclassier.ellimanandbanks beingdecodedinaneuralnetwork(afeed-forwardneuralnetworkoran (1991)alsousefeatures(end-point,junction,curveandloop)eachofwhich isassociatedwithanumericalquantity,suchascurvatureorlength,before adaptivefeedbackclassier). phologicalfeaturescreatedbyseparatelyexaminingtheleft,right,topand anormalizedbitmapimageofthecharactertoberecognizedintotheirnetworks(multi-layeredperceptronandneocognitronrespectively).boththese bottomedgesofeachcharacter.theproleofthecharacterfromeachedge iscodedasaseparatefeatureforclassicationbyaneuralnetwork. LeCunetal.(1989)andFukushima(1980)taketheapproachoffeeding NellisandStonham(1991)andHepp(1991)bothusesetsofglobalmor- O-linehandwritingrecognition 17

19 becomemorespecializedandlesslocationspecicdeeperinthenetwork, untiltheoutputsofthenallayercorrespondtocharacters,independentof locationintheimage. networksareconstructedfromlayersofidenticalfeaturedetectors,which CHAPTER2.HANDWRITINGRECOGNITION patternrecognitionmethods(simardetal.1993;hintonetal.1992;boser Impedovoetal.1990;Lanitisetal.1993),particularlysincetheincreasingavailabilityofdatahasmadethisastandardtestproblemfortesting 1994).Isolateddigitclassiershavenowbecomesogoodthatresearchis digitsorcharactersinthelastfewyears(hepp1991;idanandchevalier1991; concentratingonreadingwholezipcodeswherethedigitsareoftentouching Ahostofotherauthorshavetackledtheproblemofrecognizingisolated (FontaineandShastri1992;KimuraandShridhar1991;Matanetal.1992), andndingoptimalcombinationsofmultipleclassiersnowseemsamore promisingwayofreducingerrorratesthanndingbetterclassiers.huang andsuen(1993)citeseveralpaperstakingthisapproach.performanceisnow tionuntilrecently,partlybecauseofthedicultyoftheproblem,butalso beinglimitedbythenumberofdigitswhichareentirelyambiguousandcould notbecondentlyclassiedbyhumanreaders O-linecursivescript Theproblemofo-linecursivescriptrecognitionhasreceivedlittleatten- becauseofthelackofdata.simon(1992)andsuenetal.(1993)givebrief reviewsofscriptrecognizers,butthebestreviewisprobablybylecolinet andbaret(1994).simonmakesthedistinctionbetweenthesegmentation approachandtheglobalapproach,accordingtowhetherwordsareidentied veryfewauthorstakethelatterstrategy.plessisetal.(1993)useaholistic match,butonlytoreducethesizeoftheirlexiconbeforeusingamoredetailedrecognitionmethod.lecolinetandcrettez(1991)usethetermsexplicit byrecognizingindividuallettersorbyrecognizingwordsasawhole.infact, onadierentunitofwriting.bothapproachesusestrongevidencefrom well-writtenpartsofwords,togetherwitharestrictedlexicon,torecognize ually,orifthesegmentationisaby-productofarecognitionprocessworking wordswhicharepartiallybadlywritten. segmentationandimplicitsegmentationaccordingtowhetheranattemptis madetodividethewordintoseparatecharactersandrecognizetheseindivid- tonormalizeandcleanthedata.somepreprocessingmethodsaredescribed approachesusealexicontoconstraintheresponsestoaknownvocabulary. inchapter5.ineachcase,arecognitionstrategythenhypothesizescharacterorwordidentities,andbecauseexactrecognitionisverydicult,allthe Alltheauthorsdescribedbelowincorporatesomeformofpreprocessing O-linehandwritingrecognition cityorstatenamesinaddresses.theseauthorstakeadualapproach,with arst,quickclassicationtoreducethelexiconsize,followedbyamoreac- thatofkimuraetal.(1993b,1993a)whohavecreatedasystemforreading Perhapsthemostsuccessfulo-linehandwritingrecognitionsystemis 18

20 aroughexplicitsegmentationandeachsegmentisclassiedasaletter.the secondstagendsadierentexplicitsegmentationbysplittingthewordinto disjointboxesandjoiningtheboxestogetherusingdynamicprogrammingto curatesecondclassicationusingdierenttechniques.therststagends CHAPTER2.HANDWRITINGRECOGNITION Theseauthorsreportresultsof91.5%recognitionwithalexiconof1000words onthecedardatabaseofwordssegmentedfromaddressesintheu.s.mail (Hull1993). formcompletecharacters.thesearethenpassedtoacharacterclassier. intheirpaper,identifyingthesekeylettersmightbesucienttoidentify mostwords,buttheauthorsproposetheirtechniquesasawayofltering, toreducethenumberofwordsinthelexiconofpossiblematches. approachistoextractanumberofkeylettersfromeachcursiveword particularlytheinitialletterandthoseclearlyidentiablebyascenders,descendersorloops.forasmallvocabularytask(readingcheques)asdescribed CherietandSuen's(1993)approachisalsoletter-based.However,their theboundariesbetweencharacters,butalsosplitsomecharactersintotwo anexplicitsegmentationapproach,buthereeachsegmentneednotcorrespondtoacharacter.theyndpresegmentationpointswhichincludeall strokes,loopsandcusps)withinthesegmentsbyaseriesofeventdetectors PapersbySrihariandBozinovic(1987;BozinovicandSrihari1989)take ormorepieces.theythenndfeatures(16inall,includingdots,curves, andusethefeaturestoconstructletterhypothesesaccordingtostatisticsof featureoccurrencesgatheredduringtraining.wordsarehypothesizedviaa follow.theresultanttwo-lettersequencesareputontothestack,tobeexpandedwhentheyarethemostlikelysequences.attheendoftheword, stackmethod,wherethemostlikelyprexesarestoredandexpandeduntil thewordendisreached.aftertherstiterationofthisprocedure,thestack thelexicallycorrectwordthatishighestonthestackischosenasthebest match. containsallthehypothesesfortherstletterinorderoflikelihood.thetop entwritersanddierentlexica(780and7800words).testingonasingle- authordatabaseofhorizontal,non-slantingwriting,a77%recognitionrate wasobtainedonthesmalllexicon,48%onthelarge.asecondsingle-author databaseyieldeda71%recognitionrateonthesmallerlexicon. SrihariandBozinovicconductedanumberofexperiments,usingdier- (mostlikely)hypothesisisthenexpandedbylookingatwhatletterscould ofuptothreesegmentswithaneuralnetworkclassiertrainedonisolated charactersegmentationpointsandattempttoclassifysegmentsorgroups letters.incorrectsegmentationstendtogetlowerclassicationscoresthan whenaletteriscorrectlysegmented,andwhenthescoresarecombinedin ahiddenmarkovmodel,thebesthypothesisforthegroupingsofsegments andtheiridentitiesisfound.resultsof70%forsingle-authorcursiveword YanikogluandSandon(1993)takeasimilarapproach.Theyndpossible recognitionarequotedforalexiconof30,000words. O-linehandwritingrecognition Edelmanetal.(1990)havedevelopedahandwritingreaderwhichrelies

21 turningpointsatthetop,bottom,leftorrightofacharacter)arefoundin onthealignmentofletterprototypes.here,anchorpoints(e.g.endpoints; prototypecurves,codedassplines,whichcanbecomposedintolower-case thetestwordandthesepointsareusedtomatchthewordagainstasetof CHAPTER2.HANDWRITINGRECOGNITION characters.thesystemishand-designedandisnottrainedautomatically. Usinga30,000wordlexicon,theseauthorsobtainedan81%recognitionrate onthetrainingsetandaround50%ontestsetsbythreeauthors.thestress ofthissystemisonrecognitionwithoutalexicon,however,andrecognition ratesof8{22%aregivenforthreeauthorsincludingtheauthorwhosewriting thesetoasetofreferencewordswithdynamicprogramming.theidentied wasusedtodevelopthesystem. wordsareusedtogetherwithagrammartoverifytheamountingures.with oce.thetaskhereistorecognizeamountswritten(inwords)onpostal chequesandtousethesetoverifytheamountswritteningures.moreau tackledbyanumberofauthorsintheproblemposedbythefrenchpost etal.(1991)identifyafewcharacteristicsofthecursivewordsandmatch Theproblemofreadingtheamountoncheques(section2.3.2)hasbeen a60%rejectionrate,theerrorrateachievedis0.2%.paquetandlecourtier (1991)reduceeachwordtoaseriesofcurveswhichtheymatchtoexamples inalexicon.theyachieve60%correctonthe50%ofwordswhicharewellsegmentedandlater(paquetandlecourtier1993)achieveanerrorrateof 59%whenrejecting9.5%ofwords.Lerouxetal.(1991)taketwoparallelapproaches oneistorecognizethewordasawhole,byndingafewfeatures andcomparingwithreferencewords.thesecondisaletter-by-letterapproachwherethedesireistorecognizeonlysomeoftheletters,andtouse thisinformationtorestrictthelexicon.theirsystemcorrectlyidenties62% ofwords.thesystemdescribedbysimon(1992)achievesa0.15%errorrate witharejectrateof24%usinga25wordvocabulary. O-linehandwritingrecognition 20

22 Chapter3 Psychologyofreading Thereisanartofreadingaswellasanartofthinkingandanartof writing. derstoodwhatinformationpeopleusetorecognizehandwrittenwords,then Beforeattemptingthemachinerecognitionofhandwriting,itisworthwhile consideringthewaythatpeoplereadandwrite.consideringhumanreadingmayleadtoanincreasedunderstandingofthetransferofinformation throughthemediumofhandwriting,sothatitcanbeseenwhichprocesses playausefulrole,andwhicharemerelyepiphenomena.ifitcanbeun- D'Israeli. aclueisfoundastowhatfeaturesmightbeusefulforamachinerecognitionsystem.otherfeaturesarelikelytobepoorlypreservedsincetheyplay insightsastowhichfeaturesofhandwritingarerepresentationsoftheinformationandwhichmereartefactsofthegenerationprocess. nousefulrole.understandinghandwritingproductionmaysimilarlygive involvedinreadingtype,someofwhichisapplicabletocursivescript.taylorandtaylor(1983),downingandleong(1982)andraynerandpollatsek (1989)givethoroughreviewsofthepsychologyofreading.Mostresearchso farhasconcentratedonreadingindividuallettersorwordsoutofcontext.it Alargebodyofpsychologicaldatahasbeengatheredontheprocesses couldbearguedthatthisgiveslittleindicationoftheprocessesoccurringin normalreadingwheremanywordsarevisibleanditisthetextasawhole, notindividualwords,thatisimportant.howeverresultsarehardtoprove insuchanaturalenvironmentwithmanyvariables,anditisonlyunderrestrictedexperimentalconditionsthathypothesescanberigorouslytestedingwhaterrorsaremadeunderdicultconditions.onetechniqueistheuse oftachistoscopestoashawordinfrontofasubjectforaveryshorttimefollowedbyapatternedmasktoinhibiticonicmemory,whichotherwiseallows thesubjecttopreserveanimageofthewordmentallyforanuncontrolled periodoftime. Researchintoreading,asinmuchofpsychology,reliesheavilyonobserv- O-linehandwritingrecognition 21

23 Aswillbeseenlater,manyapproachestohandwritingrecognitionrelyon detectingfeaturesinthewriting,suchasthestrokeswhichgotomakeup 3.1Readingbyfeatures CHAPTER3.PSYCHOLOGYOFREADING ofbarsandedgesandprovideacompactrepresentationoflineswhichis particularlyappropriatetotherepresentationofwritingandprint.anumber individualletters.hubelandwiesel(1962)describetheprocessesearlyin thevisualcortex.thecomplexcellsthattheydiscoveredcodethepresence ofauthorshavesoughttodeterminewhathigher-levelrepresentationmight latedcharactersbyexaminingtheconfusionsbetweenletterspresentedei- theratadistanceorforashorttime,eccentricallyinthesubject'seldof beusedspecicallyforletters. view.boumausestheerrorsmadebysubjectstoidentifygroupsofconfusable,or`psychologicallyclose',letters.bouma'sclassicationisshownin table3.1. Bouma(1971)investigatedthefeatureswhichpeopleusetorecognizeiso- OutercontourBoumashape Short Tall innerpartsandrectangularenvelope1aszx roundenvelope obliqueouterparts CodeLetters Projecting verticalouterparts ascendingextensions slenderness descender 2eoc 3rvw 4nmu 5dhkb 6tilf Shapetype Table3.1:Boumashapes. Numberofwordssharingthesameshape 7gjpqy Outercontour+initial Boumashape+initial Table3.2:Worddiscriminationusingwordshapemeasureson ` 'wouldbecome527,butsoalsowould`bo'whichisseentobesimilar inshape.taylorandtaylorusedtheseboumashapesforastudyonthetext oftheirownbook.table3.2showsasimilarexperimentonthetextofthis Usingtheseclasses,wordscanbeencodedaccordingtotheirshape,so thetextofthisthesis. O-linehandwritingrecognition 22

24 asshort,tallorprojecting.theoutercontourisenoughtospecify1389ofthe techniques,andthenumberofwordsofeachshapeiscounted.theouter contourisacoarsercodingthantheboumashape,simplyclassifyingletters thesis.thewordsareclassiedaccordingtoeachoffourshapedescription CHAPTER3.PSYCHOLOGYOFREADING 3444wordsuniquely,butthereare36shapessharedbytenormorewords Boumashape,havingmoreclassesthanoutercontour,givesmoreunique shapes 3201wordsareuniquelylabelled. each.iftherstletterisknown,theambiguityisfurtherreduced.the gatethevariabilityofsomehandwritingfeaturescomparingvariationinan afewsimplefeaturescanidentifymostwords,withouttheneedtorecognizetheindividualletters.haberandhaber(1981)havecarriedoutsimilasiontreewhichmightbeusedtodistinguishthelettersofthehelveticafont byobservingonlyalimitedsetoffeatures.eldridgeetal.(1984)investi- workintotheeectivenessoflettershapeforreading,andalsogiveadeci- Thisstudyshowsthat,inconjunctionwithalexiconofpermittedwords, tioniscarriedoutbyndingwordfeaturesthatllrolesininternalmodels individual'shandwritingwiththatbetweenindividuals. inrepresentingcharacters.althoughtheirexperimentsareconductedwith machine-generatedlettersmadeupofstraightlinesegments,theyinvestigatetherecognitionoflettersatthelimitsofclass-boundaries,sotheirwork ofletters.thusaletter`b'couldbedescribedasaloopwithashortstroke isofrelevancetohandwritingrecognition.theysuggestthatletterrecogni- McGrawetal.(1994)furtherinvestigatethefeaturesthatmightbeused lowerright.theseauthorsdonotconsiderthepossibilityofoverlapping featureswhichmightcharacterizetheletteraswellifnotbetter.forinstance,a`b'couldalsobedescribedasatallstrokeoverlappingalooptothe aboveandtotheleft,orasatallstrokewithacurvedsectionjoinedatthe right.theymaketheimportantpointthatthehigher-levelfeaturesusedfor readingarenotlikelytosimplyarisebottom-upfromthevisualprocessing Ifanaccuratemodeloftheseprocessescanbefound,thenitcouldbeusedfor system,ashubelandwieselcellsdo,buttobedenedtop-downdependingontheclassestobedistinguished.thisdependsinturnonthewriting andgroupingsmadeinthatlanguage. representationofhandwritinginacompactform,andforrecognition.alimi tweenphonemeshavetobere-learntaccordingtothedierentdistinctions andplamondon(1993)discussavarietyofmodelsforhandwritinggeneration,andabbinketal.(1993)andsingerandtishby(1993)haveusedthe Hollerbach(1981)modelformodellinghandwritingforrecognition.Singer andtishbyderiveaverycompactcodewhichrepresentsthehandwriting Manystudieshavealsobeenmadeintotheprocessesinvolvedinwriting. systemtoberead,justaswhenlearninganewlanguagetheboundariesbe- butalsoallowstheeasyremovalofslant,slopeandothervariation,making thewritingmorelegible.teulings(1994)discussesfeatureextractionfrom O-linehandwritingrecognition on-linecursivescript.asyettheseapproacheshaveusuallybeenappliedto on-linescriptwherethepentrajectoryisaccuratelyknown.thestaticnature 23

25 (1993)showsthato-linescriptcanbeconsideredinthisway.Howeverit seemsthat,whilecompactrepresentationscanbefoundusingthemodel- ofo-linewritingdoesnotlenditselftotheseapproaches,thoughdoermann basedapproach,readingisavisualprocessanddynamicapproacheswillal- waysfailtorepresentdatasuchasthedotsonaletter`i'appropriately,for CHAPTER3.PSYCHOLOGYOFREADING Oneofthefundamentalndingsofreadingresearchistheimportanceof 3.2Readingbylettersandreadingbywords recognitionofwordsassingleentitiesandnotastheconjunctionoftheir hereitisimportantwherethedotoccurs,notwhenorhow. onetonameletters theneachgroupwasswitchedtotheothertask.noevidencewasfoundthatlearningonetaskimprovedperformanceintheother, thusonemayconcludethat\relativelyuentreadingrequiresfamiliarity withtheshapesofwords,butnotwiththelettersinthosewords."(p.195) tersareallupside-down).theytrainedtwogroups onetoreadwordsand componentcharacters.taylorandtaylorciteworkbykolers&magee, whoseexperimentsinvolvedtrainingsubjectsoninvertedtext(wheretheletrectlywhenpresentationtimeisshortenoughtoinduceerrors)whenpresentedaspartofawordthanwhenpresentedeitheronitsownorsurrounded describedbyraynerandpollatsekp.77). givenbythewordsuperiorityeect.thisisthetermusedforthephe- byarbitrarycharactersinanon-word(forinstanceinreicher'sexperiments Furtherevidenceforreadingbywordsratherthanindividuallettersis nomenonthataletterisbetterrecognized(morefrequentlyrecognizedcor- mustbeusedforthetwoscripttypesandindicatesthatthemechanismof readingismorecomplexthanitmightatrstappear.downingandleong phemic)scriptismuchlessaected.thisshowsthatdierentbrainpathways discussthepossibilityofphonological,visualorbothpathwaysforindexinganinternallexicon,andtheevidenceseemstosuggestthatpeopleuse bothacodingofthesoundsofwordsandacodingofthevisualimagewhen erscanseverelyimpairreadingofkana(syllabic)scriptwhereaskanji(mor- whichshowsthatdamagetocertainareasofthebrainsofjapaneseread- ItisinterestingtonotetheworkbyYamadori(1975)andSasanuma(1984) recognizingwordswhilereading. Letter-basedprocessFrom50msafterawordispresented,theindividual Whole-wordprocessThisisarapidprocesstakingperhaps50-100mswhich TaylorandTaylorproposeareadingmechanismwiththreepaths: dozenlettersoflongerwords. letteridentitiesarebecomingavailable.(thiscouldbeunderstoodasa progressiveincreaseinthefrequencyofthelterusedassuggestedin workbymarr(1982)).outerlettersareidentiedrst,andmaybeused isbasedonlyonthepatternofthewordasawhole,orthersthalf- O-linehandwritingrecognition 24

26 Scan-parseprocessThisprocessistheslowestandusestheletteridentities suxes)mayberecognizedassingleitems. anewone.theseauthorsalsosuggestthatwordunits(prexesand toadjustthersthypothesisofthewhole-wordprocess,ortogenerate CHAPTER3.PSYCHOLOGYOFREADING Readingreliesontheuseofalexiconofwords.Wordsthatarewrittenun- 3.3Lexiconandcontext toproduceaphoneticversionofthewrittenword,whichcanbeused clearlycanoftenonlybeidentiedbecauseitisknownthattheymustrep- resentarealword,ratherthanoneoftheotherletterstringsthatmightbe `readinto'thecursiveword.thewordofgure3.1acouldbeinterpreted inmanyways,butareaderwouldgenerallyoptfor`minimum'becausethat isaword.psychologicalstudieshaveveriedtheexistenceofsomeformof internallexicon,thoughtheformthatthistakesisunclear.neverthelessthe lexicaldecisiontaskisanimportanttoolinexperiments.forthistheexperimentermeasuresthetimetakentodeterminewhetherastringoflettersis awordornot. asadditionalevidenceforthewordidentity. Contextisalsosignicant.Thecorrectinterpretationoftheword`min- Figure3.1:Wordambiguity.(a)isidentiedbyrecognizingthe two`i'sandknowingthatthewordmustbeinthelexicon.(b) isstillambiguousunlesscontextissupplied. surroundingwordsthatthetwocanbedistinguished.grammarcanbesucienttodistinguishambiguouswords,bydeterminingfromthesurrounding thepsychologyofreading.)contextisalsoimportantinchoosingbetween othermightbeunderstoodinthecontextofadiscussionofnon-wordsin validwordhypotheses.thewordingure3.1bcouldequallywellbeidentiedas`clump'or`dump'oreven`jump',anditisonlyfromthemeaningof imum'ismadeevenmorelikelyinapassageaboutoptimization.(butan- contextwhetherawordisaverboranoun,orwhetheraverbistransitive ornot.toimplementthisdiscriminationinanautomaticsystem,somelanguagemodelmustbeintroducedtodeterminelegitimatewordsequences. Languagemodelsarediscussedinsection8.4. O-linehandwritingrecognition 25

27 consideredbyraynerandpollatsek(p.62)tobeanimportantinuenceon thereadingofthewordswithinthattext.however,theresultsquotedby Edelmanetal.(1990)showhowdicultitcanbetoidentifyhandwritten Contextisimportantfortheskilledreadingofpassagesoftext,butisnot CHAPTER3.PSYCHOLOGYOFREADING non-words,thushighlightinghowimportantarestrictedlexiconandcontext are.\incomparison,peoplerecognizecorrectly96.8%ofhandprinted tofoursubjects.thesubjectshadtotypetheirreadingofthecursivestring, withnotimelimittotheresponses,andallowingmultipleguesses.edelman Edelman's(1988)experimentconsistedofpresentingnon-wordcursivestrings characters[neisserandweene1960],95.6%ofdiscretizedhandwriting[suen1983]andabout72%ofcursivestrings(see[edelman foundtheerrorrateconsistentwiththeerrorrateforindividualletters. Theproblemofhandwritingrecognitioniscomplicatedbythefactthat 1988]appendix1)." ifthespeechisdiculttounderstandforwhateverreason.thereisfeedbackofanyerrorsthataremade,sobehaviourcanbecorrected,withthe aimoftransferringinformationmosteectively.ontheotherhand,writingisusuallyreadmuchlaterthanitiscreated,andthisfeedbackloopdoes muchhandwritingisintendedforuseonlybytheauthor.whenpeoplespeak, thatpersonistheretoqueryanyambiguitiesimmediately,ortoindicate notexist.writingnotlegibletoothersiseasilyacceptedbyanauthorwho itisinvariablywiththepurposeofbeingunderstoodbysomeoneelse,and alreadyknowswhatiswritten.particularlyifawriterisusedtowordprocessingdocumentsforconsumptionbyothers,noteswrittenforpersonaluse maybewritteninawaythatotherreaderscannotunderstand.wordsmay 3.4Summary recognize anexactingifnotimpossibletask. knowsthecontextinwhichtheywerewritten.however,itisjustsuchnotes toone'sselfthatpencomputersaredesignedtostoreand,itisclaimed, simplybecomeillegiblemnemonicscomprehensibleonlytotheauthorwho Fromtheworkthathasbeenreviewedinthischapter,itispossibletoextract anumberofimportantprincipleswhichcanbeusedforguidanceinthedesign ofamachinetoreadcursivescript.whilefollowingpsychologicalstudies mightnotyieldtheeasiestnorthebestmethodoftacklingthisproblem, beingawareofhowpeoplereadgivesanindicationoftheoperationsofthe bestreadingmachineknown.thosefactorswhichareseentobeimportant aresummarizedbelow,andtakenintoconsiderationinthedesignofthe handwritingrecognizerinthesubsequentchapters. O-linehandwritingrecognition representationallevelofthehubelandwieselcells,peoplerecognizeletters First,intherecognitionofwrittenforms,itseemsthatbeyondthesimple 26

28 itseemsthattheycorrespondtosuchelementsasloops,curvedstrokesand byobservinghigher-levelfeatures.thoughtheexactfeaturesareunknown, straightlinesegments.ifthesefeaturesarehowinformationisconveyedbetweenpeopleinhandwriting,thentheywouldbeagoodchoiceoffeaturefor CHAPTER3.PSYCHOLOGYOFREADING amachinehandwritingrecognizer,astheyarelikelytobeinvariantbetween writersandunderdierentconditions.further,whilepeoplelearntoread byrecognizingindividualletters,andthismightbenecessaryforneworlong words,skilledreaderstakeinwholewordsatatime.itcanalsobeseen thatreadingismadepossibleonlybyknowingthatmostwordswillfallinto apriorvocabulary,andbyusingthecontextsurroundingwordstoovercome ambiguity. O-linehandwritingrecognition 27

29 Chapter4 Overviewofthesystem hasbeenadearthofresearchandpublicationsontheproblemsofo-line recognition,butthatthereisgreatpotentialforapplyingsuccessfulsystems Havingreviewedtheliterature,itisapparentthatuntilrecentyearsthere particularlyinthebankingandpostalelds.recentlythesituationhas Polonius:Whatdoyoureadmylord? changed,buttherestillremainsasignicantgapbetweentheperformance Hamlet:Words,words,words. ofresearchsystemsandtheaccuracyrequiredforpracticalimplementations. Shakespeare.Hamlet. nition,fromscanningtoproducingamachine-readabledocumentofrecog- nizedwords.thischapterbrieydescribesthewholesystemandthendetails anumberofissuesrelatingtothecompletedesign,includingadescriptionof thedatabasesusedforexperiments.subsequentchapterspresenttheother Toattempttollpartofthisgap,thesystemdescribedinthisthesishas aspectsofthesysteminmoredetail. beendevelopedtocarryoutalltheoperationsofo-linehandwritingrecog- 4.1Summaryofparts Pageofhandwriting Segmentation ScanningSinglewordimage Parametrization Normalization Encodedword Recurrentnetwork DiscreteHMM RecognitionLikelihoods Languagemodelling Durationmodelling HMM Thesystemdescribedinthisthesiscanbeconvenientlydividedintothesame broadsectionsasarefoundinmostotherhandwritingrecognitionsystems, inahandwrittendocument. mainprocesseswhichmustbecarriedouttoidentifythewords Figure4.1:Aschematicoftherecognitionsystem,showingtheWord O-linehandwritingrecognition 28

30 andproceedsinabottom-upmanner,processingsmalleramountsofdataat successivelyhigherlevelsofrepresentation,toarriveatawordidentitywhich canbeoutputinasciicode. suchasthosedescribedinchapter2.thesystembeginswithdataacquisition CHAPTER4.OVERVIEWOFTHESYSTEM scannerisusedratherthanacamera,toensurecontrolledconditions,especiallyoflighting.avarietyofscannersisavailable,fromhand-heldunits forreadingasmallamountofmaterial,throughat-bedscannersandmachineswithsheetfeedorpage-turning,uptopostalmachineswithavery Tocapturedatafromahandwrittendocument,ingeneralsomesortof fastthroughput. andthenaseriesofimageprocessingoperationsiscarriedouttonormalize theimage,asdescribedinthersthalfofchapter5.thelatterhalfofthat chapterdiscussesthebestwayofrepresentingtheusefulinformationcontainedintheimage.thatchapterandthenextalsodiscussthederivation ofhandwrittenfeaturesfromtheimage,asasuccinctwayofdescribingthe shapeofthehandwriting. Thescannedimagemustbesegmentedintoseparatewords(section4.2) aredescribedtogetherwiththetrainingmethodforeach.fromeachofthese encodedfeatureinformation.threedierentpatternrecognitiontechniques theprobabilitiesarecombinedinahiddenmarkovmodelsystem(chapter8) whichndsthebestchoiceofwordfortheobserveddata.thissystemallows thenaturalincorporationofpriorinformationaboutthelengthsoflettersand aboutarestrictedlistofpermittedwords,aboutthegrammarofalanguage Chapter7thendiscusseshowdataprobabilitiescanbeestimatedfromthe andpotentiallyeventhesemanticcontextofthewriting. 4.2Imageacquisitionandcorpuschoice Thesystemisdesignedtoprocessdatacapturedfromascanner,butfor thenatureoftheproblemtobesolved,thecharacterofthematerial, andsoforth.johnchadwick.thedeciphermentoflinearb. Thesuccessofanydeciphermentdependsupontheexistenceand researchpurposesitisconvenienttoworkonaxeddatabasestoredon availabilityofadequatematerial.howmuchisneededdependsupon usingastandarddatabasetoproduceresultswhichwouldbeeasilycomparablewiththeresultsquotedforothersystems.inthespeechrecognitioncommunitytheproductionofstandarddatabaseshasmadeavailable largecorporaofspeechwhichindividualinstitutionscouldnotcollectthemselves.thishasenabledreliablecomparisonbetweendierentrecognition systemsandencouragedcompetition,albeittendingtonarrowthegoalsof researchtowardsperformingwellonthestandardtasks.however,atthe diskforrepeatabilityandspeed.ideallyworkwouldhavebeenconducted startofthisresearchtherewasnoo-linecursivedatabaseavailable,so O-linehandwritingrecognition 29

31 theonlysolutionwastocollectanewdatabase.subsequentlythecedar database(hull1993)hasbeenreleased,butitisdesignedspecicallyfor numberofspecialproblemswhichdidnotfallintothealreadywidescope thetaskofisolatedwordrecognitionfromaddressblocks,andintroducesa CHAPTER4.OVERVIEWOFTHESYSTEM ofthisresearch.theseproblemsincludehavingtodealwithoverlapping wordsandhavingtoremoveguidelines,envelopepatternsandotherclutter, thoughworkhasbeendonetoremovemuchofthisnoise(doermann1993; Kimuraetal.1993b). andmicrosoft1988)format,whennotcompressed. Thesheets,eachcontaining150{200words,werethenscannedonaat-bed scannerat300dotsperinchresolution,in8bits(256levelsofgrey)toproduce oneleperpage.eachpagetakesabout8mbytesofstorageintiff(aldus gaveclearstrokeswithsharpedges,butthestrokesarewideandoverlap. authoronaplain,whitea4sheet.thewriterusedablackbre-tippenwhich Inthedatabasecollectedforthisresearch,wordswerewrittenbyasingle realconditions,thisproblemcanbedicult.however,thereexistpublished techniquesforperformingthisoperation(garrisetal.1994;yanikogluand Sandon1993)andithasnotbeenstudiedindetailinthiswork.Forthis databaseeachwordwaswrittenwithinawideborderofwhitespacetofacilitatesegmentation.thealgorithmforsegmentationisthusverysimple, merelylookingforblankhorizontallinestopartitionbetweenlinesoftext. Thenexttaskistosegmenteachpageintoitscomponentwords.Under Withinlinesoftext,thealgorithmlooksforlonghorizontalgapsbetween words.ifthealgorithmfails,theautomaticallydeterminedboundingboxes segmentationdisplayed.wordsareautomaticallylabelledbyalignmentwith themachinereadablelewhichwasusedtopromptthewriter. aroundwordscanbemanuallyadjustedusingagraphicaltooldevelopedfor thepurpose.figure4.2showsasectionofapageofdatawiththeautomatic words(`one'to`nineteen',tensfrom`twenty'to`hundred',plus`thousand', `million'and`zero').thesewordswerechosenbecausetheyformacorpus usefulforanapplicationsuchaschequeverication,butthesmallvocabulary Initialtestswerecarriedoutonadatabaseofthenumberswrittenoutas boundingboxesdetectedautomatically. Figure4.2:Asectionofapageofthedatabase,showingthe O-linehandwritingrecognition 30

32 enabledareasonablestudytobemadeinashorttimeandfacilitateddata collection.tenexemplarsofeachofthesewordsweretaken:threetoserve asatrainingsetandfourastestdata(atestsetof124images),plusafurther threetobeusedasavalidationset(seesection7.1.3). CHAPTER4.OVERVIEWOFTHESYSTEM ofthelancaster{oslo/bergen(lob)corpus(johanssonetal.1986).this isanextensivecorpusofmodernenglishcollectedfromawidevarietyof wholecontainsamillionwordswithavocabularyofaround40,000words. sourcessuchasnewspapers,novelsandnon-ctionbooks.thecorpusasa Writingoutsentencesfromthiscorpusgiveslargerdatasetspermittingbettertrainingoftherecognitionsystemandlayingthefoundationsforfuture Subsequently,alargerdatasetwascreatedbythecollectionoftranscripts haveincludedpunctuationandcapitalletters.thevocabularyofthetranscribedcorpusis1334words,andresultsquotedusethislexiconsizeexcept workonlanguagemodellingtoimprovetheresults,basedonworkalready wherestatedotherwise.thesizeofthisdatabaseissucientfortrainingfor testimagesfromwordswrittenbyasingleauthor.initialtranscriptionsconsistedentirelyoflowercasewords,butsubsequentadditionstothedatabase conducted,forinstancebykuhnanddemori(1990).thelobhandwrittendatabasecontains2360trainingimages,675validationimagesand1016 single-authorrecognition,butmoredatawouldbenecessarytotacklethe writer-independenttask. availableasmoreresearchisconductedintheeld.toencouragethisandto encouragecross-testingonmultipledatasets,thedatabasedescribedabove hasbeenmadepubliclyavailable.1 4.3Anoteonresults Itishopedthatmorestandarddatabasesofo-linedatawillbecome Toprovideameasureoftheworthofeachofthetechniquespresented,experimentsaredescribedthroughoutthethesisandthecorrespondingresults comparedbytrainingacompletesystemforeachofthepossibleconditions arepresented.sincethereisusuallynodirect,objectivemeasureoftheeectivenessofonetechniquecomparedwithanother,twotechniquesareoften andtestingonanunseentestset.thenalresultsobtainedarepercentageerrorratesshowingtheproportionofwordsinthetest-setincorrectly classiedbythewholesystem.theseerrorratesareusedtocomparetwo techniquesordetermineanoptimumparametervaluebyholdingallother variablesconstant.thestandardexperimentalconditionsforeachpartofthe systemaremadeclearinthefollowingchaptersasthosepartsaredescribed O-linehandwritingrecognition ftp://svr-ftp.eng.cam.ac.uk/pub/data/handwritingpageimage.tar.gz (andaresummarizedinsection8.4.3),butmanyresultsarepresentedbefore thewholesystemhasbeenexplainedindetail.forcomparison,sincethe standardtestvocabularyis1334words,randomguessingwouldgivea99.9% 1Asampleisavailablebyanonymousftp: 31

33 errorrate,andguessingthemostlikelyword(`the')allthetimewouldgive a93.2%errorrate. initialconditions,resultsaresubjecttoacertainamountofvariation.where Becausethetrainingofrecurrentnetworksisfoundtobedependenton CHAPTER4.OVERVIEWOFTHESYSTEM possible,severalnetworkshavebeentrainedunderconditionsidenticalexceptfortheinitialvaluesoftheweights.fromtheseruns,anestimate^of ofthemean.however,thetrainingofrecurrentnetworksisverycomputationallyintensive,soithasnotbeenpossibletotrainmultiplenetworks out,standarderrorsestimatedfrommultiplerunsundersimilarconditions themeanpercentageerrorratecanbeobtained,ascan^,thestandarderror stancewhenseveralnetworksaretestedundertwodierentconditions,to determineifthedierenceinthemeanerrorrateissignicant.thestatistic foreveryexperiment.inexperimentswhereonlyonerunhasbeencarried arequoted.wheretwotechniquesaretobecompared,statisticaltestsare carriedout.theone-tailedstudent'st-testisusedforpaireddata,forin- R4400Indigowith150MHzclock.Alltimesareapproximate,andtesttimes parisonpurposes,alltimesaregivenastheequivalentforasilicongraphics aregivenastheaveragetimepertestwordoverthewholetestset. ofthetestisdenotedt(degreesoffreedom)andtherelevanttabulatedvalue isshownastsignicance(degreesoffreedom). 4.4Theremainingchapters Trainingandtestingtimesarequotedinthefollowingchapters.Forcom- andthecodingschemesusedtorepresentthedataforrecognition.finally, itdescribesthesimplefeatureswhichcanbeextractedfromtheskeletonof Thenextchapterdescribesthetechniquesusedtonormalizethewordimage, makesanassessmentofthewholesystemandpointstothepossibilitiesfor ahandwrittenword.chapter6describesamorecomplextechniquewhich furtherworkbuildingonthatdescribedinthisthesis. describedinchapter7,andchapter8explainsthesystemusedtomakethe choiceofthebestword,giventheseestimates. operateontheencodeddatatoderivecharacterprobabilityestimatesare canbeusedtoextractlargerscalefeatures.therecognitionsystemswhich Finally,chapter9drawstogethertheresultsofthepreviouschapters, O-linehandwritingrecognition 32

34 Chapter5 Normalizationandrepresentation Thesystemdescribedinthisworkisdesignedtoidentifyahandwrittenword whenpresentedwithascannedimage.asystemcouldbeenvisagedwhich identiedtheworddirectlyfromtheimagepresented,butthetaskofthe recognitionsystemisgreatlysimpliedbypreprocessingtheimage,organizingtheinformationandrepresentingitinamoreaccessiblemanner.the L'ecritureestlapeinturedelavoix. processingtobecarriedoutbeforerecognitionconsistsoftwomajorparts Voltaire. normalizationandrepresentation.therstoftheseattemptstoremove thesecondthenexpressesthesalientinformationcontainedintheimagein aconciseway,suitableforprocessingbyapatternrecognitionsystem.this chapterdescribesthenormalizationoperationsperformedoneachimageby thissystem. variationsintheimageswhichdonotaecttheidentityoftheword,and 5.1Normalization Cursivescriptvariesinmanydierentways.Inadditiontothepeculiaritiesofanauthor'sidioscript,whichmeanthatonewritercanbeidentied togiveadierentappearancetoaword.then,aproceduremustbedeterminedtoestimateeachoftheseparametervaluesfromthesampleword(or several)andnallyanotherproceduremustbefoundtoremovetheeects following: O-linehandwritingrecognition oftheparameterfromtheword.themostobviousparametersincludethe variationistoidentifycertainparametersofthehandwritingthatmayvary tobesolvedhere,allthisvariationisirrelevantandservesonlytoobscure tions,withdierentmediaandfordierentpurposes.intherecognitiontask theidentitiesofthewords,althoughinotherapplications,suchasauthor verication,this`noise'maybeofmostinterest.onewayofreducingthe amongthousands,therearethepeculiaritiesofwritingindierentsitua- 33

35 HeightTheheightofletterswillvarybetweenauthorsforthesametask,and SlantTheslantisthedeviationofstrokesfromthevertical.Thistendstobe foragivenauthorfordierenttasks(forinstancedependentonthesize ofguidelinesgiven,ortheamountoftexttobettedintoaspace); CHAPTER5.NORMALIZATIONANDREPRESENTATION SlopeThisistheangleofthebaselineofawordifitisnotwrittenhorizontally.Evenwhengivenahorizontalguideline,authorswillwriteallor beobserved(srihariandbozinovic1987:p.229); somewordswithnon-horizontalbases.oftenthiscanbeassumedto awriter-dependentparameter,butvariesbetweenwordstoo; StrokewidthThisdependsonsuchfactorsasthewritinginstrumentused, RotationIfthepageisskewinthescanner,thenallthewordswillberotated, thepressureappliedandtheangleofthewritinginstrumentaswellas thepapertype; bestraight,butinextremecasescurved,`hill-and-dale'baselinesmay byaprocessindependentofslantandslopewhichareshearprocesses intheproductionofthehandwriting.inthissystemthough,rotation WordImage Scanned isassumedtobesmallandisremovedbyacombinationofslantand slope-correctiontransforms. HistogramCorrection SlopeEstimation Baseline Correction Slant Smoothingand Thresholding x0 Parametrization Fitting Snake Skeleton Transform Distance Thesystemdescribedhereincorporatesnormalizationforeachofthese tonormalizetheimagebeforeitisencoded. Figure5.1:Aschematicofthepreprocessingoperationsneeded Thinning factors,reducingeachimagetooneconsistingofverticallettersofuniform O-linehandwritingrecognition 34

36 heightonahorizontalbaselineandmadeofone-pixel-widestrokes.figure5.1showsaschematicofthesenormalizationoperations,whichareexplainedinthischapter.thenormalizationprocessdescribedinthefollowing sectionsisillustratedforasamplewordingure5.3. CHAPTER5.NORMALIZATIONANDREPRESENTATION 5.1.1Baselineestimationandslopecorrection Thecharacterheightisdeterminedbyndingtheintuitivelyimportantlines whichareshownrunningalongthetopandbottomoflowercaselettersin gure5.2 theupperandlowerbaselinesrespectively(usingtheterminologyofsrihariandbozinovic),withacentrelinebetweenthetwo.with Upperbaseline Lowerbaseline Centreline theselines,theascendersanddescenderswhichareusedbyhumanreaders indeterminingwordshape(section3.1)canalsobeidentied. HorizontaldensityhistogramVerticaldensity Ascenders Figure5.2:Histograms,centrelineandbaselines. Descenders 1Calculatetheverticaldensityhistogrambycountingthenumberofblack Theheuristicusedforbaselineestimationconsistsofthefollowingsteps: pixelsineachhorizontallineintheimage.verticalandhorizontaldensityhistogramsareshownontherightandbottomedgesofgure5.2. 4Retainonlythepointsaroundtheminimumofeachchainofpixels. 3Findthelowestremainingpixelineachverticalscanline. 2Rejectthepartoftheimagelikelytobeahookeddescender(asinthe letters`gqy').suchadescenderisindicatedbyapeakinthevertical densityhistogram.theminimuminthehistogramabovethispointis foundandtheimageisclearedfromthatpointdownwards. tomakethebaselinehorizontal.thisstraighteningiscarriedoutbyapplicationofasheartransformparalleltotheyaxis(gure5.3c).slopecorrection 5Findthelineofbesttthroughthesepoints(gure5.3b). O-linehandwritingrecognition 6Rejecttheoutlyingpointsandcalculatethenewlineofbestt.Thisis Giventheestimateofthelowerbaseline,thewritingcanbestraightened nowconsideredtobethebaselineofthecharacter. 35

37 CHAPTER5.NORMALIZATIONANDREPRESENTATION (a)initialimage (b)slopeestimate (c)slopecorrected (d)cannyedgesandslantestimate withbaselineestimates. (e)slantcorrected Figure5.3:Successivestagesinthenormalization. (f)skeleton O-linehandwritingrecognition 36

38 canbecarriedoutonwholelinestoremoverotationinthescannedimage orskewedwriting,andthencarriedoutonindividualwordstoremovelocal transformations.next,theheightofthelowerbaselinecanbere-estimated, undertheassumptionthatitisnowhorizontal.theupperlinemaybereestimatedusingasimilarprocedure,thoughthisisfoundtobelessrobust, BozinovicandSrihari(1989)detailacomplexmethodforletterslantcorrec- becauseofthepresenceof`'strokes,whicharehardertoseparatefromthe 5.1.2Slantcorrection bodyoftextthanaredescenders,asbozinovicandsrihari(1989)observe. CHAPTER5.NORMALIZATIONANDREPRESENTATION technique,amorestableversionofthisalgorithmhasbeendeveloped. tion.thisinvolvesisolatingareasofthetextwhicharenear-verticalstrokes ingisthinnerthanexpected.however,bymakinganestimateofthewriting thicknessfromthedistancetransform(seesection6.1)andusinganiterative andestimatingtheslantofeachofthese.thisprocedurewasfoundtobe verysensitivetothethicknessofthewritingandisunreliablewhenthewrit- remainingimageisinhorizontalstrips,someofwhicharetoonarrowtouse aparameterwhichmustbespecied.aftereachsuchrowiseliminated,the andareeliminated.(asecond,lesscriticalparameteristhesmallestheight anyrowswhichcontainlongrunsofblackpixels.themaximumnumberof talrowsinawordwhichcontainhorizontalstrokes.theseareidentiedas consecutiveblackpixelswhichcanbepermittedbeforealineiseliminatedis BozinovicandSrihari'salgorithmcommencesbyeliminatingallhorizon- word.theslantiscorrectedwithashearparalleltothex-axis.figure5.3e acrossallsuchstrokesgivesanestimateoftheaverageoverallslantofthe andtheslantofthelinebetweenthetwoiscalculated.averagingtheslants showsaslant-correctedword. eachofwhichthecentroidsoftheupperandlowerhalvesaredetermined, ofhorizontalstripwhichcanbeusedtoestimatetheslope.)theremainingstripsaredividedintoboxescontainingseparate,near-verticalstrokesin bottomsectionsarenotconnectedandcannotbesensiblyusedtoestimate thestrokeslant. renementistodiscardboxesinwhichthestrokefragmentsinthetopand splitthewordintostrokesforarangeofvaluesoftherun-lengthparameterandtousethevaluewhichgivesthegreatestnumberofboxes.itis undertheseconditionsthatthebestslantestimatesareobtained.afurther Themodicationwhichhasbeenfoundtostabilizethisalgorithmisto andfoundtobemorereliable.thisinvolvesndingtheedgesofstrokes, Kimuraetal.1993a)orbyusinganedgedetectionlter.Bothofthesetechniquesgivesachainofconnectedpixelsrepresentingtheedgesofstrokes. foundtogivepoorslopeestimates,andanalternativetechniquewastried eitherbyndingthecontourofthethresholdedimage(caesaretal.1993a; Theorientationsofedgeswhichareclosetotheverticalareaveragedtogive Inpractice,despitethemodications,thealgorithmwasstillsometimes O-linehandwritingrecognition 37

39 anoverallslantestimate.anestimatebasedonthecanny(1986)edgedetectorhasbeenusedinthissystem.itisfoundtotendtounderestimatethe slantasingure5.3d.yanikogluandsandon(1993)ndasimilarestimate, usingthemodeslantfoundbyedgeoperatorswithin30ofthevertical. CHAPTER5.NORMALIZATIONANDREPRESENTATION Toremovenoisefromtheimage,eitherfromtheoriginaldocument,from 5.1.3Smoothingandthinning scanningdefects,orfromapplyingsheartransformstodiscreteimages,it isusefultosmooththeimage.thisiscarriedoutbyconvolutionwitha onascannedimagewhenusingablackbre-tippenonplainwhitepaper, sourcessuchaspaperquality,ageandcondition;penorpenciltype;poor illuminationwhenusingacameraratherthanaat-bedscanner;andshowthroughfromwritingontheothersideofapage. 2-dimensionalGaussianlter.Ithasbeenfoundthatthereislittlenoise appliedtoreducethestrokesinthewritingtoawidthofonepixelsothey butdegradationfromthisidealsituationispossiblefromalargenumberof canbefollowedlater.thisistheskeletonofthewordshowningure5.3f. ThealgorithmusedwasthatduetoDavies(1990:p.153). algorithmshavebeenwritten,withavarietyofproperties.lametal.(1992) everypixelblackorwhite.nextaniterative,erosivethinningalgorithmis Havingnormalizedandsmoothedtheimage,itisthresholdedtoleave presentacomprehensivereviewwith138references.despitethisdiculty, Suen1984;ArcelliandSannitidiBaja1985)didnobetter.Thereisscope formoreworkonidentifyingasuitablethinningalgorithmforhandwriting, becausetheskeletonistobecoarselyparametrizedlater,asimplealgorithm wasfoundtoworkwell,andotheralgorithmsthatweretried(zhangand Skeletonizationisanotoriouslydicultproblemtosolvewell,andmany foundasthatwhichapproximatesthepathofthepenmostclosely(correspondingtothedatareceivedinanon-linesystem),andnotanalgorithm butitwouldseemthatamodel-basedmethodsuchasthoseofpettierand whenahumanreaderobservesaword.suchaskeletonisprobablybest Camillerapp(1993)andDoermann(1993),whichusetheknowledgethatthe imageismadefromaseriesofstrokes,isthemostpromisingapproach.ultimatelywhatisrequiredisaskeletonwhichrepresentsthestrokesperceived thatbestmatchesahumanapproximationtoapixel-basedskeletonization algorithmashasbeensuggested(plamondonetal.1993).experimentswere alargeerror(oftheorderofthestrokewidth)inthereportedpenposition whenthepenanglevaries.withoutbetterhardware,thisinvestigationcould notbepursued. carriedout,matchingskeletonsofo-lineimageswiththeon-linedatafor thesamewriting,butitwasfoundthatfromconventionaltabletsthereis tobewide,makingskeletonizationdicult.inmanypapers,(e.g.caesar etal.1993a)thestrokewidthissmall,soskeletonizationworkswellandboth O-linehandwritingrecognition Itisworthnotingthatinthedatabasecollectedhere,thestrokestended 38

40 theskeletonandcontourwillgivegoodapproximationstothetruepenpath. 5.2Parametrization CHAPTER5.NORMALIZATIONANDREPRESENTATION desiredistheidentityofthewordsonthepage,aninformationcontentof scannedimage,whichcantake8mbofstoragespace,allthatisultimately theorderofafewhundredbytes.onewayoflookingatrecognitionisas invariantsofthewordsandsuppressesspuriousvariations,thenormalized imageneedstobeparametrizedinanappropriatemannerforinputtothe networkwhichistocarryouttherecognitionprocess.fromtheoriginal Nowthattheimagehasbeenreducedtoastandardform,whichhighlights representationisofprimeimportanceinpatternrecognitionproblemsand caneasilymeanthedierencebetweenaparticularmethodsolvingorfailingtosolveaproblem.theproblemofrepresentationisdiscussedmore aprocessofinformationsiftingwiththeultimateaimofderivingtheword generallybymarr(1982)andwinston(1984:ch.8).speechiscodedusing niquesuchasaconnectionistnetwork,theymustbereducedinnumberand transformedintoaformmoreappropriatethanagreyscaleimage.data identities.inordertoprocessthedataeectivelywitharecognitiontech- techniquessuchaslters,cepstra,melscalebinningandvectorquantization toreducetheamountofdatausedtodescribeaword,anddealswiththe beforeattemptingrecognition.theserepresentationsexpresstherelevant problemofhowthewordshouldbestberepresented. dantvariation.theremainderofthischapterdescribestheprocessesused informationinamuchmoreusefulformthantheoriginaltime-varyingvoltagemeasuredbyananaloguetodigitalconverterattachedtoamicrophone Skeletoncoding Similarly,inscriptrecognition,theuseful,invariantinformationmustbeextractedfromthewrittenwordswhilediscardingthevastmajorityofredun- Themainmethodofparametrizationusedistocodetheskeletonoftheword sothatinformationaboutthelinesintheskeletonispassedontotherecognitionsystem.analternativemethod,basedonthegrey-levelimageisdescribedinsection5.2.3videdintoagridofrectangles.(figure5.4a.)theverticalstrips(frames)are ofaxedwidthforthewholeword,alengthdeterminedbytheheightestimateofthecharacter.typicallythereare6framesinthehorizontalspace occupiedbyonecharacterheight.thisassumesthatthecharacterheight Intheskeletoncodingscheme,theareacoveredbythewordisrstdi- isproportionaltothecharacterwidth,whichisavalidassumptionfornormalhandwritingbyasingleauthor,butwillnotbeasaccurateformultiple writers. O-linehandwritingrecognition 39

41 CHAPTER5.NORMALIZATIONANDREPRESENTATION (a)skeletonwithgrid (b)parametrizedlinesegmentdata Figure5.4:Successivestagesintheparametrization. (c)featuressuperimposedonlinesegmentdata O-linehandwritingrecognition 40

42 intosevenregions,eachofwhichcanbeidentiedasplayingadenite,but distinctroleintherepresentationofhandwriting.theregionsclosetothe upperandlowerbaselinesidentiedinsection5.1.1bothcontainmostof Theverticalresolutionofthegridischosensothatthewordisdivided CHAPTER5.NORMALIZATIONANDREPRESENTATION thehorizontalmovementsinaword,representingtheturningpointsatthe portantintheboumashapeofaletter(section3.1)arefoundintheregions abovethehalf-lineandbelowthebase-line,andtwomoreregionscanbe strokeswhichmakeupthemajorityofhandwriting,aswellascontainingthe tworegionsalsocontaintheendpointsofshortstrokes.themiddleregionbetweenthesetwolinescapturesimportantinformationabouttheshort internaldetailoftheletters`'and`s'.theascendersanddescenderssoim- topandbaseofmostsmallletters,andtheligaturesbetweenletters.these mentofthetrainingdataalsoincreased.thereisavariablenumberofverti- calframesinaword,withlongwordshavingmoreframesthanshortwords, identiedcontainingtheendpointsorloopsofascendersanddescenders. wasslightlylowerbecausegeneralizationwasimpaired;thestoragerequire- butagivencharacterwillalwaysoccupyapproximatelythesamenumber. Foreachoftheserectanglesinthegrid,fourbinsareallocatedtorepresentdierentlineangles(vertical,horizontal,andthelines45degreesfrom Ahigherverticalresolution(16regions)hasbeentried,butperformance these).withinthisframework,thelinesoftheskeletonimageare`coarse coded'asfollows. skeletonentersanewboxinthegrid,thesectioninthepreviousboxiscoded accordingtoitsangle.theboxassociatedwiththissegment's(x;y;)values isnow`lled'(settoone).segmentswhicharenotperfectlyalignedwiththe anglesofthebinscontributetothebinsrepresentingthetwoclosestorientations.thisrepresentationcanbeseentoresemblethehubelandwiesel cellswhichcodeinformationearlyinthevisualcortex.thesearetunedtoa Theone-pixel-widelinesoftheskeletonarefollowed,andwhereverthe particularspatiallocationandangle,butalsorespondtoedgesorbarswith similarparameters.caesaretal.(1993b)andbengioetal.(1994a)usesimilarmethodsofrepresentingo-lineandon-linecursivescriptrespectively. Thisprovidesthelatterwithamethodforcodingthespatialrelationshipsof nearbystrokes,andovercomingtheproblemsofdelayedstrokes. afullbinanditspositionandorientationcorrespondroughlytotheposition onthe`'strokewhichisbetweentheverticaland45degreessoboththese linesareshowninthecorrespondingboxesingure5.4b. andorientationofthesectionofskeletonwhichgaverisetoit.becauseof thecoarsecoding,somelinesegmentscontributetotwobinsandthisisseen Hereafter,therstframeofdataintherepresentationofawordwill Figure5.4bshowstheinputpatternschematically.Eachlinerepresents denotedxts. O-linehandwritingrecognition bereferredtoasx0andthenalframex.theframes(xs;:::;xt)willbe 41

43 frameswerechosenbyblindlydrawingagridonthewordimage.thewidth oftheframeswaschoseninproportiontothecharacterheight.inpracticethough,characterheightandwidthvaryindependentlyfromauthortpendently.also,ratherthanblindlyplacingtheframes,itwouldbebetterif theycouldbealignedmorewiththedata.asingleframecouldthencontain allofaverticalstroke,ratherthanstrokesslightlyotheverticalendingup intwoadjacentframes. Theabovedescriptioncodedalltheframestobeofequalwidth,andthe 5.2.2Non-uniformquantization CHAPTER5.NORMALIZATIONANDREPRESENTATION author,soitwouldbebetterifthesescalefactorscouldbeestimatedindetentiallettersegmentationpoints.afterthewordhasbeennormalized,but issimilartothesystemusedbyyanikogluandsandon(1993)forndingpo- Tocorrectthesetwoproblems,asimplesystemhasbeendevised,which perimposedonthehistogramoftheoriginalwordanditsskele- ton. Figure5.5:Thenon-uniformhorizontalquantizationschemesu- segmentsfoundunderthisscheme.thisquantizationschemeisnotcompletelyrobust,assmallchangesintheimagecanleadtodierentnumbersof minimaarefarapart,toensurethattheframesdonotexceedacertainwidth (chosenaccordingtothecharacterheight).figure5.5showsthecentresof maximaandminima,despitethesmoothing.abetterschemecouldperhaps frameboundariesaredenedtobethemidpointsbetweenadjacentmaximum/minimumpairs.furtherframesareaddedwherethemaximaand Themaximaandminimaofthesmootheddensityhistogramarefound,and beforethinning,thehorizontaldensityhistogramiscalculatedandsmoothed. O-linehandwritingrecognition 42

44 bedesigned,butthisonehasimprovedresultsovertheuniformquantization, asisshownintable5.1. CHAPTER5.NORMALIZATIONANDREPRESENTATION QuantizationSizeofErrorrate method network^^ dierentquantizationschemes.resultsareshownfornetworks Table5.1:Errorratesfornetworkstrainedondatasampledby Uniform Non-uniform withdierentnumbersoffeedbackunits(section7.1.3) Analternativeapproach Insteadofcodingtheimageinthiscomplicatedfashion,itmaybeasked whetheritwouldnotbemucheasiertosimplypresenttherecognitionsystemwiththeimagedirectly.thiswouldreducetheamountofprocessing similarnumberofbinstotheskeletoncoding.figure5.6showssuchan required,andskeletonizationartefactswouldnotdistortthedata.thesame undersampledgrey-levelimage.eachpixelisstoredin8bitsor256levelsof normalizationproceduresmustbecarriedouttogivescale,slantandslope grey. independenceandtheimagemustbesub-sampledtoobtainamanageable amountofdata.hereaverticalresolutionof32pixelsisusedforcoding letterswiththeirdescendersandascenders.thismakeseachpixelapproximatelysquarewhenusingthesamehorizontalquantization,andgivesa O-linehandwritingrecognition Figure5.6:Theword`pound'undersampled. 43

45 theskeletoncodingmethodintable5.2.theskeletoncodinggivesamuch lowererrorrate. Theresultsobtainedforthispreprocessingtechniquearecomparedwith CHAPTER5.NORMALIZATIONANDREPRESENTATION Table5.2:Errorratesusinglinesegmentandundersampling preprocessingmethods. RepresentationErrorrate% Linesegments Undersample ^ ^ 5.3Findinghandwritingfeatures Theprevioussectionshavedescribedhowtheoriginalwordimagecanbe normalizedandencodedinacanonicalformsothatdierentimagesofthe samewordareencodedsimilarly.however,thecodingonlyrepresented performedonthewriting. low-levelinformationabouttheword,andcodeditfairlycoarselytoreduce DotsDotsabovetheletters`i'and` featurescanbeeasilydiscernedfromtheprocessingthathasalreadybeen theinformationburden.theperformanceoftherecognizercanbeimproved describesamethodofndinglarge-scalefeatures,butanumberofuseful bypassingitmoreinformationaboutsalientfeaturesintheword.chapter6 JunctionsJunctionsareeasilyfoundintheskeletonoftheword,aspoints rules.short,isolatedstrokesoccurringonorabovethehalflineare markedas`i'dots. strokesmeetorcross. withmorethantwoneighbours.junctionsindicatepointswheretwo 'canbeidentiedwithasimplesetof EndpointsEndpointsarepointsintheskeletonwithonlyoneneighbour LoopsLoopscanbefoundfromtheskeletonorbyperformingaconnectedcomponentanalysisontheoriginalimage,tondareasofbackground oftheskeletonizationalgorithm. upwardtodownwardarerecordedastopturningpoints.similarlyleft, TurningpointsPointswhenthedirectionofaskeletonsegmentchangesfrom andmarktheendsofstrokes,thoughtheycanbeproducedasartefacts rightandbottomturningpointscanbefound. O-linehandwritingrecognition colournotconnectedtotheregionsurroundingtheword.aloopis 44

46 ingsrihariandbozinovic(1987),usethetopologyofawordasafeature. Howeverthisisnotalwaysagoodchoiceofinvariantsinceextraloops codedbyanumberrepresentingitsarea.anumberofauthors,includ- caneasilybeformed,orloopsthatcouldbeexpectedmightnotbefully CHAPTER5.NORMALIZATIONANDREPRESENTATION closed.ascenderscanbecomeloops,`t'strokescanjoinupwithother letterstocreatealoop,andnormallyclosedletterslike`a'and`o'can steadoffouranglebinsateachverticalposition,tenfeaturesareencoded, arerecordedalongwiththeanglebinsforeachhorizontalstrip.thusin- usefultoknowwhetheraloopordotispresentinaparticularframe,the positionsoftheendpoints,turningpointsandjunctionsareusefulandthey Eachofthesefeaturescanbeencodedinasinglebinbut,whileitisonly beleftopenorlledinnormalhandwriting. (7(4+4+2)+2),buttheadditionalinformationimprovesthenetwork's performance.someofthesefeaturesareshowningure5.4c,superimposed onthelinesegmentfeatures.endpointsareindicatedby`'shapes,turningpointsby`<'andjunctionsby`'.table5.3showstheperformance improvementobtainedbyaddingthesefeaturestotherepresentation. horizontalbands,thisincreasesthesizeofaframefrom28bytes(74)to72 andanextratwofeaturesareassociatedwiththewholeframe.withseven Table5.3:Errorratesusinglinesegmentcodingmethod,with andwithouttheskeletonfeatures. Representation Linesegmentswithfeatures Errorrate% ^ ^ moreeectivethanonebasedonthegreyleveloftheimage.featureshave beenextractedfromtheskeletonandarefoundtoimproverecognitionfurther. Thischapterhasdescribedavarietyofnormalizationmethodsforhandwrittenwordsandthendescribedacodingschemeforthosewords.Ithasbeen shownthatacodingbasedonextractinginformationfromtheskeletonis 5.4Summary O-linehandwritingrecognition 45

47 Chapter6 Findinglarge-scalefeatureswith snakes Lettherebesnakes!Andsnakestherewere,are,willbe::: wasseenthatthefeaturesgenerallyheldtobeofmostsignicanceinreadingwerelarger-scale,stroke-likefeatures.itwouldbehighlydesirableif informationaboutthepresenceofsuchfeaturescouldbedeterminedand conciselyencodedforuseinrecognition. scalefeaturesforrecognition,indeedsomearebasedentirelyontheuseof suchfeatures.thischapterdescribesanewmethodofautomaticallyndinga largeclassofstroke-likefeaturesincursivewordswrittenwithbroadstrokes. Beforedescribingthemethodusedinthissystem,itisworthlookingatthe methodsthathavebeenusedbyotherauthors. Anumberofo-linehandwritingrecognitionsystemshaveusedlarge- oninformationfromasmallareaoftheimage.however,insection3.1it thelocationandorientationofthelinesegmentsintheskeleton.thiscodingwasthenextendedtoincorporatelow-levelfeatureswhichcouldbeeasilyidentied.allofthesefeaturesweresimpleandlocal dependingonly Thepreviouschapterdescribedacodingforhandwrittenwordswhichrecords SilviaPlath.Snakecharmer. contoursofthewordimages.thefeaturesthataredenedareshortandlong linedatafromon-linetracinginformation,whichseemstohavegivensmooth curvesandnarrowstrokes.however,deningrulesthatwillreliablypickout featureswhenthereisnoiseisextremelydicult,andrelyingonthecontour meansthatfeaturesthatrunacrossintersectionscannotbedetected. strokes,curvesections,loopsanddots.theseauthorsconstructedtheiro- SrihariandBozinovic(1987)denetheirfeatureswithrulesbasedonthe tertorepresentstroke-likefeaturesinon-linehandwriting.theytanum- berofprototypestrokefeaturestotheon-linehandwrittenstring,anduse theidentitiesofthestrokesthatmatchedtondletterhypothesesandeventuallywordmatches.themethodisdescribedasopticalmatching,butthlowcurve-ttingtothecontouralone.becausestrokecontoursaresmooth, dataisagaincollectedfromagraphicstabletsothestrokesarenarrowandal- Edelmanetal.(1990)useamethodsimilartothatdescribedinthischap- O-linehandwritingrecognition 46

48 enoughstrokescanbematchedreliablyalongthelengthofthestrokesequence,andletterhypothesescanbeproposedsolelyonthebasisofthese features. CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES andnarrowstrokes.theyoperateonthecontouroftheimage,butthefeaturesthatshouldbedetectedarethestrokes,whicharebettercharacterized chapterdescribesamethodofndingthecentresofstrokesregardlessofthe 6.1Findingstrokes thicknessofthestroke,theirregularitiesinthestrokeedges,orthepresence ofoverlappingstrokesoredges. Theproblemwithbothoftheabovemethodsisthattheyrequirecleandata soanaturalchoiceofrepresentationtoconsideristhedistancetransform. Thisassignsavalue,D(x;y),toeachpixel(x;y)inthethresholdedimage, bythepathofthepencentrethanbyeithertheleftorrightedge.thus,this conesinthedistancetransform,thetransformincreasingthefurtherapoint isfromtheedge,andstrokesbecomeridges.nowdetectingstrokecentres whichisthedistanceofthatpixelfromthenearestbackgroundpixel,zeroif thepixelisitselfpartofthebackground.thuscirclesintheimagebecome Thecentresofstrokesarethosepartswhicharefurthestfromtheedges, Snakesaredeformablesplines(smoothcurvesegments)placedinapotential becomesaproblemofndingridgesinthedistancetransform.themethod chosentondtheseridgesissnakes. 6.2Snakes eldwhichtranslateanddeformtoreducetheirpotentialenergy.traditionallytheyhavebeenusedtondedgesingreylevelimages,byaccordinglotourstohighcontrastedges.suchauseisseenintheoriginalpaperofkass etal.(1987).furtheruseshaveincludedtrackingcurvesectionsinvideosequences(cipollaandblake1990),andextractionoffeaturesfromfaces(yuille potentialstoareasofhighcontrastsothatthesnakeseekstomatchitscon- etal.1992).inthelattercase,aparametricmodelwasbuiltforeachofthe featurestobeextracted(e.g.eyes,mouth)andthesewerettedtorealimages.leymarie(1990)usessnakestondskeletonsinmuchthesamewayas theyareusedhere,attemptingtondmaximaofthedistancetransform.the planeandtheactualsplinepathgeneratedisaninterpolationofthesepoints (gure6.1),eachpointx(s),s2[0;n 1]onthepathbeingaweightedsum remainderofthissectiondescribesinmoredetailthemechanismunderlying thesnakes'operation. seriesofncontrolpointsfpi:i=0;:::;n 1gisdenedinatwo-dimensional ofthenearestcontrolpoints'positions.b(s)isapolynomialfunctionwhich O-linehandwritingrecognition TheshapesofsnakesaregovernedbycubicB-splines(Pavlidis1992).A 47

49 theparameterswhichincreasesfromoneendofthecurvetotheother.the determineshowmuchweightisgiventoeachcontrolpoint,accordingto tom'controlpointsp 1=2p0 p1,andpn=2pn 1 pn 2. B-splineisforcedtoterminateattheendcontrolpointsbygenerating`phan- CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES B(s)=8><>:16s3 x(s)=nx i= 1B(s+2 i)pi (s 2)3 (s 2)22<s3 16(4 s) (s 2)3 (s 2)21<s2 0s1 3<s4 elsewhere: (6.1) morecomplexshapes,morecontrolpointscanbeadded,buteachpointon thecurveisonlydeterminedbythefournearestcontrolpoints.other(noncubic)splinescanbedened,interpolatingmoreorfewercontrolpoints.the weightingpolynomialsensurecontinuityandsmoothness(c2). Objectp2 p 1p0p1 Normal x(s) p3p4 onanimage.howitmoves,accordingtothefeaturesintheimage,must nowbedened.apotentialfunction f(x;y)isdenedonthepixelsf(x;y)g Giventhepositionsofthecontrolpoints,thesnakecannowbelocated transformalonganormal. Figure6.1:Asnakewithfourcontrolpointsandthedistance Distancetransform Thesplineshowningure6.1hastheminimumfourcontrolpoints.For (6.2) computation. intensityi,contrastjrij2or,asinthiscase,thedistancetransformd(x;y). ins.ateachsamplepointskthenormaltothecurveissearchedforthe wherethesnakeistobeattractedtocurvesofhighvaluesinf.fmightbe O-linehandwritingrecognition Herethecity-blockmetricD=jxj+jyjhasbeenusedforsimplicityof ThesplinecurvesaresampledsothatMsamplesaregeneratedperunit 48 Snakelocation Idealdisplacement

50 snaketowardsthelocalmaxima.sinceeachsamplepointisaweightedsum minimumofthepotentialfunction fwithinacertaindistanceoneither side.thedisplacementoftheminimumisrecordedforeachsamplingpoint, andthesedisplacementsarethenaddedtothecontrolpointstomovethe CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES thedisplacementd(s)isdistributedamongthesecontrolpoints: ofthenearestfourcontrolpoints: x(sk)=b(sk+2 i)pi+b(sk+1 i)pi+1+b(sk i)pi+2 Thenewcontrolpointsdeneasplinewhichliesclosertothelinesoflocal pi(t+1)=pi(t)+1mxkb(sk+2 i)d(sk): +B(sk 1 i)pi+3; (6.3) maxima,andaftertwoorthreeiterationsagoodmatchwillbefoundifone ispresentinthesearchareaaroundthesnake'sinitialposition. (6.4) Asdenedabove,thesesnakesdonotservethepurposeoffeaturerecognition.Theyareveryexible,soanysnakecanadapttotawiderangeof featureshapes,evencollapsingtoapointinsomepotentialwells.tocomvature.thisgeneral`straightness'constraintsuitsthepurposesoftrackinpensateforthis,kassetal.deneaninternalenergybasedontheintegral ofrstandsecondderivativesalongthesnake'slength,topenalizehighcur- edgesinimages,buttondfeatures,theconstraintsneedtobechosenso thatthesnakecanonlymatchfeaturesofaparticularshape. ture,butabletomatchinstancesofthatfeaturewholeshapesvarysome- ofthepdmisperformingprincipalcomponentanalysisonthecovariance whichtheyuseasshapedescriptorsforvariousobjectssuchasheartsinmagwhat.cootesandtaylor(1992)describe`pointdistributionmodels'(pdmsneticresonanceimagesandresistorsonimagesofcircuitboards.theessence matrixofthecoordinatesofthecontrolpointsofasnake,andrestrictingthe Anumberofmodelsmustbegenerated,eachmatchingaparticularfea- 6.3Pointdistributionmodelsandconstraints snake'sshapetomatchshapesthathavebeenseeninatrainingset. feature,forinstancetheshortverticalstrokeofan`i',thepositionsofthe controlpointscanberecordedandstatisticsgathered.ifthekthexample featurehaspositionsk=(pk;0;:::;pk;n 1)Tthecentroidofthatexamplecan befound: IfasnakewithncontrolpointsisplacedonKexamplesofaparticular O-linehandwritingrecognition pk=pipk;i n: (6.5) 49

51 subtractingthecentroidsandaveraging: Themeandisplacementofeachpointfromthecentroidcanbecalculatedby CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES sisthemeanshapeofthefeatureandrepresentsatypicalexample.ifthe sk=(pk;0 pk;:::;pk;n 1 pk)t s=pksk K: (6.6) itcanbeconsideredasavectorof2ncoordinatesandthe2n2ncovariance deviationofaparticularexamplefromthemeanshapeofafeatureisfound: sk=sk s; (6.7) matrixoftheshapescanbefound: =PksksTk K: (6.9) (6.8) ofvariationinthesystem.thisisdonebydiagonalizationofthecovariance matrix.eacheigenvectorshowsacorrelationinthevariationofthepoint coordinates a`mode'ofvariationinwhichthepointsconcernedhavelinearlyrelateddisplacements.theeigenvaluesgivetheextentofvariationin eigenvectorcapturesmostofthevariationinthemodelshape.thesemodes thedirectionofthecorrespondingeigenvector,sothelargesteigenvalue's PrincipalComponentAnalysiscanbecarriedouttodeterminethemodes arestrikinglydemonstratedincootesetal.'s(1992)resistormodelwhere positionoftheresistoronitswire,thebendofthewire,andtheshapeofthe resistorbody.figure6.2showsthemajormodesofvariationoftwofeature models. therstfewmodescorrespondtonaturalphysicalparameterssuchasthe thecentroidofthesnakeiscalculatedfromthenewcontrolpointcoordinate snakewithnoconstraints,fromoneiterationofthetechniquesofsection6.2, strainthevariationofasnake.havingworkedoutthenewpositionofa Havingdeterminedthesemodesofvariation,theycanbeusedtocon- Figure6.2:Snakemodelsfor`n'and`o'featuresshowingthe vector.transformingthisdierenceintothecoordinateframeoftheprincipal majormodeofvariationwithin1:5ofthemean. theminormodesissuppressedsincethisrepresentsdeviationfromthespace oftypicalstrokeshapes.themahalanobisdistanced2(s)=st 1s O-linehandwritingrecognition componentsgivesthedeviationfromthemeanineachdirection.variationin showshowmuchthesnakedeviatesfromthemodel.thisdistancescales 50

52 downvariationalongtheprincipalaxes,givingameasureofhowmanystandarddeviationsthesnakeliesfromthemean,assumingthatdeviationsof snakesfromthemeanaredistributedasagaussianellipsoid.ifthedistance istoogreat,itcanbereducedbyscalingdownallcomponentsofthedeviation.theconstraineddeviationisthentransformedbacktotheoriginal haveashapesimilartothoseobservedinthetrainingset. coordinates,andaddedtothecentroidtogenerateanewsnakewhichwill applicationoftheconstraintsaretwoseparateprocesses,andbecausethe imagespaceisquantized,itispossiblethatthesnakeentersacycleofdisplacingontothemaximumandbeingconstrainedtoitsoriginalposition.the snakethusneverreachesastableposition.toavoidthiscase,thettingprocessisstoppedafteramaximumof10iterations,thoughamatchisusually foundafterjust2or3iterations. Becausethedisplacementtondthedistancetransformmaximaandthe CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES chosen.theseauthorsdonotusethedistancetransformforthematch,but insteadrelyontheskeleton,whichcanoftenbedistortedawayfromthe matchedtopre-segmentedimagesofhandwrittencharactersfromapostcode database.eachmodeliscomparedwitheachimage,andthebestmatchis modelsforisolatedcharacterrecognitionforpostcodereading.hereamodel isproducedforeachof36alphanumericcharactersandthesemodelsare Lanitis(1992)andLanitisetal.(1993)haveinvestigatedtheuseofthese 6.4Trainingfeaturemodels Inthisworktheideasofsplinesandprincipalcomponentanalysisintheform actualstrokesatintersections. ofpointdistributionmodelshavebeenlinkedtogethertoformconstrained B-splinemodelsoffeaturesofhandwrittenletters. eachofthesplinecontrolpoints;thepermittedrelativevariationsinthese iesthesefeatureshavebeen:`n'hump;`u'trough,whichalsomodelsliga- tures;`i'stroke(foundinmanylettersincluding`u'and`n');`'cross-stroke; ascender;descenderand`o'shape.eachofthesefeaturescanbemodelled byasinglespline,thoughothermodelssuchas`_'maybeconstructedby joiningmorethanone.eachmodelcontainsthemeandisplacementsof Onemodelisconstructedforeachfeaturetoberecognized.Ininitialstud- pointpositions,givenbythecovariancematrix;andthemeanandvarianceoftheobservedyco-ordinateofthecentroidspk,torecordhowhigh inawordthefeatureoccurs.thepreprocessordeterminescharactersize,so thecoordinatesarenormalizedtobeindependentofthewritingsize. acteristicsofthefeature: O-linehandwritingrecognition Initiallyaseedmodelisgeneratedbyhandtodescribethegeneralchar- Thenumberofpointsneededtomodelthefeature.Forasmall,straight feature,onlyfourpointsmaybenecessary.foralongerlineoracurve, 51

53 Thefeaturetopology(looporline)andtheinterconnectionofthesplines sixarefoundtobeadequate,butforan`o'or`s'feature,eightpoints arerequiredtorepresenttheshape. (whethertheyforman`_'orwhetheraloophasatailornot). CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES Thepositionofthefeatureinacharacter whetherthefeatureisin meantomatchthestroke.whenthepotentialminimumhasbeenfound,the ofhandwrittenwords.initiallythiscanbebypointingoutfeatureinstances manually,andallowingtheseedmodeltodeformwithoutconstraintfromthe Theinitialshapeofthefeature. Theseedmodelsarenowmatchedtoinstancesofthefeaturesinimages anascender,adescenderorinthemiddlesectionoflowercaseletters. snake'sshapeisaddedintothestatisticsofobservedshapes.whenagood recognizer. 6.5Findingfeaturematches modelhasbeenfound,thisprocedurecanbeautomatedsothatthefeatures inawordarefoundautomatically.theautomaticfeaturespottingisused Havingcreatedamodelforeachofthefeaturestobefound,thenextstepis bothtotrainthemodelsandsubsequentlytospotthefeaturesusedinthe constrainedtoliewithinstandarddeviationsofthemeanshape sothe themodel,isplacedattheleftedgeoftheword,andpermittedtodeform tondalloccurrencesofeachfeatureintheword.themethodsdescribed abovewillndafeaturematchifoneliesclosetothestartingpositionofthe snake,sosnakesmustbeplacedatregularintervalsalongthewordtodetect allthefeaturespresent.asnake,whoseshapeisinitiallythemeanshapefor tomatchthedistancetransformpotential,butwiththedeformationbeing shapewillalwaysbesimilartoshapesalreadytakenbythatfeaturebefore. (For,avalueof1hasbeenusedhere.)Abestmatchgiventheconstraintsis foundbyiteratingforalimitednumberoftimesoruntilthesnakeceasesto representingthedegreeofsupportthatthedataprovidesforthemodeland move.shouldthesnakemoveaboveorbelowthebandwhereitisnormally isdetermined. theamountofdeformationofthemodelrequiredtotthedata.thesupportisthesumoftwocomponents:thesumofthedistancetransformalong found,forinstancea`'strokefeaturematchingthetopofan`r',thenitis rejected.otherwise,thedegreeofmatchbetweenthesnakeandtheimage backgroundpoints,andthedeformationismeasuredwiththemahalanobis distanced(s)ofthematchshapefromthemeanshapeofthefeature. thelengthofthesnakeplusanextraweight,w,forallpointsthatarenot Thedegreeofmatch,M,isdenedasthedierenceoftwocomponents, O-linehandwritingrecognition M=Xkf(x(sk))+wk d(s) (6.10) 52

54 Snakeswithscoresgreaterthanathresholdareacceptedasfeaturematches, andtheremainderarerejected.theextraweightactsasapenaltyforthe CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES (typically7)andthevalueofthethresholdisadjustedinaccordancewiththis modelcrossingareasthatarenotstrokes.itsvalueisdeterminedempirically wherewk=(wiff(x(sk))6=0; valueandthemeanvalueofthedistancetransform.thismakesthematching 0otherwise: (6.11) processindependentofthewidthofthestrokessincethickstrokesgiveridges withhigherdistancetransformvaluesthanthinstrokes.themeanvalueof thedistancetransformisalsousedtoindicatethestrokewidthinthemodiedslantdetectionalgorithm,andtogivethespatialfrequencyparameter forthecannyedgedetector(section5.1.2). nottakenintoaccount,the`l'modelmightappeartomatchthe`b'along itswholelength.sinceonlyasmallpartofeachimageistobematchedata time,suchameasurewouldbeinappropriatehere. components theamountofdatamodelledbythesnakeandapenaltyfor theamountofdatawhichthesnakefailstomodel.thisistoprevent,for example,an`l'modelbeingmatchedtoa`b'.iftheunmodelleddatawere ThisisincontrasttothemeasureoftusedbyLanitis,whoaddstwo isrepeateduntilthewholewordhasbeensearchedforthatfeature.inthis way,eachfeatureismatchedacrossthewholeofeachwordinthetraining set.itispossiblethattwosuccessiveplacementsofasnakewillconverge tothesamefeature,butmultiplematchesofthissortcanberejectedonthe themeanandisdisplacedtotherightbyhalfitswidth,wheretheprocedure basisofthexco-ordinatesofthecentroidsbeingveryclose.figure6.3shows Aftereachmatch,theshapeandheightofthesnakeisre-initializedto correspondstothecentroidofthematchingmodel.infactonemodelmight spanseveralframes,butthematchisonlyrecordedinthecentralframe. allthematchesforthefeaturesusedinavarietyofwords. bytepersnakemodelisallocatedineachframe,andwheneverafeature matchisfoundthisisrecordedintheappropriateplaceintheframewhich processingformatdescribedinthepreviouschapter.inthiscase,onemore Forthisapplication,thefeaturematchesmustbecodedinthesamepremation. Table6.1:Errorrateswithandwithoutincludingsnakeinfor- Method Withsnakeinformation Without Errorrate(%) ^ ^ tiontothebasicskeletoncodingofchapter5.addingthefeaturesintothe O-linehandwritingrecognition Table6.1showstheimprovementgainedusingsnakefeaturesinaddi- 53

55 CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES (a)`u'feature (c)`i'feature (b)`n'feature (e)descender (f)`o'feature (d)ascender representationreducesthesystemerrorrate. Figure6.3:Dierentfeaturesfoundautomaticallyinseveral 6.6Discussion words. Thespeedofthepreprocessingalgorithmshasnotbeendiscussedsofar, sincethesystemdescribedherehasbeendesignedforexibilityincomparingalternativealgorithmsratherthanformaximumspeed.inparticular,a largenumberofintensiverasteroperationsarecarriedout,whichcouldbe combinedforgreaterspeed.thespeedofpreprocessinginthecurrentsystemisapproximatelyonesecondperword.thiscouldeasilybeconsiderably Forthesamereason,itisfoundthatmaintainingausefuldegreeofexibilityintheconstraintsonan`o'featuretomakeittawidevarietyof`o's meansthatitisalsoexibleenoughtocollapseandmatch`i'strokes.furtherindividualconstraintscouldbeimposed,inthemannerofyuilleetal. Itisdiculttohavemanyfeaturessincewithwidestrokes,featurestend easilyparallelizableforanapplicationrequiringhighspeed. tooverlapintheirrolesandmatchthesamepartsofwords.forexample ifoneweretotraina`'shape,itwouldbelikelytomatch`i'strokestoo. reducedbyoptimizingtheprogram,andmanyoftheoperationsshouldbe O-linehandwritingrecognition (1992),butwouldmeanlosingthesimplicityofthissystem.Ifthematching andconstraintscouldbemademorereliable,itwouldbedesirabletomake 54

56 amorecompletesetofsnakefeaturesthatwouldprovideacompletecover ofthewordimage,accountingforalltheink.suchacodingcouldbeused asacompleterepresentationoftheword,muchmorecompactlythanthe skeletonrepresentation.then,aswithedelmanetal.'ssystem,recognition CHAPTER6.FINDINGLARGE-SCALEFEATURESWITHSNAKES doforisolatedcapitalletters.hintonetal.(1992)alsousesplinemodelsfor thecharacter.theyuseprobabilisticmethodstodeneanenergymeasure entirecharacters.theymodeltheinkofdigitimagesasbeinggenerated givingmatchesforwholecharacterswithinacursivestringasthoseoflanitis bygaussiansourcesdistributedalongasplinewhoseshapematchesthatof couldbebasedonthisrepresentationalone. whichisminimizedtoadapttheirmodelstothedata.whilethemethodis Alternatively,charactermodelscouldbedevelopedfrommultiplesnakes, otherapproaches.suchwholecharactermodelscouldalsobeadaptedto attractive,theauthorsadmitthatitisslow,andhasnotproventomatch multiplepositionsinacursivewordtondreliablecharactermatches,either forpreliminarylexiconreductionasdonebycherietandsuen(1993)oras anadditionalsourceofknowledgeforanyrecognitionsystem. O-linehandwritingrecognition 55

57 Chapter7 Recognitionmethods thealphabet,whichareveryfew,inalltheirrecurringsizesand aspacelargeorsmall,buteverywhereeagertomakethemout;and :::inlearningtoreadweweresatisedwhenweknewthelettersof combinations;notslightingthemasunimportantwhethertheyoccupy viouschapter.avarietyofpatternrecognitionmethodsisavailable,and notthinkingourselvesperfectintheartofreadinguntilwerecognize manyhavebeenusedforhandwritingrecognitionbyotherauthors.here istorecognizewhatisrepresentedbytheframesofdatacreatedinthepre- Thenextstageintheprocessofdeducingwordidentitiesfromhandwriting themwherevertheyarefound. threetechniquesarepresentedwhichcalculateanestimateoftheprobabilityofanygivenframebeingpartoftherepresentationofagivenletter.how theseprobabilitiesarecombinedtogethertondthemostlikelywordis explainedinthenextchapter;thischaptersimplydescribeshowtheseprobabilityestimatescanbederivedabilitiesfromasequenceofdata.thespeechrecognitioncommunityhature,threemainmethodsemerge.hiddenmarkovmodelshavebecomethe beenndingsolutionstothisproblemforsometime,andtheirsolutions areapplicabletotheproblemofhandwritingrecognition.fromthelitera- mostwidelyusedapproachtomodellingspeech(e.g.woodlandetal.1994). Feed-forwardneuralnetworkshavebeenusedbyseveralauthors,including Thereareseveralestablishedmethodsofestimatingasequenceofprob- Plato.TheRepublic. BourlardandMorgan(1993),andrecurrentneuralnetworkshavealsobeen works(tdnns),aformoffeed-forwardnetwork,areusedbyschenkeletal. successfulinthiseld(robinson1994). (1994)andMankeandBodenhausen(1994). speechrecognitionsystemwithhandwrittendata.time-delayneuralnet- thehiddenmarkovmodelsofbellegardaetal.(1994),nagetal.(1986)and Starneretal.(1994).Thelatterhaveobtainedgoodresultssimplyusinga matingprobabilitiesforshortsectionsoftheinputdata.amongtheseare Otherauthorshaveusedtheseapproachestoon-linerecognition,esti- O-linehandwritingrecognition 56

58 nolongerareadilyapparenttime-orderingofinformation.insteadthex-axis isdivideduptogivesuccessiveframes,processedleft-to-rightinthesame wayasscanningprocessesofreading.caesaretal.(1993b)andgillouxetal. Thesemethodsarealsoapplicabletoo-linehandwriting,thoughthereis CHAPTER7.RECOGNITIONMETHODS usesafeed-forwardnetworkforclassifyingo-linehandprintedstrings. odsofestimatingthedatalikelihoodsp(x0ji)whichareusedtondword likelihoodsinthenextchapter.theremainderofthischapterdescribeseach tionwithmanyparallelfeaturesperframethatisusedhere.breuel(1994) useasparsex-orderedseriesoflarge-scalefeatures,unliketherepresenta- (1993)usehiddenMarkovmodelsforo-linerecognition,thoughthelatter model,thoughintensivestudywasnotmadeoftdnnsbecausetheydidnot performaswellastherecurrentnetworksinearlytrials. Inthiswork,allthreeofthesemethodshavebeeninvestigatedasmeth- 7.1Recurrentnetworks Thissectiondescribestherecurrenterrorpropagationnetworkwhichhas beenusedasoneoftheprobabilitydistributionestimatorsforthehandwritingrecognitionsystem.recurrentnetworkshavebeensuccessfullyapplied tospeechrecognition(robinson1994)buthavenotpreviouslybeenusedfor handwritingrecognition,on-lineoro-line.herethetimeaxisisreplaced bythehorizontaldisplacementthroughtheword,framesrepresentingnota speechsignalovertime,butsuccessiveverticalstripsfromaword,working lefttoright.arecurrentnetworkiswellsuitedtotherecognitionofpatterns occurringinatime-seriesbecausethesameprocessingisperformedoneach process,whereveritoccursinaword.inaddition,internal`state'unitsare sectionoftheinputstream.thusaletter`a'canberecognizedbythesame availabletoencodemulti-framecontextinformationsolettersspreadover severalframescanberecognized. desiredfunctionapproximation.inthiscasethenetworkistaughttorecognizelettersandthefunctionstobeapproximatedareletterprobability distributionsp(ijxt0). perceptronswithnonlinearactivationfunctions,asdescribedbyrumelhart etal.(1986).theoutputoiofaunitisafunctionoftheinputsajandthe networkparameters,whicharetheweightsofthelinkswijwithabiasbi: Therecurrentnetworkarchitectureusedhereisasinglelayerofstandard network;thatistosaytheyarecomposedofalargenumberofsimpleprocessingunitswithmanyinterconnectinglinks.eachunitmerelyoutputsa functionoftheweightedsumofitsinputs,buttheusefulnessofsuchnetworksresidesintheexistenceoftrainingalgorithmswhichcan,byrepeated Recurrentnetworksareatypeofconnectionist(oftentermed`neural') presentationoftrainingexamples,adjusttheweightstoconvergetowardsa O-linehandwritingrecognition i=bi+xajwij: oi=fi(fjg); (7.2) (7.1) 57

59 Inputframes Network CHAPTER7.RECOGNITIONMETHODS Output (Characterprobabilities) Input/outputunits Feedbackunits Thenetworkisfullyconnected thatis,eachinputisconnectedtoeveryoutput.however,someoftheinputunitsreceivenoexternalinputandareconnectedone-to-onetocorrespondingoutputunitsthroughaunittime-delay Figure7.1:Aschematicoftherecurrenterrorpropagationnetwork.Forclarityonlyafewoftheunitsandlinksareshown. Unittimedelay attheinputandthefeedbackunitsareinitializedtoactivationsof0.5.the (gure7.1).theremaininginputunitsacceptasingleframeofparametrized outputsarecalculatedfromequations7.1and7.2andtheoutputletterprobabilitiesarereadofromtheoutputs.inthenextiteration,theoutputsof Duringrecognition(`forwardpropagation'),therstframeispresented Pjej(section7.1.1). inputandtheremaining26outputunitsestimateletterprobabilitiesforthe 26characterclasses.Thefeedbackunitshaveastandardsigmoidactivation thefeedbackunitsarecopiedtothefeedbackinputs,andthenextframepresentedtotheinputs.outputsareagaincalculated,andthecycleisrepeated functionf(i)=(1+e i) 1,butthecharacteroutputshavea`softmax'activationfunctionfi(fjg)=eworkoutputswillapproximatetheposteriorprobabilitiesP(ijxt0).Itwill foreachframeofinput,withaprobabilitydistributionbeinggeneratedfor minimumofthenetworkisreached,assumingthatthenetworkhasenough parametersandthetrainingschemecanndtheglobalminimum,thenet- beseenlater(chapter8)howtheseprobabilitiescanbecombinedtoobtain eachframe. O-linehandwritingrecognition Itcanbeshown(BourlardandMorgan1993:p.118)thatwhentheglobal v v l e e w w w t t...

60 wordlikelihoodestimatesinamarkovmodelframework.thisframework makesuseofthedatalikelihoodsp(xtji)whichcanbeapproximatedbyassumingthatthecurrentcharacterclassisconditionallyindependentofthe previousframes,giventhecurrentframe.(i.e.thatp(ijxt)p(ijxt0)which CHAPTER7.RECOGNITIONMETHODS isastandardassumptionmadebyresearchersusinghiddenmarkovmodels tomodelhandwriting).thenthefollowingequationcanbeused(bourlard andmorgan1993): ofdataarepassedthroughthenetworkbeforetheprobabilitiesfortherst Theassumptionsusedinmakingthisapproximationareexplainedfurtherin thenextchapter. framearereado,previousoutputprobabilitiesbeingdiscarded.thisinput/outputlatencyismaintainedthroughouttheinputsequence,withextra, Toallowthenetworktoassimilatecontextinformation,severalframes P(xtji)/P(ijxt) P(i): (7.3) becauseofthenumberoflayersthroughwhicherrorsmustbepropagated, termdependenciesinrecurrentnetworksisnoteasy(bengioetal.1994b) toincorporatewholelettersinthecontextwouldbeideal,butlearninglong beenfoundtobemostsatisfactoryinexperimentstodate.alongerlatency tributionsforthelastframesoftrueinputs.alatencyoftwoframeshas andacompromiseisused. emptyframesofinputsbeingpresentedattheendtogiveprobabilitydis Training Trainingthenetworkrequires`unfolding'itintime.Duringtrainingona agationonfourframesofdata.aninput/outputlatency(sec- tion7.1)ofoneframeisshown,sotherstoutputsarediscarded andthelastframeinputisallzeros.thefeedbackunitsareinitializedto0.5asdescribedinsection Figure7.2:Anetwork`unfolded'fortrainingafterforwardprop- word,theframesofdataareinputandpropagatedforward,asforrecog- O-linehandwritingrecognition 59 Input t=0 Input 1 t=1 t=2 Output 0 Input 2 Output 1 Input 3 Feedback 0 Feedback 1 Feedback 2 t=3 Output 2 0 Feedback 3 t=4 Output 3

61 tothenetworkweightsarecalculated.thenetworkatsuccessivetimesteps backusingthegeneralizeddeltarule(rumelhartetal.1986),andchanges stored.attheendofaword,errorsinthenetwork'soutputarepropagated nition,buttheinputs,outputsandfeedbackactivationsforeachframeare CHAPTER7.RECOGNITIONMETHODS istreatedasadjacentlayersofamulti-layernetwork(gure7.2).thisprocessisgenerallyknownas`back-propagationthroughtime'.afterprocessing (+1)framesofdatawithaninput/outputlatency,thenetworkisequivalent toa(+1+latency)layernetwork.readersarereferredtorumelhartetal. (1986)andRobinson(1994)foradetaileddescriptionofthebasictraining toagoodlocalminimummorelikely.inadditiontotheincorporationof amomentumtermintheweightupdateformulae,twosuchimprovements havebeenusedinthiswork,namelyjacobs'deltabar-deltaupdaterule(jacobs1988)andbridle's(1990)softmax.theformerprovidesforindividual procedure. learningratesforeachweightwhichadaptaccordingtothesignsofsuccessiveweightchanges.thelatterprovidesadierenttransferfunctiononthprovedinavarietyofways,tospeedconvergenceandtomakeconvergence Itiswidelyrecognizedthatthisback-propagationalgorithmcanbeimdeltarulesuggestedbyRobinsonandFallside(1991)wereincorporatedand outputunitsofthenetwork,ensuringthattheoutputsarebetween0and1 gavemuchimprovedconvergence.thesechangesusemultiplicativelearning Becauseofdicultiesintrainingstability,modicationstothedeltabarsquareserrormeasuremorecommonlyusedinback-propagationnetworksputandtargetprobabilitydistributions)errorcriterioninsteadoftheleast- andsumto1(asisdesirablesincetheyaretreatedasprobabilities).this ratechangesandpreventthelearningratesfromdeviatingtoofarfromthe alsotrainsthenetworkaccordingtoarelativeentropy(betweentheouttumtermswhenthemeanoutput/targetrelativeentropyoverthetraining mean.forthisworkanadditionalmeasurewastaken,ofzeroingmomennicantistochooseanecienttrainingschedule.thisspecieshowmaningtakesseveraldaysonafastcomputer.(morethan3daysofcputimefor an80-unitnetwork.)inadditiontothemethodsdescribedabove,anumber ofotherwaystoimprovetrainingspeedhavebeenexplored.themostsig- patternsshouldbepresentedtothenetworkbeforeeachweightupdate.initiallytheweightupdatesfromdierentpatternswilltendtobeinroughly Trainingtimesforneuralnetworkscanbeverylong.Inthisinstancetrain- setincreased. thesamedirection,asthenetworkmovestoanappropriateregioninweight space.latertheupdatesfromdierentpatternswillbeindierentdirections,andtheupdatesneedtobesmoothedtondthebestdisplacementfor thewholetrainingset.thus,atthestartoftraining,weightscanbeupdated onaper-patternbasis(`on-line'or`stochastic'training),butforne-tuning neartheendoftraining,weightupdatesshouldbeaveragedoveralargerset ofdata. O-linehandwritingrecognition Inthisapplication,anumberofsimplescheduleshavebeentested,with 60

62 thebestbeingtostartbyupdatingonasmallnumberofwords,typically abatchoffourwordsorabout80frames.then,wheneverthemeanrelativeentropyincreases,thebatchsizeisdoubled,withacorrespondingcut inthestepsizeparameter.thiscontinuesuptoalimitof1024wordsper CHAPTER7.RECOGNITIONMETHODS batch(roughlyathirdofthetrainingset).themomentumfactoralsocontrolsthissmoothing,butnoschedulebasedonchangingthisparameterwas foundtobeasgood.thisis,however,themethodpreferredbyrobinson (1994)whoincreasesthemomentumparameter(thedegreeofsmoothing) overtime.bourlardandmorgan(1993)alsopreferon-linetraining.the choiceisperhapslargelytodowiththesizeofthetrainingset.althoughthe handwritingdatabasewaslarge(56,000frames),itwasfeasibletocalculatea weightupdatebasedonathirdofthetrainingset,whichisimpossibleforthe muchlargerspeechdatabases.thepresentationofallthetrainingexamples tothenetworkiscalledanepoch.thenumberofweightupdatesperepoch canbeobtained.themethoddidnotperformwellwiththeon-linetraining decreasestothreeduringtraining. usedhere,astheshapeoftheerrorsurfaceisdierentforeachbatchofdata. approximatestheerrorsurfaceasaquadratic,withdiagonalcovariance,and basedonthewholedataset,soagoodestimateofthetrueerrorsurface usesquadraticinterpolationtopredicttheminimumineachdimension.this iseectiveforsmalldatasetproblems,whereweightupdatesarealways TheQuickpropweightupdatescheme(Fahlman1988)wasalsotried.This 7.1.2Networktargets Fortraining,atargetvaluemustbegiven,againstwhichthenetworkoutput canbecomparedinordertocomputetheerrorintheoutputsandtheweight thisproblem.unlikethesegmentationproblemofmosthandwritingsystems thetrainingdata,indicatingthecorrectclass theclassforwhichthenetworkoutputshouldbeone,allothersbeingzero.withthedatacollected wordimage(section4.2).however,thelabellingofindividualframeswith updates.thetargetvalueisgivenintheformofalabelforeachframeof aletterlabeltoeachoftheframesofatrainingword.thisisonlyfortrainingpurposes,andneednotbecarriedoutontestwords.innewdata,this frame/lettercorrespondenceisnottriviallydetermined;itcanonlybetruly carriedoutbyaccuraterecognition acatch22situation.forsomeprob- (section2.3.2),thisisnottheproblemofdeterminingwherethetestword imagemustbesplittoseparateitscomponentletters,butthatofassigning hereitisarelativelysimplemattertoassociatethewordlabelwitheach thecorrespondingclassisnotaseasy,andsomethoughtmustbegivento O-linehandwritingrecognition whereitsownsegmentationsaremoreaccurate.handsegmentationwould lems,suchasspeechrecognition,peoplehaveresortedtohand-labellingdata togiveaninitialtrainingset.thishasbeenavoidedherebyusinga`bootstrap'schemewhichderivesanapproximatesegmentationfromaverynaive technique.thissegmentationisgoodenoughtotrainthenetworktoapoint 61

63 bemoreaccuratestill,somightgiveimprovedresults,butwouldrequirea largeamountoftediouswork,forlittleornogain. inanywordisassumed(thoughthisisclearlyinaccurate)tooccupythesame Theschemeusedinitiallyisan`equallength'scheme,whereeachletter CHAPTER7.RECOGNITIONMETHODS therst+1 longerthanotherlettersand`i'and`'areshorter.lettersintheseclasses aregivenrelativelengthsof3and1respectively,comparedto2forother letters.theframesarethenlabelledinproportiontotherelativelengthsof numberofframesofinput.thus,inannletterwordwhichtakes+1frames, thelettersintheword.thus,intheword`wi',thersthalfoftheframes forexample,onequarteroftheframesareassumedtobelongtoeachletter. Thiscanbemadeslightlymoreaccuratebyrecognizingthat`^'and`m'are nframesarelabelledwiththerstletteroftheword.in`noun', wouldbeconsideredtorepresentthe`^',thenextsixththe`i'andtheremainingthirdthe`'.itisthissegmentationthatgivesthetargetswhichthe recurrentnetworkistrainedtoreproduce.thetargetsaresettooneforthe describedinchapter Generalization Aproblemwithnetworktrainingistoobtaintheoptimumsolutiontothe Thesetargetsareonlyusedforpreliminarytraining.Re-estimatedtargets correctclassandzeroforallotherclasses. areusedtoachievegreaterperformance.there-estimationprocesswillbe trade-obetweentrainingandgeneralization.thiswell-knownproblemcan perhapsbestbeseenbyconsideringtheproblemofcurve-ttingtondata points.an(n 1)thorderpolynomialcanbefoundtoperfectlyinterpolate anysuchset,butifthereisanynoiseinthedata,thevaluesonthecurve betweenwillcorrespondbadlytothevaluesofanysubsequentlyobserved data-points.thecurveisover-tted,andgeneralizationispoor.similarly, targetsarbitrarilyclosely.however,suchanetworkwillgivepoorgeneralizationandmakepoorpredictionsforinputsotherthanthoseincludedinthe trainingset. worksizeisrightforthesizeoftheproblem.inthiscasethenumberof intrainingarecurrentnetwork,givenenoughtimeandcomputingpower itshouldbepossibletotrainalargeenoughnetworktomatchthedesired priatetothetasktobesolved(e.g.ttingastraightlinetothendatapoints whenalineareectisbeingmodelled).forcomplexproblemsthesizeof thenetworkforoptimumgeneralizationisdiculttodetermine,thoughindividualauthorshavefoundrules-of-thumbrelatingthenumberoftraining parametersiskeptdownandtheorderofthemodelischosentobeappro- Onewayofmaintaininggoodgeneralizationistomakesurethatthenet- examplestothenumberoffreeparameterstobetrained(bourlardandmorgan1993:p.234).inpractice,foraspecicproblem,trial-and-errorisoften used.methodswherebythenetworkisgrownorprunedtotherightsize havealsobeendeveloped. O-linehandwritingrecognition 62

64 problem,buttopreventover-trainingwithinthatnetwork.possibletechniquesincludeweightdecayandaddingnoisetoweights,butthemethod usedhereisearly-stoppingwhichcanbeimplementedwithoutchangingthe Analternativeistouseanetworkknowntobeatleastlargeenoughforthe CHAPTER7.RECOGNITIONMETHODS trainingprocedureandhastheadvantageoflimitingtrainingaccordingtothe sameperformancecriterion(worderrorrate)aswillultimatelybeusedfor testingthenetwork.ifanetworkistrainedonadataset,itisfoundthat, duringtraining,theerrorratewhentestedonanindependentvalidationset willfallasasolutionislearnt,andthenbegintoriseasgeneralizationisimpairedbyover-training.iftrainingisstoppedattheminimumofthevalidationerror,optimumrecognitiononanindependenttestsetwillbeobtained. trainandvalidatecycleisrepeatedeveryepochuntiltheerrorrateonthe intoseparatetrainingandvalidationsets.aftertrainingthenetworkfora shorttime,thenetwork'sperformanceistestedonthevalidationset.this Thismethodhasbeenwidelyusedintheneural-networkcommunity,andis validationsetstartstoincrease,indicatingthatthenetworkisstartingto particularlyappropriateforlargedatasettasks.bourlardandmorgan(1993) becomeover-trained.thestoppingcriterionisaheuristicbasedontheobservationofvalidationworderrorrateovertime.thecriterionusedhereis Todeterminethebesttimetostoptraining,thetrainingsetispartitioned haveusedasimilarmethodforlarge-vocabularyspeechrecognition. tostopwhenthevalidationerrorrateisabovetheminimumobservedduring notpreviouslypresentedtothenetwork. errorrateisreloaded,andtestedonthetrainingsetwhichconsistsofdata trainingformorethantwelveepochs,orthesamewithoutadecreaseinthe meanrelativeentropy.afternishingtraining,thenetworkwiththelowest Number ofunitsfixedtargetretraining Errorrate(%) EpochsTimeper epoch(s) bersofhiddenunits.resultsarequotedbeforeandafterre-trainingwith Table7.1andgure7.3showtheerrorratesforunitswithdierentnum- feedbackunits. Table7.1:Errorratesfornetworkswithdierentnumbersof re-estimatedtargets,aprocessexplainedinsection8.3.performancecan beseentoimprovesteadilyasthenumberofunitsincreases.thusitcan O-linehandwritingrecognition 63

65 Errorrate% Timeperepoch(s,logscale) Fixedtargets Re-estimatesCHAPTER7.RECOGNITIONMETHODS Numberoffeedbackunits 40 errorbars(onestandarddeviation). Figure7.3:Testerrorratesagainst numberoffeedbackunits,showing ThelowercurveshowstheerrorafterretrainingwiththeBaum-Welch re-alignment. Figure7.4:Approximateaverage trainingtimeagainstnumberofnetworkweights(log-logscale). Numberofweights(logscale) beseenthatearlystoppingensuresthatgeneralizationdoesnotsuerwhen thenetworksizeisincreased.infacttheincreasedcapacityofmorefeedback 10 unitshasbeentrained,thoughitislikelythattherecognitionratewouldbe stillhigher.thetimeestimatesareseentocomefromaconstantterm(becauseofoverheadsandofcross-validationtesting)plusatermproportional unitsallowsthenetworktoperformbetter.becauseoftheincreasedtrainingtimeassociatedwithlargernetworks,nonetworkabove320feedback tothenumberofweights(proportionaltothesquareofthenumberoffeedbackunits),whichbecomessignicantonlywith40ormorefeedbackunits (gure7.4). Itcaneasilybeseenthattherearemanyglobalminima(anypermutationof initialconditions(therandomweightsgiventothenetworkpriortotraining). thefeedbackunitsgivesanidenticalsolution)anditisnotsurprisingthata dierentsolutionisfoundeachtime,thelocalminimafoundinweightspace correspondingtonetworksgivingdierentperformances.thisisaproblem errorratesquotedthatthenalsolutionsobtainedaredependentonthe Itwillbeseenfromthehighvaluesforthestandarderrorsofthemean existsbothinndingbettertrainingscheduleswithinthespaceofsolutions triedalready,andintryingmorecomplexupdatetechniques.theensemble reachesgoodsolutions,thereisscopeforspeedimprovement.thisscope oftrainingmethodscurrentlyusedresemblesthosearrivedatbybourlard thatmightbesolvedwithmoredataorbybettertraining,forinstanceby ndingabettertrainingschedule. O-linehandwritingrecognition Insummary,whileasatisfactorymethodoftraininghasbeenfound,which

66 Meanrelativeentropy Errorrate% Errorrate% CHAPTER7.RECOGNITIONMETHODS Figure7.5:Validationerrorrate againstnumberoftrainingepochs forvenetworksunderthesame conditions,butdierentinitial weights. Epochs numbersoffeedbackunits. Figure7.6:Percentagerecognition errorrateversusnumberoftraining epochsfornetworkswithdierent Epochs 0 160units 320units Figure7.7:Averagerelativeentropyofthetrainingsetoutputs andtargetsagainstnumberoftrainingepochs. Epochs 80units O-linehandwritingrecognition

67 andmorgan(1993)androbinson(1994),butdiersinanumberofdetails Understandingthenetwork CHAPTER7.RECOGNITIONMETHODS cult.while`gradientdescentontheerrorsurface'isoftentalkedabout, thoughthehighdimensionalityofinterestingproblemsmakesanalysisdif- networksinparticular,hasbeenthelackofunderstandingofhowthenetworksoperate.itisnotalwayswellunderstoodtowhichproblemstheyare bestsuited,orhowbesttousethemonproblemstowhichtheyareappropriate.neuralnetworkshavebeenstudiedingreaterdepthinrecentyears, Oneofthegreatproblemswithneuralnetworksingeneral,andrecurrent beplotted,andforhigherdimensionsitbecomesdiculttocalculate,let itisonlyforatrivialneuralnetworkwithtwoweightsthatthissurfacecan alonevisualize.recurrentnetworksareharderstilltounderstand,sincethe dimensionalityismuchhigher outputsaredependentontheinputs,not onlyofthecurrentframe(andforthehandwritingrecognitionnetworksdiscussedhere,thereareabout80inputs),butalsoofalltheprecedingframeserationofrecurrentnetworksundercertainconditions.inordertodiscover howtherecurrentnetworkisoperatinginthistask,agraphicalinterfaceto thenetworkhasbeenconstructed,enablinginputs,activationsandweights tobeexamined.theremainderofthissectiondiscussessomeoftheunderstandingthathasbeenreachedastotheinternalrepresentationofdatain thenetwork. Robinson(1989)andPearlmutter(1990)havepreviouslystudiedtheop- singlewordthroughthenetandtoobservetheoutputs.figure7.8shows anexampleoftheword`fortun 'beingpresentedtothenetwork.the horizontaltracesshowtheactivationsoftheoutputunitsagainsttime.since theoutputsofthenetworkareconstrainedbythesoftmaxfunctiontosum toone,mostoftheoutputsareseentobealwaysclosetozero,withonlyone ortworisingtoasignicantvalueatanytime.theactivitiesduringtherst Arstexperimenttodemonstratethenetwork'soperationistopassa twoframes(beforetherstverticalline)arealwaysignoredinthetraining andtestingofthenetworkbecauseoftheinput/outputlatency.subsequent framesseetheprobabilitiesfor`f',`o',`r'andsoonincreasing,withasmall amountofactivityinotherletters.notethatthevalleybetweenthe`u' and`n'isconfusedwitha`v',andthatthe`'ispartiallyconfusedwithan `l',buttheseconfusionsareeliminatedbythedurationmodelling(discussed inchapter8.2)andtherequirementthatthewordshouldbeinthelexicon. Theverticallinesrepresenttheletterboundariesoftheforcedalignment (section8.3)fromtheviterbidecoder. randomlyinitializedwithweightsofzeromeanandsmallvariance.however, aftertraining,alltheweightsfromanyfeedbackunittothesameunitforthe nexttime-stepwerefoundtobepositive,withstrongconnections.(fora typicalnetworktheyhavemean2.6andstandarddeviation0.6.)connections O-linehandwritingrecognition Considernowtheweightswithinthenetwork.Initiallynetworkswere 66

68 CHAPTER7.RECOGNITIONMETHODS Figure7.8:Thesystemrecognizingtheword`fortun '.The activationsoftheoutputunitsareplottedagainstthenumberofframesprocessed.classboundariesfoundbyviterbi forcedalignmentareshownwiththeassociatedclasslabels(section8.3). f tunat e tootherfeedbackunitsvarygreatly,withaslightlynegativemean(e.g.mean -0.4,standarddeviation1.2).Thisindicatesthatthenetworkislearning theintuitivemechanismofhavingthefeedbackunitspreservetheirstate, exceptwheninuencedbyinputsandotherfeedbackunits.sincethenetwork solutionsseemtofavourthisstate-preservation,bettersolutionsmightbe foundmorequicklybychoosinganinitialweightdistributionwhichpreserves state.thiscanbecalculatedasfollows. respondingtoaweightedsumofinputsi=0,sincethesigmoidactivation function,forwhichf(0)=0:5,isusedforthefeedbackunits),then iftheotherweightshaveazeromean.forsteady-stateconditions,i=0, Ifthefeedbackunitsareassumedtohaveameanactivationaj=0:5(cor- sobi= 0:5wii.Now,foranactivationai=0:5+ai, i=bi+xjajwijbi+0:5wii Primingthenetworkconnectionstothesevaluesgivesfastertrainingand Forthesigmoid,f0(0)=0:25sothestateisstablewhenwii=4;bi= 2. Sinceai=f(i),forsmallai: ai=f(ai) 0:5aiwiif0(0): i=bi+aiwii: O-linehandwritingrecognition 67

69 aremuchhigher(mean4.6,standarddeviation0.5),revealingthatpriming agreaterrecognitionaccuracyaftertraining.thenalvaluesoftheselinks thenetworkweightsputsthenetworkintousefulareasofweightspacethat werenotexploredwhiletrainingun-primednetworks.italsoconrmsthe CHAPTER7.RECOGNITIONMETHODS usefulnessoffeedbackconnectionswhichpreservethefeedbackunits'state. weightsfrominputtooutputunitsarepositive.thisistobeexpected,since asingleframeofinputisitselfambiguousanddoesnotgiveastrongindicationastothecharacteroftheframetwotime-stepspreviously(whichdirect linkswouldindicate,sinceoutputsrefertotheframesinputtwotime-steps linksfromtheunitsrepresentinglinesinthelowestpartofaword.thisis previously).onenotableexceptiontothisistheletter`q'whichhasstrong Examiningotherconnectionswithinthenetwork,itisseenthatveryfew because`'iswrittenwithadescendertotherightof(delayedwithrespect informationistransferredbythedirectinput-to-outputconnections,ithas beenfoundthatanetworkwiththeseconnectionsperformsbetterthanone whichdoesnot. to)thebodyoftheletter.figure7.9ashowsthelinksfromoneinputunitin activatedbythisinputunit,whileotheroutputsareinhibited.becausesome thelowestpartoftheword.alltheletterswithdescenderstotherightare featurespresentedattheinputduringthelastfewtime-stepssothataclassicationofthecurrentframecanbemadeaccordingtothecontext,since feedbackunits.inthishandwritingproblem,theyneedtorepresentthe anindividualframeisambiguous.however,thewaythisinformationisencodedisnotreadilyapparent.aswasnotedearlier,eachunithasastrong feedbackconnectiontoitselftomaintainthestateovertime.otherwise,few Inarecurrentnetwork,themostimportantaspecttounderstandisthe linksfromthefeedbackunitsarefoundtobestronglypositive. theroleofthefeedbackunits.figure7.9b,cshowstheconnectionsfromthe onlytwofeedbackunitsinasmallnetworktotheoutputs.itisnoticeable thattheconnectionsreectthefrequenciesofthelettersinthetrainingset. Veryrareletterssuchas`q'and`z'haveverystrongnegativeconnections. Becauseoftheirrarity,theselettersgenerateverylittleerrorsignal,soitis inappropriateforthescarceresourcestobeusedmodellingtheseletters.on Ifanetworkwithveryfewunitsisexamined,itiseasiertounderstand theotherhand,theletters`edlrst'havepositiveconnectionsfromthefeedbackunitssincethesearecommon.thetwomostcommonletters(`et')are modelledbybothfeedbackunits.figure7.10showstheoutputprobabilities fortheword` akin',whichshowstheeectofthis.theletters`se'are duringmostoftheframes,thecorrectwordisstillchosenfromthelexicon. well-dened,thoughnotasclearlyaswiththe80unitnetwork(gure7.8). Therearenoticeablepeaksintheoutputtracesofthesetwoletters,butthe O-linehandwritingrecognition otherlettersshownomarkeddeviationfromzero.itcanalsobeseenthat throughthedirectinput-outputconnections,thedescenderisidentiedas belongingtoeithera`'ora`',thoughthenetworkdoesnothavethemodellingcapacitytodistinguishthetwo.despitetheuncertaintyofthenetwork 68

70 CHAPTER7.RECOGNITIONMETHODS abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz (a) (b) (c) Figure7.9:Connectionstrengthstotheoutputsinarecurrent network.circlesarewhiteforpositiveweights,blackfornegative.largermagnitudesarerepresentedbylargerradii.(a) showstheconnectionsfromadescenderinputunitina60-unit network.(b)and(c)aretheconnectionsfromtheonlytwofeedbackunitsinasmallnetwork. O-linehandwritingrecognition 69

71 CHAPTER7.RECOGNITIONMETHODS in'.noclassboundariesareshownbecausethe2-unitnetworkre-estimatesareinaccurate. Figure7.10:Thetwounitnetworkrecognizingtheword` aklowotherwise,thoughthecorrelationisfarfromperfect.ingure7.10the havehighactivationswhentherelevantlettersarepresentattheinput,and tivationswhenpresentedwithworddata.theunitsaregenerallyseento Theroleofthefeedbackunitscanalsobeveriedbyexaminingtheirac- doesnotgohighduringthe`'asmightbeexpected.thebiasestotheoutput unitsarefoundtoreectthevariationinclassfrequencies,butthiscorrelationisnotasstrongassuggestedbytheexperienceofbourlardandmorgan (1993:p.127).Examininganetworkwithfourunits,oneofthefeedbackunits isfoundtohavenegativeconnectionstoalltheoutputsexcept`i',andtoreceivestrongpositiveinputfromtheinputunitrepresentingthedotfeature. Thisrepresentationallowsthenetworktorememberthepresenceofanidot framesareentirelyzeroisconstructed,andpresentedtoatrainednetwork. duringthelatencyperiod. conditionsistofeedanullinputintothenetwork.adatalewhereall Theunforcedoutputforasamplenetworkwith60feedbackunitsisshown ingure7.11.itcanbeseenthattheoutputandfeedbackunitsgothrough Examininganetworkwithbutonehiddenunitshowsthatthenetworkdy- severalcyclesbeforereachingasteadystatewithalltheunitsinsaturation. Anotherwayofinvestigatingthenetwork'sbehaviourundercontrolled activationoffeedbackunitzeroishighduringthe`s'and`',thoughunit1 O-linehandwritingrecognition namicsare,understandably,simpler.theoutputsareallmonotonic,and 70

72 CHAPTER7.RECOGNITIONMETHODS O-linehandwritingrecognition Figure7.11:Thenetworkoutputsforunforcedinputs. 71

73 feedbackunitsaretested,thebehaviourbecomesmorecomplex,untilwith reachasteadystateafterafewframes.asnetworkswithmoreandmore a160-unitnetwork,nosteadystateisachievedafter130frames.thenetworkappearstobeenteringlimitcycles,exhibitingdynamicbehaviourwith CHAPTER7.RECOGNITIONMETHODS noactiveinputs. 7.2Time-delayneuralnetworks Inputunits Hidden LetteroutputNeuralnetworklinks Figure7.12:Aschematicofthetimedelayneuralnetwork, showingasinglehiddenlayer. units theperceptronsisthenshiftedtotheright,andanotherhiddenframecalculated.thisprocesscanberepeatedforalltheframes.atthesametime,a secondlayerofperceptronunitstakesagroupofhiddenframesandforeach ofthesecalculatesanoutputprobabilitydistributionwithsoftmaxunits,just asfortherecurrentnetwork.thus,foreachinputframeacorrespondingoutputdistributioniscalculated.sincethesameperceptronsoperateoneach sectionoftheinput,thetdnnisgoodatposition-invariantpatternrecognition.ithasaxedwindowofcontextwhichisthenumberofinputframes onwhicheachoutputdepends.thelengthofthiswindow(veframesin thediagram)isdeterminedbythereceptiveeldsoftheperceptrons.this makesthetdnngoodforrecognitionofpatternswithlimitedcontext,when O-linehandwritingrecognition Time-delayneuralnetworks(TDNNs)areamethodofapplyingasimple forward-propagationneuralnetworktoasequenceofframesofdatatoarrive atasequenceofprobabilityestimates.atdnnisrepresentedingure7.12. Alayerofperceptrons,asusedintherecurrentnetwork,takesasmallgroup ofinputframes(threeinthediagram)andcalculatestheactivationsofacorrespondinghiddenframewithequations7.1and7.2.thereceptiveeldof 72 t t t t t t h h h h h r r r r r e e e e e e e e

74 theextentofthiscontextisknown,butlonger-termdependenciescannotbe learnt.becauseoftherigidhierarchyoftheinputandhiddenunits,dependenciesofvariablelengtharehardtolearn.eachperceptroncanonly associatefeatureswhichareaxeddistanceapart.therecurrentnetwork, CHAPTER7.RECOGNITIONMETHODS thearchitectureofatdnnisspeciedbyalargenumberofparameters.the ontheotherhand,storesallcontextinthehiddenunitswhichareavailable numberofhiddenlayersmustbespecied,aswellasthenumberofunits ateverytimestep.ifthecontextisofvariablelength,thefeedbackunitswill arbitrarydelay. thishandwritingrecognitiontask.theywerealsofoundtobeunwieldysince varyslowlyandthecorrelationbetweentwofeaturescanbedetectedatan becontrolledisthenumberofframesshiftedbetweensuccessiveoperations ofeachofthesetsofperceptrons.findingagoodsetofvaluesforallthese ineachandthesizeofeachreceptiveeld.afurtherparameterthatcan ItisbelievedtobeforthisreasonthatTDNNsdidnotperformwellon parametersrequiresalongsearch,whereastherecurrentnetworkhasasingle suchparameter thenumberoffeedbackunits(section7.1.3).becauseof thispoorinitialperformance,tdnnswerenotinvestigatedfurther,andno mation.thisinvolvescomputinganumberofinteger-valuedindicesfrom 7.3Discreteprobabilityestimation resultsarepresentedforthemhere. eachframeandusingthesetolookupprobabilityvaluesinpre-computed Thissectiondescribesthethirdtechniqueinvestigatedforprobabilityesti- tables.whencombinedwiththehiddenmarkovmodels(hmms)described theusualmethodofcalculatingprobabilitiesforadiscretehmm.bycontrast,therecurrentnetworkandhmmtogetherwouldbetermedahybrid system. inthenextchapter,thesystemisaconventionaldiscretehmmsincethisis ofdatatogiveestimatesoftheprobabilities.parametricdistributionscould clearlycomputationallyimpracticalandwouldrequireinfeasiblequantities wouldrequire probabilitiestobestoredandestimated.thisis (256possiblevalues),tostoretheprobabilityofeachpossibleco-occurrence probabilityofaframeofdatabeinggenerated,giventheidentityoftheletter. Sincethedataarerepresentedasabout80features,eachcodedasabyte TheprobabilitiesthatmustbeestimatedarethelikelihoodsP(xtji) the moredicult.twomethodsareusedtosimplifytheestimation. beused,whichcalculatetheseprobabilitiesasfunctionsofasmallernumber ofparameters,butthenumbersarestillimpractical,andthere-estimation O-linehandwritingrecognition 73

75 0and1,themostimportantinformationiswhetheralinesegmentispresent ture,evenfortheskeletonwherethecoarsecodingdoesgivevaluesbetween 7.3.1Asimplesystem First,sincetheunitsmostlyrecordsimplythepresenceorabsenceofafea- CHAPTER7.RECOGNITIONMETHODS numberofvaluesmuchlessthan256).secondly,thefeaturesareassumedto ornot.theinputsarethusre-quantizedtobebinary-valued(orsomeother beindependent.thustheprobabilityoftheco-occurrenceofallthefeatures inaframeissimplytheproductoftheoccurrenceoftheindividualfeatures. oneboxishighlycorrelatedwiththeoccurrenceofaverticalstrokeinthebox sumtoone,only8026. isclearlyinaccuratesince,forexample,theoccurrenceofaverticalstrokein Nowonly80226probabilitiesneedtobestoredor,sincethepairsmust Theassumptionofindependenceintheoccurrenceoffeaturesintheinput P(xtji)YjP((xt)jji) (7.4) below.inpractice,theassumptionisfartoostrong,andtheperformance Vectorquantization(VQ)isamethodofcharacterizingeachframebyasingle ofthehmmsystemismuchworsethanthatoftherecurrentnetwork(an errorrategreaterthan50%).thefollowingsectiondescribesasystemwhich obviatestheindependenceassumption,andgivesbetterrecognitionresults Vectorquantization number,orcodec(xt).thequantizationprocessisdesignedsothatsimilar framesareallcodedasthesamenumber.then,insteadofestimatingthe theprobabilityofthecodegiventhecharacterclassthatmustbeestimated: P(xtji)P(c(xt)ji). probabilityofallthefeaturesinaframegiventhecharacterclass,itisonly Inthesubsequenttraining,itisthesecodesthatarethefeatures,anditis theprobabilityofacodebeingpartofagivenletterthatmustbeestimated. isthencodedaccordingtothenearestcodevector:c(xt)=argminikci xtk2. zationdeterminesacodebookofcodevectorsciinthisspace.eachframext spacewithasmanydimensionsasthereareelementsintheframe.quanti- Beforebeingabletoestimatetheprobabilities,thecodevectorsmustbe Invectorquantization,eachframeisconsideredasavectorinametric isthenthecentroidofaclusteroftrainingvectors.anumberofalgorithms determined.toberepresentative,theymustbewelldistributedinthespace existforcarryingoutthisclustering,andanumberarereviewedbygray otherinthemetricspace,andthecodevectorsaredeterminedbyaclustering Thegroupsofequivalentvectorsareassumedtobethoseclosetoonean- algorithmwhichndstheseclustersinthetrainingvectors.eachcodevector ofvectorsactuallyproducedbythepreprocessingsystem,andeachshould representatypicalgroupofvectorswhichcanbeconsideredtobesimilar. O-linehandwritingrecognition 74

76 (1984).ThemethodusedhereisbyLindeetal.(1980).Itproducesasetof codingvectorsgivenatrainingsetofvectorsoutputbythepreprocessor thesametrainingsetwhich,whencodedbythequantizerisusedtoestimate thecodeprobabilitieswhicharestoredinthetables.inbrief,thealgorithm CHAPTER7.RECOGNITIONMETHODS worksinthefollowingmanner: 1.Seedthequantizerwithoneclassicationvector thecentroidofthe 2.Spliteachclassicationvectortogivetwo,perturbingeachslightly.This trainingset. hastheeectofdividingtheoriginalclusterwithahyperplaneperpen- 3.Classifyeachofthetrainingvectorsbyassigningittothenearestclassicationvector. whichwerenearesttoit. tionissucientlysmall,theotherclassallocationswillbeunaected. Perturbationalongthelinejoiningthecentroidtotheoriginwasfound toworkjustasquicklyasperturbationalongtheaxiswiththegreatest in-clustervariance. dicularlybisectingthelinejoiningthetwonewcentres.iftheperturba- 4.Moveeachclassicationvectortothecentroidofthetrainingvectors 5.Gotostep3unlesstheclassicationsarethesameasinthelastiteration. theeuclideandistancewasused.thisisreasonablesincealltheinputsare 6.Gotostep2untilthedesirednumberofclassicationvectorsisobtained. Forstep3,adistancemetricmustbespecied.Asarstapproximation tivewhichhasalsobeentestedisthemahalanobisdistance(alreadyseenin constrainedtofallinthesame[0;1]interval.thisdistancewillreduceto thehammingdistancewhenallthevectorsarebinaryvalued.analterna- chapter6),wherethedistancebetweentwopointsxandyisgivenby: whereisthecovariancematrixofthetrainingvectors. butionofvectorsisellipticallygaussian,whichisclearlynottruehere.nev- ertheless,itallowscorrelationsbetweenvectorelementstobetakeninto accountwhenndingthedistancebetweentwovectors.abettermetric, TheMahalanobisdistanceisderivedfromtheassumptionthatthedistri- kx yk2=(x y)t 1(x y); (7.5) O-linehandwritingrecognition basedonknowledgeoftheoriginofthedataandthefactthatthedataare largelybinary-valuedcouldprobablybefound.thiswouldmodelthecorrelationsbetweenfeaturesbetterandresultinmorerepresentativeclusters. 75

77 ever,hand-craftingametricwouldbeacomplexprocedure,andthemaha- lanobismetricisthemostcomplexmetricinvestigatedhere. Betterresultsmightbeobtainedfromquantizingwithsuchclusters.How- AfurtherissueindesigningaVQ-HMMsystem,istheoptimumnumberof CHAPTER7.RECOGNITIONMETHODS clusterstochoose.thisinvolvesstrikingabalancebetweenanover-trained Discreteprobabilityestimationrequiresthetablesofprobabilitiestobelled systemwhichdoesnotgeneralizewellandonewhichhasalowdiscriminative power.resultsaregivenforavarietyofnumbersofclustersandtheoptimum valuechosen Training withtheestimateofp(cijj)foreachofthecodesciandlettersj.after segmentationprocedure,thenumberoftimescodeciispartofletterjis vectorquantizingthecorpusandlabellingeachframewiththeautomatic countedoverthewholetrainingcorpus.dividingbythenumberofframes representingjgivesanestimateoftheemissionprobabilitiesp(cijj).by re-aligningwiththebaum-welchprocedureofchapter8,theprobabilities canbere-estimatedandtherecognitionrateimprovedslightly.forthis HMMframework,theBaum-Welchprocedureisveryfast,sincethemaximizationstepoftheExpectation-Maximizationalgorithm,ofwhichthisisan example,consistsonlyoftakingthefrequencycountsratherthandoinggradientdescentaswiththerecurrentnetworks anotoriouslytime-consuming clustersislowerbecauseduringthesplittingsomeclustershavebeenfound tobeemptyandthecorrespondingcentroidsdiscarded. powersoftwointhersttable,sinceateachiterationofthesplittingalgorithmthenumberofclustersisdoubled.intheothertables,thenumberof distancesareshownintables7.2,7.4and7.3.thenumbersofclustersare problem. RecognitionratesfortheHMMsystemwithEuclideanandMahalanobis ClustersErrorrate(%) ClustersErrorrate(%) Table7.2:Errorratesforthehid denmarkovmodelsystemwitheu- clideandistancevectorquantization.table7.3:errorratesforthehidden MarkovmodelsystemusingdiagonalcovarianceMahalanobisdistance O-linehandwritingrecognition 76

78 ClustersErrorrate(%) CHAPTER7.RECOGNITIONMETHODS tersupto512increasesthediscriminativeperformanceofthesystem,sothe Fromtables7.2and7.3itcanbeseenthatincreasingthenumberofclus- Table7.4:ErrorratesforthehiddenMarkovmodelsystemusingMahalanobisdistancevectorquantization errorratefalls.beyondthis,thegeneralizationfailsandperformancefalls orapidly.by4000clustersthesystemfailscompletely.thediagonalmahalanobisdistancemethodgivesslightly,butnotsignicantlyworseresults, andthefull-covariancemahalanobisdistancegivesworseresultsagain.the full-covariancematrixcodebookisprohibitivelyexpensive,computationally, toworkoutforlargernumbersofcentroids.thelackofimprovementisdue oftenone.themahalanobisdistanceisintendedformodellingdistributions whicharegaussiandistributed,anassumptionnottruehere. totheunusualdistributionoftheinputswhicharenearlyalwayszero,and thesameasarecurrentnetworkwith64feedbackunits.anetworkwith 7.3.4Discussion Thebestofthesediscreteprobabilityestimatorshas51226parameters 60feedbackunitsachievesa14.5%errorrate.Itcanthusbeseenthatthe purehmmsystemdoesnotperformaswellasthehybridrecurrentnetwork/hmmsystem.whilethisshowsthattherecurrentnetworkisamore practicalsolutiontotheproblemofmodellingthegraphicdata,itdoesnot argueabsolutelyagainsttheuseofhiddenmarkovmodels.whilemuchof theworkofthisthesisisequallyapplicabletobothsystems,moretimehas beenspentperfectingtherecurrentnetworksystemthaninvestigatingimprovementsinthepurehmmapproach.itisundoubtedlytruethatwith furtherinvestigationthehmmsystemcouldbeimproved.thereisasetof standardtechniquesthatcouldbetakenfromspeechhmmsandappliedto thissystem,whichcouldreasonablybeexpectedtogivebetterperformance. Theseincludegivingdierentstateswithinaletterseparateprobabilitydistributions,andproducingcontext-dependentmodelswhichwouldbeable tomodelthecoarticulationbetweenadjacentletters mostparticularly theligatureswhichvarywithdierentcontexts.however,similarmethods mightalsobeappliedtothehybridsystem. O-linehandwritingrecognition 77

79 canbeusedfortheproblemofo-linehandwritingrecognition,andhasdiscussedsomeoftheissuesinvolvedinusingthem.thetrainingofthemodels 7.4Summary Thischapterhaspresentedthreemethodsofprobabilityestimationwhich CHAPTER7.RECOGNITIONMETHODS batchesduringtraining. hasalsobeendiscussedandrecognitionresultspresented.therecurrentnetworkswerefoundtoperformbetterthanboththediscretehiddenmarkov howtheprobabilityestimatesareusedforwordrecognition. isverytime-consuming,butanumberofmethodshavebeenusedwhichreducethetrainingtime,includingweightinitialization,jacobs'weight-update scheme,andatrainingschedulewhichchangesthesizeofweight-update modelandthetimedelayneuralnetwork.trainingtherecurrentnetworks Thenextchaptercompletesthedescriptionofthesystembyexplaining O-linehandwritingrecognition 78

80 Chapter8 HiddenMarkovmodelling Thepreviouschapterdescribedmethodsofmodellingthegraphicaldataofa handwrittenword.eachmethodgaveanestimateofthelikelihoodp(xtji) foreachframeofinputxtandforeachcharacterclassi(of26).thischapter dealswiththeprocessofderivingthebestwordchoicefromasequenceof Thereadingisrightwhichrequiressomanywordstoproveitwrong. theseframeprobabilitydistributionsbytheuseofhiddenmarkovmodels. SamuelJohnson. ThemethodsdescribedhereapplyequallytothepurediscreteHMMandto therecurrentnetworkhybridsystem,buttestsaredescribedforthehybrid systemsinceitwasfoundtobemoreeective.forthetimebeing,thesystem isassumedtohaveaknownvocabularyanditisassumedthatanyword presentedtoitwillbeinthatvocabulary. 8.1AbasichiddenMarkovmodel Becausethedataarenoisyorambiguous,theoutputofthewholesystem shouldbeaprobabilitydistributionacrossthewordsinthelexicon,being probabilitiesforotherwords.theprobabilitydistributiontobedetermined words`clump',`jump'and`dump',withalowerprobabilityfor`lump'andsmall theprobabilityforanywordthatitwastheoneoriginallywritten.normallytheprobabilityshouldbeclosetooneforoneword,andclosetozero fortheothers,butwherethereisambiguity,errororpoordata,thedis- gure3.1b,high,roughlyequalprobabilitieswouldbeexpectedforthethree tributionmightbemoreuniform.forinstance,fortheambiguouswordof isp(wjx0)acrossallwordswinthelexiconl,giventheinputdatax0. thesetofstatesisq=fqr:r=0;:::;n 1g,correspondingtotheletters foreachwordintheknownlexicon,withonestaterepresentingeachletter.figure8.1showsamodelfortheword`one'.iftherearenstates, HMMsisthatofRabinerandJuang(1986).AseparateHMMiscreated abilitiesusingahiddenmarkovmodel(hmm).agoodtutorialarticleon Theindividualframeprobabilitiesarecombinedtoproducewordprob- O-linehandwritingrecognition 79

81 CHAPTER8.HIDDENMARKOVMODELLING Figure8.1:AsimpleMarkovmodelfortheword`one'withone stateperletter. (t)o(t)on(t)one(t) one one ginningoftheword.ateachtimestept=0;:::;,astatetransitionis model.attimet=0themodelisinstateq0,correspondingtothebe- made,followingoneofthearrowsinthediagram.thismeansthateither havebeengenerated.eachcircleinthediagramrepresentsastateofthe thenextstateisentered,oraself-transitionismadeandthestateatthe subsequenttimestepisthesameasthecurrentstate.thestateattime L(qr).TheMarkovmodelrepresentsaprocessbywhichthewritingcould strictive.tousethemodel,transitionprobabilitiesareassignedtoeachof thepermittedtransitionsandareassumedtobeindependentofthetime: tiswrittenst.ingeneralahiddenmarkovmodelcanallowtransitions knownandnoletterscanbemissedout,sothemodelismademorere- ap;r=p(st+1=qrjst=qp);ap;r=0exceptwhenr=porr=p+1.for betweenanypairofstates,butinhandwriting,theorderofthelettersis themodeltobeatruemarkovmodel,allthetransitionprobabilitiesare dependentsolelyonthecurrentstate.bythisprocess,astatesequence S=(S0;:::;S)isarrivedat,whichrecordsthestateateachtimestep.A typicalstatesequencemightbes=(q0;q0;q0;q0;q1;q1;q1;q2;q2;q2;q2;q2)correspondingtothelettersequencel(s)=(o,o,o,o,n,n,n,e,e,e,e,e).the inferred.itisonlytheframesofdatathatareobserved. representationofthelettersigniedbythecurrentstate.thedataareas- modelisahiddenmarkovmodelbecausesisnotdirectlyobservable,only sumedtooccuraccordingtoaprobabilitydistributionp(xtjl(st)),whichis estimatedbytherecognitionsystemofchapter7.withthisinformationan expressioncanbederivedfortheprobabilityofaword,givenaparticular observationsequencex0. Inthegenerationprocesswhichistobemodelled,thesystemproducesa frameofgraphicdataxtateachtimestep.thedataarepartofthegraphic assumingthatthewordisinthelexiconl,theprobabilitiesmustsumtoone, TheposteriorprobabilityofawordWcanberewrittenusingBayes'rule: andcanbenormalized: insection8.4.2.theprobabilityp(x0)ofthedataoccurringisunknown,but wherep(w)isthepriorprobabilityofthewordoccurring,whichisdiscussed XW2LP(Wjx0)=1 P(Wjx0)=P(x0jW)P(W) P(x0); (8.2) (8.1) O-linehandwritingrecognition 80

82 Therearemanystatesequencesrepresentinganygivenword.Writing P(Wjx0)=P(x0jW)P(W) CHAPTER8.HIDDENMARKOVMODELLING S(W)=fS;suchthatSrepresentsWg; PW2LP(x0jW)P(W): (8.3) wherethestatesequenceprobabilityp(s)istheproductoftheinitialdistribution,r=p(s0=qr),andthesubsequenttransitionprobabilities: Herer=0forallstatesexcepttherst(0=1),sothemodelisconstrained P(x0jS)=P(x0jS)P(x1jS;x0) P(S)=S0 1 Yt=0aSt;St+1: then P(x0jW)=X S2S(W)P(x0jS)P(S); (8.5) (8.4) tostartwiththerstletter.now,bybayes'rule =P(x0jS)Yt=1P(xtjS;xt 1 (8.7) (8.6) classthatthecurrentstaterepresents,thisreducesto: Ifitisassumedthattheemissionprobabilityisdependentsolelyonthe P(x0jS)=Yt=0P(xtjL(St)); 0): (8.9) (8.8) weakerassumptionisthattheemissionprobabilityisconditionallyindependentofprecedingorfollowingstates,giventhecurrentstate: whichinvolvesthetermsp(xtjl(st))storedinthetablesofchapter7.a where,byfurtherapplicationsofbayes'rule,itcanbeseenthat: P(x0jS)=Yt=0P(xtjSt;xt 1 P(xtjL(St);xt 1 0)=P(L(St)jxt0)P(xt0) =Yt=0P(xtjL(St);xt 1 0) (8.11) (8.10) O-linehandwritingrecognition NowP(L(St)jxt0)isexactlytheposteriorprobabilityestimatedbytherecurrentnetwork.P(xt0)istheprobabilityoftherstfewframesofdata,which isthesameforallwords.p(l(st);xt 1 0)isassumedtobeproportionalto P(L(St);xt 1 0): (8.12) 81

83 P(L(St)),thepriorprobabilityofaframebelongingtotheclassL(St).This assumptionisclearlyincorrect,butisfoundtoworkinpractice.thisprobabilitycanbeestimatedbycountingthenumberofframesineachclassaccordingtothelabelsofthetrainingset. CHAPTER8.HIDDENMARKOVMODELLING canbenormalizedtogivewordprobabilities: ThustherearetwoexpressionsforthelikelihoodL(Wjx0)ofaword,which P(Wjx0)=L(Wjx0) L(Wjx0)P(W)X PWL(Wjx0) S2S(W) Yt=0P(xtjL(St))! Yt=0P(L(St)jxt0) P(L(St))! S0 1 Yt=0aSt;St+1!(8.14) Yt=0aSt;St+1!:(8.15) (8.13) Equation8.14isusedforthetablelook-upsystemandequation8.15isused istheprobabilityofbeinginstateraftertframeshavebeenobserved.thus theequationsareappliedtotherecurrentnetworksystem. henceforth,butthescaledlikelihoodsp(l(st)jxt0) fortherecurrentnetwork.forsimplicity,thelikelihoodsp(xtjl(st))areused r(0)=rtheinitialdistribution. namicprogramming,inanarraystructurerepresentingthestatesofthemar- kovmodel.inthismodel,eachstateisaccordedaprobabilityr(t),which TheseexpressionscanbecalculatedecientlyusingtheprincipleofDy- P(L(St))aretobeunderstoodwhen probabilitiesaregenerated,themarkovmodelforwardprobabilitiesarecalculatedrecursivelybytheformula: untilallhavebeenprocessed.atthispointthenalstate(dasheding- Assuccessiveframesofdataarefedintotherecognizer,andcharacter ure8.1)containsp(x0jw)=n(+1),thelikelihoodthatthedatax0repre- sentedthewordofthismodel.bychoosingthemaximumofthelikelihoods, argmaxwl(wjx0),ifthemodelsaregood,agoodestimateoftheidentityof theoriginalwordisobtained. r(t+1)=xpp(t)p(xtjl(qp))ap;r (8.16) speedandnumericalaccuracy.multiplicationsbecomeadditionsinthelog (1987). domain.probabilityadditionscanbecalculatedbyusingtheidentity andderivingthesecondtermfromalook-uptable,asdescribedbybrown Alloftheseprobabilitiesarestoredandmultipliedinthelogdomainfor log(a+b)loga+log(1+exp(logb loga)); (8.17) O-linehandwritingrecognition 82

84 8.1.1Labelling Itwillberecalledfromchapter4thatthedatabaseconsistsofbothupperand lowercaselettersaswellaspunctuation.infactthepunctuationisexcluded inthesegmentationprocess,soonlywordimagesarepassedtothepreprocessingsystem,andnorecognitionofpunctuationiscarriedout.ifthiswere desired,aseparatesystemforrecognizingpunctuationmarkswouldbenec- CHAPTER8.HIDDENMARKOVMODELLING contourshapeofpunctuationmarks. simplersystemcouldbeused,perhapsbasedonrulesforthelocationand location,therecurrentnetworkapparatuswouldbeinappropriate.amuch essary.aspunctuationmarksappearinisolationandarelargelydenedby wordsandinafewacronyms.indeed,thecurrentsystemrecognizescapital inthedatabasetotrainanetworkwithseparateoutputclassesforbothupperandlowercaseletters,sincecapitalsonlyoccuratthebeginningofafegories,andmakesnodistinctionbetweenupperandlowercaseletters.an `a'andan`a'arebothlabelledthesame,andthenetworkistrainedtogive thesameoutputforeither.therearenotenoughexamplesofcapitalletters Thesystemdescribedheregivesadistributionacrossthe26lettercate- comparedto15forincorrectwordswithoutcapitals.moredatawithcapital letterswouldimprovetherecognitionrateoncapitalletters,bringingdown stillpossiblebasedontheremaininglettersandtheconstraintsofthelimitedvocabulary.testinga160-unitnetworkwithagrammargavean8.8% errorrate,butamongwordswithcapitalstheerrorratewas35%.theaveragerankinthelexiconofincorrectlyrecognizedwordswithcapitalswas96, letterspoorly,butsincetheyaregenerallyonlyinitialletters,recognitionis theoverallerrorrate. casewererequired,thenetworkcouldbegiven52outputstorepresentthe upperandlowercaseletters.however,itmightbebetter(becausethenetworksizewouldbekeptdown)tokeepjust26outputcategories,andhave independentprobability,withasigmoidoutput(equivalenttothetwo-class softmax).whenusingsuchasystem,thehiddenmarkovmodelswouldneed aseparateunitindicatingthecaseoftheletter.suchaunitwouldgivean Ifmoredatawereavailable,anddistinctionbetweenupperandlower tobeadaptedtoaccountfortheseparateclassesand,accordingtothetask, modelswithinitialcapitals,fullcapitalsorevenmixedcasewordscouldbe sincethereisnonoiseorligatureclassinthelabellingofthetrainingdata. permitted. thenetworktoindicatethattheinputsdonotcorrespondtoanyoftheletter classes.suchaclasscouldbeusedinthissystemtorepresentpoorwriting ortheligaturesbetweenletters,buttheimplementationwouldbedicult Sincethesystemacceptscursiveanddiscretewriting,thedatawouldneedto behand-labelledtoindicatethepresenceofligatures.ifsuchhand-labelling Somesystems(Schenkeletal.1994)havea`noise'outputclasstoallow weredone,thenanoptionalligaturemodelcouldbeinsertedbetweenthe O-linehandwritingrecognition lettermodelsofeachword.anoisemodelcouldbeplacedinparallelwith 83

85 usedherewereclean,theseideaswerenotimplemented. illegibleintheinput.sincefewframescontainonlyligatures,andthedata thelettermodelstoallowletterstobeskippedwhentherewassomething CHAPTER8.HIDDENMARKOVMODELLING quencessuchasl(s)=(o,o,o,o,o,o,o,o,o,o,n,e)aregoingtocontribute therewillbeasmallnumberofsimilarstatesequenceswhicharemuchmore likelythanalltheothers.also,thesinglemostlikelysequence,s,willbe littletotheprobabilityoftheword.infact,inmostcases,itcanbesaidthat Inpractice,mostofthestatesequencesSarehighlyimprobable,andse Decoding Viterbidecoding.Inthiscase,thedecodingissimpler.Adierentsetof similartoallofthese,andcanbeconsideredtoberepresentative.thus,a goodapproximationtoequation8.5is: likelihoods,0,isstored: Carryingoutdecodingononlythemostlikelystatesequenceiscalled 0r(t+1)=max P(x0jW)/P(x0jS)P(S): p0p(t)p(xtjl(qp))ap;r: (8.18),andarefoundtogivebetterresultsforthishandwritingrecognitionsystem (T(2)=9:72;t:99(2)=6:96).Comparativeresultsaregivenintable8.1. Theselikelihoodscanbecomputedmorequicklythanthefullprobabilities, (8.19) ve80-unitnetworkstrainedonviterbisegmentations,and DecodingErrorrate(%)Decodingtime testedwithviterbiorfulldecoding. Table8.1:Acomparisonoferrorratesanddecodingtimesfor method^ Viterbi Full ^ perword(s) canbechosensothatwordsaremodelledaswellaspossible,andtogiveoptimumrecognitionperformance.asarstapproximation,itcouldbesaidthat allstatesequencesareequallylikely,andsoallthetransitionprobabilities couldbemadeidentical(ap;p=ap;p+1=128p).sinceaxednumberofframes Thissectioninvestigateshowthetransitionprobabilitiesap;rinequation Durationmodelling isbeingdecoded,anystatesequencewouldhaveprobabilityp(s)=(12)(+1). O-linehandwritingrecognition 84

86 andthewordprobabilitiesdependentirelyontheobserveddata,takingno Inthiscasethestatesequenceprobabilityhasnoeectontherecognition, accountofwhetherthestatesequenceisreasonablefortheword. Practically,though,anumberofimprovementscanbemadetothetransitionprobabilitiestomaketheMarkovmodelsmodelthetruedurations CHAPTER8.HIDDENMARKOVMODELLING durationofthemodeltobeequaltothemeanobserveddurationofaletter: q=1=dav.infact,insuchasimplemodel,thiswillmerelytendtofavour oflettersmuchbetter.hochberg(1992)hasusedsimilartechniquesforthe longorshortwordsdependingonwhetherp>qornot,becauseforaword modellingofhmmstatedurationsinspeechrecognition.inthesimple,onestate-per-lettermodelofgure8.1,thetransitionprobabilitiesfordwelling ofletters,p(s)=p(+1)(qp).adjustingthemeanlengthofeachmodelindividuallygivesimprovedmodelling,buttostarttoobtainaccuratemodels inagivenstateorexitingtothenextstateinaword(pandq=1 prespectively)canbeadjusted.theobviouschoiceistoarrangefortheexpected ofthelengthsofletters,thedurationdistributionneedstobeexamined. maininginthestatefornframes.thedurationdistributionofthesimple modelofgure8.1isgeometric,asinthesolidlineofgure8.2. ThedurationdistributionspeciestheprobabilitiesP(n)8n>0ofre- dottedlineofthegure).betterperformance(ultimatelyintermsofreduced errorrates)istobeexpectedifp(s)canbemodelledmoreaccurately. Thisdoesnotmatchthedurationdistributionsfoundinpractice(showninthe 8.2.1Enforcingaminimumduration P(n)=pn 1q (8.20) durationdmin1isenforced.thisforcesp(n)=0forn<dmin. Itisfoundthatpoormodellingoftenresultsfrompassingthroughamodelin lettermodel.therstistochoosedmintobethesmallestdurationobserved bytheincreaseinthedataprobability.toavoidthisproblem,aminimum asingleletterisveryrarelycontainedinasingleframeofdata.althoughthe probabilityofsuchashortdurationwillbeverylow,thiscanbeoutweighed asingletimestep,whenthedatamatchthecurrentmodelverybadly,though inthetrainingset,butthisissubjecttonoise,particularlysincethedurations aredeterminedautomatically.abettermethodseemstobetochoosedmin= dav=2,thoughothersimilarmethodsworkjustaswell. Severalmethodshavebeenusedtochoosetheminimumdurationofa exactlythesame,buttherearetwiceasmany.whenviterbidecoding,this resultsinaminimumdurationdmin,longerdurationshavingprobabilities eachofthestatesinagivenmodel,asshowningure8.3.thegraphicdata probabilitiesarethesameforallthestatesineachclass(i.e.theemission probabilitiesaretied).theoperationsforcalculatingthelikelihoodsare Thesimplestmethodofimplementingaminimumdurationistorepeat O-linehandwritingrecognition 85

87 Probability CHAPTER8.HIDDENMARKOVMODELLING 1state 2states,Viterbi 2states,full Observed models,comparedwithobserved`'durations. Figure8.2:ProbabilitydistributionsforthesimpleMarkov Duration(frames) 0.3 givenbythegeometricdistribution.theprobabilityofremaininginsucha Figure8.3:AMarkovmodelfortheword`one'withtwostates perletter. oonneeone wheredavistheaveragedurationofaletterdeterminedfromthetraining modelfornframesisgivenby: set.infactthesearelikelihoods,andthenormalizedprobabilitiesare P(n)=(pn dminqdminndmin q= dav dmin+1 01 otherwise (8.22) (8.21) arepermitted,thedistributiongivenbythismodelisnolongergeometric, formtoenforceminimumphonedurationsinspeechrecognition. Robinson(1994),forexample,usesgeometricdistributionmodelsofthis Whendoingfull(asopposedtoViterbi)decoding,wheremultiplepaths P(n)=(pn dminqndmin 0 otherwise: (8.23) O-linehandwritingrecognition P(n)=(Cn 1 q=dmin dav: 0dmin 1pn dminqdminndmin otherwise (8.24) (8.25)

88 Thisdistributionisclosertotheobserveddistribution(gure8.2),butbybettermodellingofthewholeoftheprobabilitydistribution,theperformance canbeincreasedstillfurther. CHAPTER8.HIDDENMARKOVMODELLING 8.2.2Parametricdistributions Pdwellm Figure8.4:Acomplexdurationmodelwithmstatesforone P(1) P(2) P(3) P(m) Moredetailedmodellingofthedurationprobabilitydistributioncanbeaccomplishedwithamorecomplexmodel,showningure8.4.Here,each letterisrepresentedbymstates.therstm 1statescorrespondtoletter durationsoffrom1tom 1frames.Fromeachofthesestates,theonlypermittedtransitionsareontothenextstateofthesameletterorontotherst withthedurationprobabilitiesp(n).thenalstatehasadwellloopwhich stateofthenextletter.thetransitionstothenextletterarethuslabelled letter. givesthedistributionageometrictail.theprobabilitypdwellisadjustedto maketheexitprobabilitiessumtoone: sumoftheprobabilitiesatanynodenotequaltoone,thesumoftheprobabilitiesoftransitionoutofthemodelisone,sothedurationofthemodel isdescribedbyaprobabilitydistribution.infact,bynormalizingappropri- m 1 Xn=1P(n)+1Xn=mP(m)Pn m ately,thesamemodeldurationdistributioncanbemaintainedwhilemaking dwell=1: (8.26) Theremainingtransitionsaregivenprobabilityone.Whilethismakesthe andfollowsageometricdistributionthereafter.however,thedecodingtime thesumofprobabilitiesateachstateequaltoone,buttheformdescribed eectthatmodellengthhasonrecognitionaccuracy. distributioncanbemodelled.withmstatesthemodelisperfectupton=m, isproportionaltothenumberofstates,sothelengthofthemodelmustbe chosenfromatrade-obetweenaccuracyandspeed.table8.2showsthe hereisclearer. Thedurationdistributioncouldbemadetofollowexactlytheobserved Themorestatesinthemodel,themoreaccuratelyagivenprobability durationhistogramfromthetrainingdata.withoutlargequantitiesofdata, O-linehandwritingrecognition 87

89 Probability Probability Geometric Poisson Gamma Observed CHAPTER8.HIDDENMARKOVMODELLING Geometric Poisson Gamma Observed forthreedurationmodels,com- Figure8.5:Probabilitydistributions Duration(frames) Duration(frames) paredwiththehistogramofob- served`'durations. Figure8.6:Thesamewithaforced butionisusedwhichtstheobservedhistogramwell.inthiswork,three however,thesedistributionsarenoisy,soaparametricprobabilitydistri- minimumdurationof3frames. durationmodelshavebeeninvestigated basedonthegeometric,poisson andgammadistributions.ineachofthesecases,theparametricdistributionisusedtocalculatetheprobabilityofbeinginalettermodelforagiven numberofframes.eachofthesedistributionscanbeshiftedtoimposea truepoissondistribution,p(0)6=0. Evenforthecasedmin=1,thePoissondistributionisshifted,sinceforthe minimumdurationdmin1. ThePoissondistribution Schenkeletal.(1994)haverecentlyusedthePoissondistributionforduration modellinginon-linehandwriting. P(n)=8><>:e n dmin =dav dmin: 0(n dmin)!ndmin otherwise (8.27) Thegammadistribution (8.28) themeanandvariance.thevaluesofandaresetaccordingtothemethod O-linehandwritingrecognition Thisdistributionisparametrizedbytwoparametersandwhichdetermine

90 ofmoments:= dmin+1 CHAPTER8.HIDDENMARKOVMODELLING P(n)=8><>:(n+1 dmin) 1e (n+1 dmin) =( dmin+1)22 0 () ndmin otherwise: (8.30) (8.29) seenthatenforcingaminimumdurationof2inthegeometricmodelreducestheerrorrate,butfurtherincreasesimpairtheperformance.bothof thecomplexdurationmodelsperformbetterthanthegeometricdistribu Results Sampleerrorratesandrecognitiontimesareshownintable8.2.Itcanbe (8.31) The8stategammadistributionisusedinotherexperimentsthroughoutthis tionmodels,andthegammadistributionperformsbetterthanthepoisson thesis. (T(34)=4:49;t:999(34)<3:14).Modellinglongerdurationsmoreaccurately byaddingstatesimprovestheperformancebutthereturnsdiminishandthe computationtimeincreases.comparingthe2and8stategammadistributionsshowsasignicantreductioninerrorrate(t(4)=3:28;t:975(4)=2:78), butcomparing8and12stategammadistributionsdoesnot(t(4)=0:16). tinguishingbetweensingleanddoubleletters.inthegeometricmodel,for agivensetofdata,thereisnodierencebetweentheprobabilitiesforthe models`reed'and`red'forexampleifthedurationofthe`'islongerthanthe minimumdurationofthetwo`e'models.however,withthemorecomplex thosewithsingleletters.inthe`reed/red'example,`red'willhaveahigher durationmodels,thosewithdoubleletterswillhavedierentprobabilitiesto Onespecicwayinwhichthebettermodellingismanifestedisindis- probabilitythan`reed'ifthenumberofframeswithhigh`e'probabilitiesis Havingtrainedthenetworkforsometime,ithasagoodestimateofthe mean. 8.3Targetre-estimation aroundthemeandurationofan`',loweriftherearemorethandoublethe probabilityofeachframebelongingtoanyletter.giventhecorrectword, thebeststatesequencesforthiswordrepresentsasegmentationgiving anewlabelforeachframe.foranetworkwhichmodelstheprobability distributionswell,thissegmentationwillbebetterthantheautomaticsegmentationofsection7.1.2sinceittakesthedataintoaccount.findingthe mostprobablestatesequencesistermedaforcedalignment.sinceonly thecorrectwordmodelneedbeconsidered,suchanalignmentisfasterthan O-linehandwritingrecognition 89

91 DurationNumberErrorrate(%)Recognition modelofstates^ 1CHAPTER8.HIDDENMARKOVMODELLING Geometric ^timeperword(s) Poisson Gamma thisautomaticsegmentationgivesabetterrecognitionrate,butstillavoids thesearchthroughthewholelexiconrequiredforrecognition.trainingon models. Table8.2:Sampleperformanceguresforthedierentduration 2.49 quencewhenusingan8stategammadistributionmarkovmodel,butwith anuntrainednetwork,sothegraphicdatahasnoeectonthesegmentation.thisissimilartothe`equallength'segmentationusedtobootstrap thesystem.(b)showstheeectofremovingthedurationmodel.thereis Figure8.7showsthreedierentsegmentationsoftheword`b r'.first (a)showsthesegmentationarrivedatbytakingthemostlikelystatese- thenecessityofmanuallysegmentinganyofthedatabase. nownothingtodistinguishbetweenthestatesequences,exceptslightdifferencesinthenetwork'sprobabilityestimatesduetoinitialasymmetry,so apoorsegmentationresults.aftertrainingthenetwork(c),thedurations lengthsegmentationsandspeedinguptraining.however,aftercompleting trainingonthesexedtargets,afurthersmallimprovementinrecognition deviatefromthepriorassumeddurationstomatchtheobserveddata.this re-estimatedsegmentationrepresentsthedatamoreaccurately,sogivesbettertargetstowardswhichtotrain. datalesandusedtotrainnewnetworks,avoidingtheless-accurate,equal- accuracycanbeobtainedbyusingthetargetsdeterminedbythenewnet- Havingtrainedonenetwork,thesegmentationscanbestoredwiththe work'sownre-estimationofthesegmentation. O-linehandwritingrecognition 90

92 b u CHAPTER8.HIDDENMARKOVMODELLING (a) t1ber (b) Figure8.7:Viterbisegmentationsoftheword`b r'.each linerepresentsoneletteriandishighfortheframestwhen ut(c) le r St=i.(b)isasegmentationwithanuntrainednetworkand nodurationmodel.(a)showstheeectofaddinganeightstate gammadistributiondurationmodel,andissimilartothe`bootstrap'segmentation.(c)isthesegmentationre-estimatedwith 0 numberofepochs(gure7.7).afteraplateauindicatingconvergence,train- Theeectsofthiscanbeseeninthegraphofrelativeentropyagainst segmentsarenotlabelledin(b). afullytrainednetworkandadurationmodel.forclarity,the ingonthexedtargetsisstoppedaccordingtothestoppingcriterion.train- ingonthenetwork'ssegmentationre-estimationisthenbegunandasteeper dropinrelativeentropyisseen.therelativeentropyfallssignicantlybecausethenewsegmentationisthatwhichisclosest(withintheconstraints oferrorrateagainstnumberofepochs(gure7.6),buttheeectislargely ofthedurationmodelling,andthecorrectwordmodel)tothatindicatedby maskedbynoise. thenetwork'soutputprobabilities.thustherelativeentropyoftheoutput Therelativeentropycontinuestofall.Similareectscanbeseeninthegraph andtargetdistributionswillimmediatelybelowerwhenthenewsegmentationisadopted.thereafter,anewsegmentationiscalculatedateveryepoch andthenetworkadaptsitsparametersinaccordancewiththissegmentation. trained,re-estimatingthetargetsateachiteration.theretrainingimproves therecognitionperformance(t(2)=3:91;t:95(2)=2:92). Table8.3showswordrecognitionerrorratesforthree80-unitnetworks trainedtowardsxedtargetsestimatedbyanothernetwork,andthenre- O-linehandwritingrecognition l

93 Training method CHAPTER8.HIDDENMARKOVMODELLING Error(%) alignments. xedalignments,thenretrainedusingindividuallyre-estimated Table8.3:Errorratesfor3networkswith80unitstrainedwith Fixedtargets Retraining ^^ 8.3.1Forward-backwardretraining nitionliterature,apotentialmethodofimprovementcanbeseen.viterbi Thesystemdescribedaboveperformswell,butexaminingthespeechrecog- framealignmentshavesofarbeenusedtodeterminetargetsfortraining. Theseassignoneclasstoeachframe,basedonthemostlikelystatesequence, butabetterapproachmightbetoallowadistributionacrossalltheclasses indicatingwhicharelikelyandwhicharenot,avoidinga`hard'classication atpointswhereaframemayindeedrepresentmorethanoneclass,ornone (asinaligature).a`soft'classicationwouldgiveamoreaccurateportrayal oftheframeidentities. rithm(rabinerandjuang1986).toobtainthedistributionp(t)=p(st= qpjx0;w),theforwardprobabilitiesp(t)mustbecombinedwiththebackwardprobabilitiesp(t)whichrepresenttheprobabilityofobservingframes xt+1whenstartinginstatepattimet.thebackwardprobabilitiesarecalculatedsimilarlytotheforwardprobabilitiesofequation8.16: Suchadistributioncanbecalculatedwiththeforward-backwardalgo- Asuitablenaldistributionr()=rischosen,e.g.=1forthelast attimetisthengivenby: characteronly.thelikelihoodofobservingthedatax0andbeinginstateqp p(t)=p(t)p(xtjst=qp)xrap;rr(t+1): p(t 1)=Xrr(t)P(xtjSt=qr)ap;r: (8.32) normalization: Thentheprobabilitiesp(t)ofbeinginstateqpattimetareobtainedby p(t)=p(t) Prr(t): (8.33) Theseprobabilitiesareusedastargetsfortherecurrentnetworkoutputs. pleoftheword`b r'.theprobabilitiesshownarethoseestimatedbythe forward-backwardalgorithmwhenusinganuntrainednetwork,forwhichthe P(xtjSt=qp)willbeindependentofclass.Despitethelackofinformation, O-linehandwritingrecognition Figure8.8ashowstheinitialestimateoftheclassprobabilitiesforasam- 92

94 framemustbelongtotherstletter,andthelastframemustbelongtothe lastletter,ofcourse,butitcanalsobeseenthathalfwaythroughtheword, themostlikelylettersarethoseinthemiddleoftheword.severalclass theprobabilitydistributionscanbeseentotakereasonableshapes.therst CHAPTER8.HIDDENMARKOVMODELLING probabilitiesarenon-zeroatatime,reectingtheuncertaintycausedsince thenetworkisuntrained.nevertheless,thislimitedinformationisenough totrainarecurrentnetwork,becauseasthenetworkbeginstoapproximate durationmodel,asshowningure8.8b,whichgivesmorepronouncedpeaks theseprobabilities,thesegmentationsbecomemoredenite.incontrast, intheprobabilitiesforindividualletters,becausethedurationmodelreduces trainedtowardstheincorrecttargets,reinforcingitserror. (gure8.7b).thesegmentationisverydenitethough,andthenetworkis work,themostlikelyalignmentcanbeverydierentfromthetruealignment usingviterbisegmentationswithnodurationmodelforanuntrainednet- theuncertaintyintheirlengthandlocation.figure8.8c,dshowstheeect thatdividingbytheclasspriorprobabilityhasonthesegmentation.withno durationmodel,thesegmentationisdistorted,butwhenthedurationmodel isimposed,thesegmentationisbetter(strongerpeaks,whichoverlapless) Theprocessoftraininganetworkcanbespeededupbyenforcingastrong thanbeforedividingbytheclassprior. 1butl (a) er (b) Figure8.8:Baum-Welchsegmentationsoftheword`b r' (c)showstheeectofdividingbythepriorclassprobability ofaddinganeightstategammadistributiondurationmodel. withanuntrainednetwork.(a)isthesegmentationusingno durationmodel,andauniformclassprior.(b)showstheeect (c) (d) 0 used)givesamuchmorerigidsegmentation(gure8.9a,b),withmostof theprobabilitiesbeingzeroorone,butwithaboundaryofuncertaintyat O-linehandwritingrecognition Finally,atrainednetwork(especiallywhenastrongdurationalmodelis (equation8.15).(d)showsthesamewithadurationmodel

95 CHAPTER8.HIDDENMARKOVMODELLING Figure8.9:Baum-Welchsegmentationsoftheword`b r' and(b)hasaneight-stategammadistributiondurationmodel. usingtrainednetworks.(a)hasthegeometricdurationmodel representpartsoftwoletters,oraligaturebetweentwo,allowsthenet- thetransitionsbetweenletters.thisuncertainty,whereaframemighttruly worktrainedwiththeforward-backwardalgorithmandtestedusingfullfor- wardprobabilitiestogiveimprovedrecognitionresultsoveranetworkusing Viterbialignmentsandtesting.Theimprovementisshownintable8.5.The nalprobabilisticsegmentationcanbestoredwiththeframesofdatainthe samewayastheviterbisegmentationwas,andusedwhensubsequentnetworksaretrainedonthesamedata.trainingisthensignicantlyquicker thanwhentrainingtowardstheapproximatebootstrapsegmentations. retrained,re-estimatingthetargetsateachiteration.aswiththecorretionperformance(t(4)=3:11;t:975(4)=2:78). towardsxedbaum-welchtargetsestimatedbyanothernetwork,andthen Table8.4showswordrecognitionerrorratesfor80-unitnetworkstrained Training method Error(%) spondingviterbialignments(gure8.3)theretrainingimprovestherecogni- alignments. Baum-Welchalignments,thenretrainedusingre-estimated Table8.4:Errorratesfor5networkswith80unitstrainedwith Fixedtargets Retraining ^^ errorislowestifthesystemistestedwithviterbiratherthanfulldecoding.forbaum-welchtargets,thedierenceissmallerbutstillsignicant (T(4)=4:94;t:995(4)=4:60). abilitieswhentraininganddecoding.itcanbeseenthattheerrorratesfor thenetworkstrainedwithbaum-welchtargetsarelowerthanthosetrained onviterbitargets(t(2)=5:24;t:975(2)=4:30).asseenintable8.1,the Table8.5showsacomparisonbetweentheuseofViterbiandfullprob- O-linehandwritingrecognition Markovmodel,andthetablesinsection7.3.3refertomodelsretrainedwith Baum-Welchretrainingisthestandardmethodofretrainingthediscrete

96 TrainingCHAPTER8.HIDDENMARKOVMODELLING Table8.5:Errorratesfornetworkswith80unitstrainedwith method ViterbidecodeFulldecode ^ Error(%) Viterbi(3networks)orBaum-Welch(5networks)alignments, thentestedusingviterbiorfullprobabilitydecoding. Baum-Welch ^ ^ ^ Baum-Welch.ThenetworkestimationsusedtoprimethetrainingaregenerallybetterthanthoseofthediscreteHMM,soonlyasmallimprovement 8.4Languagemodelling isseenbyretraining. theeldofspeechrecognition(waibelandlee1990:ch.8).thesystemas describedsofarhasalanguagemodelbuiltinintheformofaxedlexicon whichlimitsthesearchtoasetlofpermittedwords. Oneareawheregreatgainsinrecognitionaccuracycanbemadeisbylanguage modelling,ascanbeseenfromthewealthofliteratureonthisareafrom Iamnotyetsolostinlexicography::: SamuelJohnson. Thelexiconusedsofarwaschosentobetheunionvocabularyofthetraining,testandvalidationsets,sothatanywordinthecorpuswouldbeinthe lexicon.inpractice,thelexiconsizewouldbedictatedbythetasktobedealt with.inanapplicationsuchasreadingcheques,thevocabularysizewouldbe around35words,comprisingnumbers,currencyunits,`and'andsoforth.on theotherhand,fortranscribinglonghanddocuments,thevocabularywould 8.4.1Vocabularychoice needtobetensofthousandsofwords,tocovernearlyallthewordslikely tooccur.thesizeofthevocabularyaectstheperformanceofanyrecognitionsystembecausewhenitislarge,wordssimilartothecorrectwordare identifyonlythecityoronlythestatename,thesehavingbeensegmented fromtheaddressblock.thevocabularyisnowmuchsmaller,makingthe morelikelytobepermitted.forinstance,inachequeapplicationtheword taskeasier.infact,themainreasonforusingcursivescriptinaddressreadingistodisambiguateconfusionsinreadingthezipcode.ifthezipcode largevocabularysystem,increasingthelikelihoodofconfusion. Inpostalapplications,thepotentialvocabularyislarge,containingall street,city,countyandcountrynames,butasystemmightberequiredto `hundred'isunlikealltheotherwords,but`hounded'mightbenecessaryina O-linehandwritingrecognition 95

97 uncertain,thevocabularywillreectthisuncertaintyandrisetoten,ahundredorathousandpotentialcitynames.(ifthecorrespondencebetween zipcodesandcitiesisnotone-to-one,thevocabularysizewillvary,butthis isreliablyread,thecitywillbeknown,butifone,twoorthreedigitsare CHAPTER8.HIDDENMARKOVMODELLING isaroughguide.)thusthesearereasonablevocabularysizesfortestinga postalsystem,withthevocabularybeingdynamicallychosenfromalonger listaccordingtothecitiesmatchingtheknowndigitsofthezipcode. LexiconErrorrate(%)Timeper size ^ ^ word(s) beenconductedwithlexicacontainingdierentnumbersofwords.table8.6 Totesttheeectonerrorratethatthelexiconsizehas,experimentshave icaofdierentsizes. Table8.6:Errorratesfromtestingve80-unitnetworksonlex andgure8.12showtheresultsoftheseexperiments.thelexicaarecreated 2.83 ensuresthatthecorrectwordisalwaysinthelexicon,butallowslexicafrom 447to10,000wordstobetested.Inpractice,thelexicaweremadefrom approximately500,1000,2000,4000and8000words,butincludingallwords sharingthelowestfrequencyneededtomakeupthetotal,meantthatthese gureswereexceededineachcase.thisexperimentcorrespondstoonedone bytakingthevocabularyofthetest-set(447)andaddingtothatthemost frequentwordsfromthelobcorpusthatwerenotalreadyincluded.this byschenkeletal.(1994)whosimilarlyconstructlexicaincludingallthetestsetwords.theymakeupthetotalwithwordschosenrandomlyfromalarge lexiconthanwiththeusual1334wordlexicon(15.6%). dictionarywhichwilltendtobelonger,andthuslessconfusablethanthe becauseoftheincreaseinsimilaritybetweenthepermittedwords.because themostcommonwordswereadded,andsincethesearetheshorterwords whichthesystemtendstoconfuse,theresultsareworsewiththis1048word mostfrequentwords.the501worderrorrateislowerthanthosequoted 8.4.2Grammars before,becauseofthesmallerlexiconsize,butlaterlexicagivemoreerrors Afterconsideringthevocabularyofthesystem,thenextlevelofcomplexity inlanguagemodellingistoimposeagrammaronthewords,tolimitwhich wordsarepermissibleinagivencontextortoaccountforthefrequencies simplyinvolvesdeterminingtheprobabilityofawordoccurring,andusing O-linehandwritingrecognition ofdierentwords.thesimplestformistermeda`unigram'grammar,and 96

98 Errorrate% Languagemodelfactor thatasthep(w)termofequation8.1.theprobabilitiesaredeterminedby frequencycountsinacorpusofdata,forinstanceinthewholelobcorpus (lessthetrainingset)orjustonthetrainingset.oneproblemwithdeningstochasticgrammarsisthatwordsinthegrammarmaynotoccurinthe CHAPTER8.HIDDENMARKOVMODELLING exist,butherethesimpleexpedientofassigningafrequencycountofoneto databaseavailablefortrainingthegrammar.complexsmoothingtechniques unobservedwordsisadopted. Languagemodelfactor Durationmodelfactor 4 Figure8.10:Ameshplotshowing theeectonerrorrateofweightingthelanguageanddurationmodel probabilities. Figure8.11:Thecorrespondingcontourplot,showingtheminimumat Durationmodelfactor languagemodelandthedurationmodelwithrespecttotheacousticmodel 1 givesbetterrecognition.thisisequivalenttorewritingequation8.14as Inpractice,ithasbeenfoundinspeechrecognitionthatweightingthe (3,2) L(Wjx0)=P(W)X S2S(W)P(x0jS)P(S): 0 (8.34) abilityestimates.figures8.10and8.11showthevariationinerrorratewhen testingasinglenetworkastheweightsarealtered,keepingtheweightingof Varyingtheweightsandaectstherecognitionrate,andisamethodof indicatingtherelativedegreeofcondenceintheaccuracyofthethreeprob- thegraphicdataprobabilityequaltoone.theoptimumvaluesfoundare3 forthelanguagemodelweight,and2forthedurationmodelweight,. tothepreviousword orbigramgrammarswhichassignaprobabilityto whichusecontexttodeterminewhichwordsarepossibleinthenextposition suchaswordpairgrammarswhichsimplylimitthevocabularyaccording aword,conditionedonthepreviousword.bydeterminingstatisticsona largecorpusoftext,thefrequencyofoccurrenceofpairsofwordscanbe Muchresearchhasbeendoneintousingmorecomplexlanguagemodels O-linehandwritingrecognition 97

99 determined,givingthebigramgrammarp(wtjwt 1).Forpairsofwordsnot observedinthecorpus,theunigramgrammarmustbeusedinstead.more contextcanbeused,asinthegeneraln-gramgrammarp(wtjwt 1;:::;Wt n), andparsingsentencesduringrecognitioncangiveinformationaboutwhat CHAPTER8.HIDDENMARKOVMODELLING likelyinthefollowingtext,andjelinek(1991)discussesothermethodsof languagemodelling.thepresentsystemconsiderseachwordinisolation, partsofspeecharepossibleorlikelyinthenextword.kuhnanddemori (1990)describeamethodofcachingrecentlyusedwordsasthesearemore sononeofthesemorecomplexschemeshasbeenimplemented,thoughthey wouldbeappropriateforasystemtranscribingsentences.chequeamounts andpostaladdresseshaveasimplestructureforwhicharestrictivegrammar canbewrittentosignicantlyreducethenumberofwordsthatneedtobe consideredatthenextstage. Nogrammar Grammarbasedontrainingsetonly GrammarbasedonwholeofLOBcorpusEntropyPerplexity is,istomeasureitsperplexityq(g)(lee1989:p.145).thisistheaverage recognitionrate.acrudemethodofquantifyinghoweectiveagrammarg Allgrammarsareusedtolimitthechoiceofwords,andsoimprovethe Table8.7:EntropyandperplexityofgrammarsfortheLOBcorpus. 845 overallwordsofthenumberofpermittedsuccessorwords.foraunigram Leenotesthatthis\doesnotreecttheuncertaintyencounteredwhendecoding."Ifthegrammardoesnotreecttheactualfrequenciesofthewords probabilitydistribution,measuredinbits: grammar,thisissimplytwotothepoweroftheentropyh(g)oftheunigram inthetestset,thentheperplexityisapoorguidetothegrammar'sutility. H(G)= XW2LP(W)log2P(W) Q(G)=2H(G): (8.36) (8.35) AbettermeasureisthetestsetperplexityQtest(G)calculatedfromthecross entropyofthetestset,giventhegrammar(charniak1993:p.34): whereptest(w)istheproportionofthetestsetthatwordwrepresents,not theunigramprobabilityp(w).(wheretestsetwordsarenotinthelexicon, asinsection8.4.4,ptest(w)iscalculatedasaproportionofthein-vocabulary Htest(G)= XW2LPtest(W)log2P(W) Qtest(G)=2Htest(G); (8.37) O-linehandwritingrecognition (8.38) 98

100 LexiconPerplexity 1334 size CHAPTER8.HIDDENMARKOVMODELLING NogrammarUnigram Errorrate(%) words.)thisperplexitymeasureindicateshowusefulthegrammarisatlimitingthechoiceofwordstothoseinthetestset,whichisthefunctionthat thegrammarshouldperform. matedonthelobcorpushasahigherperplexitythanthatestimatedonthe forthelexicawithlengthsotherthan1334areestimatedonthelobcorpusexcludingthetestset.becauseofthemismatchbetweenthetestset distributionandtheunigramprobabilities,theperplexityforthe501word trainingset.theeectofusingthesegrammarsforrecognitionisshownin vocabularyishigherthanthelexiconsize,andthe1334wordgrammaresti- Sampletest-setperplexitiesareseenintables8.7and8.8.Theunigrams trainingsetgrammarandthelobcorpusgrammar. icaofdierentsizes.the1334wordlexiconistestedwiththe Table8.8:Errorratesfromtestingve80-unitnetworksonlex table8.8.itcanbeseenthatusingagrammardecreasestheerrorrateinall casesexceptwiththe501wordlexiconwhentheperplexityofthegrammar itycanbeseentoindicatetheeectivenessofthegrammarreasonablywell. Thisishighlightedingure8.14wheretherecognitionrateisseentobeproportionaltothelogperplexityforeachofthetypesoflexiconandgrammar ishigherthanthelexiconsize(gures8.12and8.13).thetestsetperplex- used,thoughtheslopesdierbetweenthegrammartypes. NormalizationSlopecorrection;SrihariandBozinovic'sslantestimate;Zhang 8.4.3Experimentalconditions Atthispoint,thewholeofthestandardtestsystemhasbeendescribed,and itisnowpossibletosummarizetheconditionsusedforearlierexperiments. ments.thetypicalconditionsareasfollows: Theseconditionsareusedeverywhereexceptasnotedinindividualexperi- O-linehandwritingrecognition RepresentationUniformhorizontalquantization;7bandverticalquantization;skeletoncodingatfourangles;turn,endpoint,junctionanddot andsuen'sthinningalgorithm. features;elevensnakefeatures. 99

101 Errorrate% Errorrate% Perplexity 25Nogrammar Unigram CHAPTER8.HIDDENMARKOVMODELLING Lexiconsize(logscale) 4Nogrammar Unigram Figure8.12:Agraphoferrorrates averagedoverve80-unitnetworks. Lexiconsize(logscale) 10 Errorratesareshownwhentesting withandwithoutaunigramgrammar. Figure8.13:Thetest-setperplexitiesfortheunigramgrammarsplottedagainstlexiconsize.Thelexicon size(theperplexitywithnogrammar)isalsoplottedforcomparison. Figure8.14:Agraphoferrorrateagainstperplexityforlexicaof dierentlengthswithandwithoutuseoftheunigramgrammar. Nogrammar Figuresfortwodierentgrammarsareshownforthe1334word Perplexity(logscale) Unigram 1334words 25 RecognitionRecurrentnetwork;80feedbackunits;26softmaxoutputunits. TrainingBack-propagationthroughtimewiththemodieddeltabar-delta terion;retrainingtowardsre-estimatedtargets. scheme;trainingtowardsxedbaum-welchtargetsuntilstoppingcri- lexicon(basedonthetrainingsetorlobcorpus). Testing1334wordvocabulary;nounigramgrammar;8stategammadistribu- O-linehandwritingrecognition tiondurationmodel;durationmodelweightingof2;fullforwardproba- bilitycalculation.testswithaunigramgrammarusethegrammarbased onthetrainingandvalidationsets,andagrammarweightingfactorof

102 sofar.improvementscanbemadeby:usingthecannyslantestimate;increasingthenumberoffeedbackunits;usingtheunigramgrammarandusing non-uniformquantization.subsequentexperimentsdescribedinthischapter Itwillbenotedthattheseconditionsarenottheoptimalconditionsfound CHAPTER8.HIDDENMARKOVMODELLING dataset.errorratesforthisnetworkareshownintable8.9. backunits thelargestnetworktrainedonthenon-uniformlyquantized usealloftheseenhancements,butthenetworksizeislimitedto160feed- Conditions Beforeretraining,nogrammar,fulldecoding Afterretraining,nogrammar,fulldecoding Afterretraining,perplexity500grammar,fulldecoding Afterretraining,perplexity500grammar,Viterbi Errorrate(%) Coverage 1334wordvocabulary. Table8.9:Errorrateswhentestinga160-unitnetworkonthe 8.8 describesonemethodofdoingthis),becondemnedtoincorrectlyclassify thesenon-wordsoragthattherewasanout-of-vocabularywordforhuman identifyawordthatisnotinthelexicon.achequeamountcouldbelledin incorrectly,oralargevocabularysystemmightbepresentedwithaproper nameorneologismwhichwouldnotbeinthelexicon.thusasystemmust beableeithertorecognizewordsnotinthevocabulary(thenextsection Inmostapplications,thereisachancethattherecognizerwillbeaskedto of-vocabularywords,thenthisgureisanupperboundontheproportionof shouldbeabletoclassifythem,thevocabularyistermed`open',incontrast proof-reading. wordsthattherecognizercanclassifycorrectly.somesamplecoveragesfor tothe`closed'vocabularytaskassumedabove.foranopenvocabularytask, theissueofcoveragemustbeaddressed theproportionofwordsinatext whichareinarecognizer'slexicon.ifthereisnomethodofrecognizingout- Inthecasewhereout-of-vocabularywordsarenoterrors,andthesystem thelobcorpuswithlexicaofdierentsizesareshownintable8.10.ineach case,thelexiconismadeofthenmostfrequentwordsfromthelobcorpus. assessed.onanyothercorpus,coveragewouldattenomoreforlarger lexica.thecoverageproportionsarecomparedwiththeperformanceofthe 160-unitnetworkofsection Itshouldbenotedthatthecoverageguresforthelargerlexicaarearticially highbecausethelexicaarederivedfromthecorpusonwhichcoverageis Asameasureofhowwellthesystemisperformingcomparedtothisupper thelexiconsizeincreases,therecognitionrateincreases,thoughitdoesnot riseasfastasthetestsetcoverageratewhichistheoptimalperformance. O-linehandwritingrecognition Theseresultsareshowngraphicallyingure8.15.Itcanbeseenthat,as 101

103 LexiconCoverage(%)Errorrate(%) sizenlobtesttestsetinlexiconperplexityperword(s) CHAPTER8.HIDDENMARKOVMODELLING Test-setDecodingtime Table8.10:Coverageratesforlexicacomposedofthenmost frequentwordsfromthelobcorpus,onthelobcorpusasa whole,oronthelobtestset.thelattergureistheupper 11.8 boundonthenumberofwordscorrect.errorratesareshown 23.9 asapercentageofwordsincorrectinthetestsetandasapercentageofthemaximumpotentialwordscorrect.recognition timespertestwordareshown vocabularywords(whichthesystemcouldhavecorrectlyidentiedwiththat lexicon)whicharemisclassied.thisrisesfrom0%withtwowords(allwords `the'and`of'arecorrectlyclassied)to12%witha30,000wordvocabulary. bound,thein-lexiconerrorrateisalsoplotted.thisistheproportionofin- timeincreaseslinearlywiththelengthofthelexicon(ascanbeseenintable8.10wheretherecurrentnetworktakesapproximately0.76sperword, Inthesystemdescribedhere,whichhasnotbeenoptimizedforspeed,with 8.4.5Searchissues alargelexiconthemajorityoftherecognitiontimeisspentcalculatingthe probabilitiesinthehiddenmarkovmodelratherthanestimatingtheposteriorsintherecurrentnetwork.sincethereisonemodelperword,thesearch testsdescribedhere. thesehasyetbeenimplementedinthesystem,butallcouldbeaddedsimply.patiencewastheonlystrategyadoptedforthefewlarge-vocabulary ofstrategieswhichmustbeimplementedtoincreasethespeed.noneof plus10-3sperlexiconitem).foradevelopmentsystemwitha1000word O-linehandwritingrecognition vocabularythisistolerable,butforlargervocabulariesthereareanumber 102

104 Percentcoverage/recognition Perplexity 100Coverage Errorrate In-lexiconerrors CHAPTER8.HIDDENMARKOVMODELLING Lexiconsize(logscale) 5Unigram Nogrammar coveragerateforlexicaofdierent Figure8.15:Agraphoftest-set Lexiconsize(logscale) 10 sizes.recognitionratesfora160- unitnetworkareshown,andthe failurerateisalsoplotted.failure istheproportionofin-vocabulary wordsthatarewronglyclassied.figure8.16:agraphofthetestset forin-vocabularywords. perplexityoftheunigramgrammar stateisfoundtobemuchlesslikelythantheotherstatesthesearchalong canbesaved,atthecostofasmallorganizationaloverhead(gure8.17). theselettersarebeingrepeated.bystoringthelexiconinatree,thislabour words`proud'and`proof'sharetherstthreeletters,thecalculationsfor wouldbetoorganizethelexiconaccordingtoatreestructure.sincethe Furthertimesavingscanbeintroducedbypruningthesearchpath.Ifa Therstsaving,whichdoesnotaecttheperformanceoftherecognizer, network. cruderecognitionmethod.themethoddoesnotneedtobeveryaccurateifit pathsleadingfromthatstateisterminated.similarly,onlythen-bestpaths canrejectareasonableproportionofthevocabularybutrarelyrejectthecorrectword.potentialmethodsmightincluderunningacut-downrecognizer eectivelyprunedbyexaminingtheposteriorprobabilitiesestimatedbythe quired.renalsandhochberg(1994)haveshownthatthesearchcanbevery ateachtimestepneedberetained,reducingthenumberofoperationsre- withone-state-per-letter-models,oratechniqueassimpleasconsidering theheight:widthratioofaword,orrecognizingjusttherstletterwithan isolatedcharacterrecognizer.afterreducingthevocabularywiththissimple Speedmightalsobeimprovedbyrestrictingthevocabularyusingasimple, method,thefullrecognizercanberunwiththesmallervocabulary.systems foron-linerecognitionalreadyusethisfastmatchapproach(schenkeletal. 1994). O-linehandwritingrecognition

105 CHAPTER8.HIDDENMARKOVMODELLING p or os ot post Figure8.17:Threewordsfromalexiconstoredasatreetoreducethecalculationtimeindecoding. u df proud proof 8.5Rejection Andnonecanreadthetext noteveni. siedbytherecognizerand,accordingtoitslabel,determinedtobecorrect Theresultsquotedsofarhaveallbeenerrorrates,whereeachwordisclas- orincorrect.thisistheperformancemeasurewhichmustbeusedforany non-interactivetexttranscriptionsystem,foritisthenumberoferrorsthat issignicant.foranapplicationthatallowssomehumanintervention,however,amechanismforrejectioncanbeused.ifameasureofcondencefor MerlininTennyson'sIdyllsoftheKing. classiedwithlowcondencecanberejected.withagoodmeasureofcon- dence,manymoreincorrectwordsthancorrectwordswouldberejected, thesystem'sclassicationscanbeformulated,thenthosewordswhichare text.similarly,inapost-ocesortingsituation,ifthoseenvelopeswhose addressesareclassiedwithlowcondencearerejectedandmanuallysorted, thenumberofmachinesortedmailpiecesincorrectlyroutedwillbereduced. sotheproportionofacceptedwordswhicharecorrectwouldbehigherthan cation,reducingtheeortneededtoproof-readandcorrectthetranscribed therawrecognitionrate.foratexttranscriptionsystem,rejectedwordscan behighlightedinthetranscriptionandtheuserpromptedforcorrectclassithewordlikelihoodsandposteriorwordprobabilitiesforthemostlikely high,but,acknowledgingthedicultyofhandwritingrecognition,thepermittedrejectionratesarehigh(section2.2.1). Projectsdesignedtotacklecommercialproblemshavespeciedaccuracyand rejectiongoalsthattheclassiersmustmeet.becauserecognitionmustbe goodtomakeautomationcost-eective,theaccuracygureisusuallyvery O-linehandwritingrecognition Threerejectionmeasureshavebeenevaluatedforthissystem,basedon 104

106 Errorrate% arealreadycalculated,anditcanbeseenthatifthegraphicdatamatchesa wordmodelverywell,thenp(wbestjx0)willbeclosetooneandl(wbestjx0), likelihoodsl(wbestjx0),l(wsecondjx0)andprobabilitiesp(wbestjx0),p(wsecondjx0) word,wbest,andthesecondmostlikelyword,wsecond.inthedecoder,the P(Wsecondjx0)andL(Wbestjx0) CHAPTER8.HIDDENMARKOVMODELLING onthenumberofframes(+1)intheword).toobtainathresholdapplicable towordsofanylength,theloglikelihoodisscaledtobeindependentofthese factorsandthevariablethresholdedisthenormalizedlikelihood^l(wbestjx0): L(Wbestjx0)istheproductofavariablenumberofprobabilities(depending L(Wsecondjx0)willallbehigh.,butthissimplenormalizationwasfoundtobemosteective. Alternativescalingfactorshavebeentested,incorporatingtheweightsand log^l(wbestjx0)=logl(wbestjx0) Likelihooddierence Combined+1: (8.39) onnormalizedmaximumloglikelihood,dierenceinnormalized Figure8.18:Erroragainstrejectionproportionforthresholding loglikelihoodandacombinedscheme. Percentrejected 8 rejectionratecanbefound.theerrorratecanbeplottedagainsttherejectionrateforavarietyofthresholdvalues,toshowthetrade-obetween Byvaryingathresholdonanyofthesedimensions,andrejectingwords whichfallbeyondthethreshold,theerrorrateincorrectwordsaccepted innormalizedlogofthebesttwowords'likelihoods.thelikelihooddierencemethodworksbetterthanthelikelihoodmethod,sincetheerrorrate totalwordsacceptedand rejectionandaccuracy.figure8.18showsthesecurveswhenthethreshold isonthenormalizedlogofthemaximumlikelihood,andonthedierence ofacombinedmethodwhichthresholdsonalinearcombinationofthetwo measures.methodsbasedontheposteriorprobabilitygavesimilarresults (understandably,sincetheposteriorsarecloselyrelatedtothelikelihoods, byequation8.15).usingsucharejectioncriterionincreasestheaccuracyof thesystem,e.g.givingerrorratesaslowas1.2%whenrejecting20.8%ofthe islowerforagivenrejectionrate.thisgraphalsoshowstheperformance words,or4.9%whenrejecting8.0%. O-linehandwritingrecognition

107 8.6Out-of-vocabularywordrecognition Wordsandwordlessness.Betweenthetwo... CHAPTER8.HIDDENMARKOVMODELLING Ifthevocabularyisnotinherentlylimitedbythetask(inwhichcaseanout ofvocabularywordisanerror),thesystemshouldbeabletodetectthatthe wordispoorlyrecognizedand,ifpossible,shouldthenuseanalternative strategytorecognizetheword TonyHarrison.Wordlists. z ȧ b dc gure8.19.eachcirclerepresentsalettermodel,withoneormorestates. Theinitialdistributionisuniformacrosstherststatesofeachlettermodel. Theprobabilitiesarecombinedtondthe0probabilitiesasbefore,butafter Onesuchstrategyistocreateanon-wordMarkovmodel,asshownin Figure8.19:Anon-wordMarkovmodelshowingsomeofthe eachletteriscomplete,atransitiontoanyofthelettersispermitted.asthe 26lettermodels. dataareaccumulated,apathistracedbetweensuccessiveletters. letterscorrespondingtoitsstatesequencecanbeprintedout.viterbidecodingisused,sincendingthebestsequenceofletterswhencalculatingfull probabilitiesismuchmoredicultthaninthexed-vocabularytask.justas makingatransitionfromonelettertoanother,andtheseprobabilitiescanbe withawordbigram,aletterbigramcanbecreateddetailingtheprobabilityof multipliedintothestatesequenceprobability.table8.11showstherecognitionratesforthenon-wordmodelwhenitisusedinsteadofalexicon.these resultscomparefavourablywiththesingle-authornon-worderrorratesof 78{92%ofEdelmanetal.(1990). Whenthenalframeisprocessed,themostlikelypathisfoundandthe O-linehandwritingrecognition (0.76scomparedto2.21swhenusinga1334wordlexicon,bothwiththe160- bythismethod,andthen,ifalexiconisavailable,thebestin-lexiconmatch unitnetwork.)thenon-wordmodelcouldbeusedasafastalternativetothe lexicon-baseddecoder.itispossibletondthemostlikelylettersequence Decodingwiththenon-wordmodelisfasterthanwhenusingalexicon. 106

108 log^l(nonwordjx0) Percentcoverage/recognition BigramweightErrorrate(%) CHAPTER8.HIDDENMARKOVMODELLING weightings(withthedurationmodelweight=3),usingviterbi Table8.11:Errorratesforthenon-wordmodelwithdierent decoding Lexiconcorrect 55.1 Non-wordcorrect Bothcorrect Figure8.20:Wordsplottedwith log^l(wbestjx0) Lexiconsize(logscale) Withnon-wordmodel Coverage Lexicononly 6000 non-wordnormalizedlikelihood 100 againstlexiconnormalizedlikelihood. Figure8.21:Agraphofrecognitionrateagainstlexiconsize, isdeterminedbyndingthewordwiththeminimumeditdistancefromthis vocabularywords.thecoverageof sequence.1severaloftheclosestwordscouldbeidentiedandusedasthe withandwithoutmodellingout-of- vocabularyforaslower,moreaccuraterecognition. Asystemhasbeencreatedwhichusesboththelexiconandthenon-word thelexicaisalsoshown. stringrespectively.theproblemthenistodecidewhichofthesehypotheses tochoose.ithasalreadybeenseenthatthenormalizedlikelihoodisagood model,ndingthemostlikelywordinthelexiconandthemostlikelyletter condencemeasurefortheclassicationofthelexicon-basedsystem.asimilarmeasurecanbedenedforthenon-wordmodel,basedonthelikelihood penaltiesareaccumulatedfordeletion,insertionandsubstitutionofletters.thiscomparisonisfasterthancalculationoftheprobabilitiesforeachword. ofthemostlikelystatesequence,l(nonwordjx0). 1Theeditdistanceiscalculatedbycomparingtheletterstringwitheachlexiconword,and log^l(nonwordjx0)=logp(wbest)l(nonwordjx0) O-linehandwritingrecognition +1 (8.40)

109 Notethat,tocorrectfortheeectoftheunigramgrammaron^L(Wbestjx0),the sameprior,p(wbest)mustbeincludedinthenon-wordnormalizationtomake thegurescomparable.now,plottinglog^l(nonwordjx0)againstlog^l(wbestjx0) foreachword(gure8.21)showsthatthereisaclearboundaryseparating CHAPTER8.HIDDENMARKOVMODELLING theout-of-vocabularywordswhichthenon-wordmodelcorrectlyidenties fromthein-vocabularywordswhichthelexicalapproachgetsrightbutthe non-wordmodelgetswrong.thesearethetwosetsofwordsforwhichthe decisionbetweenmethodsiscritical.wordsforwhichbothmethodsareright orbotharewrongcanbeignoredhereasthechoicebetweenstrategiesdoes notaecttheaccuracyoftheseclassications. chosentogiveadecisionboundaryontheline: Sincethetwogroupsofwordshardlyoverlap,athresholdPnw,canbe waschosentopermitnumericallyaccuratecalculationswiththeprobabilities Figure8.20showsonesuchboundary logbpnw=2600.thisthresholdcan beinterpretedasthelogoftheprobabilityoftransitionintothenon-word allthelexiconwordmodels.infactpnw=0:33.thebasebofthelogarithm modelwithinaglobalmodelwhichencompassesthenon-wordmodeland log^l(nonwordjx0)=logpnw+log^l(wbestjx0): (8.41) storedasintegers,ifdesired,soinfactbislittlemorethanone. errorratesarecomparedtothecoverageandtheerrorrateusingonlythe lexicon,asingure8.15.thistimetherecognitionrateishigherthanthe coverageforsmalllexica,showingthepowerofthenon-wordmodelforrecognizingout-of-vocabularywords.withlargerlexica,therecognitionrate fallsbelowthecoverage,butremainsabovethelexicon-onlyrecognitionrate. Thusanon-wordmodelalwaysimprovestherecognitionrate,thoughtheeffectissmallwhenthelexiconislarge. 8.7Summary writtenwords:derivingwordprobabilitiesfromtheframelikelihoodsofthe previouschapter.fromthesimplemodelswithonestateperletter,anumberofenhancementshavebeendescribed.bymodellingthedurationdistributionsofletters,thesystemaccuracyhasbeenimproved.theproblem ofvocabularysizehasbeenaddressedanditseectontheerrorrateshown, forbothclosedandopenvocabularytasks.asimpleunigramgrammarhas beenimplemented,andithasbeenshownhowthisreducestheerrorrate.a schemeforrejectingpoorlyrecognizedwordshasbeendescribedandasystemforrecognizingwordsnotinthelexiconimplemented.combiningthese hasgivenincreasedrecognitionontheopenvocabularytaskwhenmanytest O-linehandwritingrecognition wordsarenotinthelexicon. Figure8.21showstheerrorrateswhenusingthisdecisionboundary.The Thischapterhasdescribedthenalstageintheprocessofrecognizinghand- 108

110 vocabularytask.lowererrorratescanbeachievedbyapplyingarejection 8.8%withalexiconandgrammar,53.9%usingnolexiconand12%ontheopen criterion. Themostsignicantresultsfromthischapterarethenalerrorratesof CHAPTER8.HIDDENMARKOVMODELLING O-linehandwritingrecognition 109

111 Chapter9 Conclusions hasbeenimplementedandtestedonadatabaseofcursivescript.theresults showthatthemethodofrecurrenterrorpropagationnetworkscanbeapplied Thisthesishasdescribedacompletehandwritingrecognitionsystemwhich Isawinniteprocessesthatformedonesinglefelicityand, successfullytothetaskofo-linecursivescriptrecognitionandperformbetterthanacomparisonhiddenmarkovmodelsystem.an88%recognitionrate JorgeLuisBorges.TheGod'sScript. understandingall,iwasabletounderstandthescriptofthetiger. hasbeenachievedonanopen-vocabularytask.comparisonofresultswith otherresearchersisdicultbecauseofdierencesinexperimentaldetails, Thesingleauthorrecognitionratesforothersystemsare(forvariouslexicon sizes):48%bybozinovicandsrihari(1989),50%byedelmanetal.(1990)and 70%byYanikogluandSandon(1993). theactualhandwritingusedandthemethodofdatacollection.theresults whichhavebeenpublishedforsimilarproblemsarenotedinsection berofways.thesuccessiveimprovementsaresummarizedintable9.1.this showstherelativereductioninerrorratethateachofthetechniqueshas broughtabout. offeatureshaveledtoreducederrorrates.thehybridsystem,whichwas foundtoperformbetterthanthediscreteprobabilityhmmsystem,wasimprovedbyretrainingwithre-estimatedframelabels.baum-welchretraining oftherecurrentnetworkhasbeendescribedhereandhasalsobroughtabout animprovementinrecognitionratescomparedtousingviterbitargets.betterperformancestillcanbehopedforfromtraininglargernetworks,butthe Enhancementsinnormalizationandinthedetectionandrepresentation Therecognitionperformanceofthesystemhasbeenimprovedinanumware. trainingtimeisproblematicforsuchlargenetworkswithoutspecialisthard- O-linehandwritingrecognition mance,bothbyincorporatingamodelofthedurationofeachletter,andby addingaunigramwordgrammar.ithasbeenshownthatthesystemcan recognize46%ofwordswithoutrestrictiontoalexicon,andthatamodel Languagemodellinghasbeenfoundtoimprovetherecognitionperfor- 110

112 Method Skeletonvs.undersampling Features Non-uniformquantization Proportionalerror ratereduction(%) CHAPTER9.CONCLUSIONS Snakes Hybridvs.discreteHMM Baum-Welchvs.Viterbitargets theincorporationofthetechniquesdescribedinpreviouschapters.thediscretehmmiscomparedtoahybridwiththesame 9 Table9.1:Theproportionalreductioninerrorrateachievedby Retraining Durationmodel Unigramgrammar 14 numberofparameters. 7 forwordsnotinthesystem'svocabularycanincreasetherecognitionrate beyondthatotherwiseobtained. beenreducedbychoosinganeectiveweightupdatescheme,byusingsoftmaxoutputs,byspecifyingthetrainingscheduleandbyinitializationofthe weightmatrix.preliminaryworktoinvestigatetheoperationofthenetwork hasbeencarriedout,givingagreaterunderstandingoftheweightsandfeedbackunits.muchmorecouldbedoneinthisareawiththehopeofgreater understandingandimprovedperformance. Thetrainingtimeoftherecurrentnetworkhasbeeninvestigatedandhas problemofwhereeortcanbemosteectivelyappliedtoincreasetheperformance.itisfeltthatinthissystem,theeorthasbeenevenlydistributed, butwithaslightemphasisontheworkdescribedinchapter8.indistributing theeort,potentialimprovementsineveryaspectofthesystemhavenecessarilybeenleftwithoutbeinginvestigated.asaresult,furtherworkcould becarriedout,withreasonablehopeofreturn,onanyofthetechniquesthat havebeendescribed. ularproblemwithamodel-basedapproach,andderivesarepresentationof notyetbeenappliedtoarecognitiontask.normalizationofaskeletonin abetterskeletonfromtherawimage.doermann(1993)tacklesthispartic- theo-linestrokeswithinferredtemporalinformation.histechniquehas theformderivedbydoermanncouldbecarriedoutusingtheproceduresof SingerandTishby(1994)whichuseamodelofhandwritingproductionto Thepreprocessingusedcouldbeimprovedupon,forexamplebyextracting Inwritingacompletehandwritingrecognitionsystem,onemustfacethe 9.1Furtherwork O-linehandwritingrecognition 111

113 guidenormalization.thenon-uniformquantizationschemecouldalsobe mademorestable,andthesnakefeaturemodelscouldbeextendedasdescribedattheendofchapter6. Thissystemhasbeentestedontheproblemofsingle-writerhandwritingrecognition,thoughthedesignhasbeenmadeopentoacceptingany styleofhandwriting,withnormalizationagainstscale,slope,slantandstroke CHAPTER9.CONCLUSIONS tionsacrossallstatesrepresentingthesameletter.thiswouldbesimple givenaprobabilitydistributionforeachstate,insteadoftyingthedistribu- intoseveralspacestobeindividuallyquantized.thehmmcouldalsobe quantizationschemesusingalternativemetricsordividingtheinputspace rithmswhichwillallowthesystemtobetestedonthecedardatabase. width.itishopedthatfutureworkwillincludetheincorporationofalgo- forthepurehmm,butmightbecomputationallyintensiveforthehybrid system.context-dependentmodelsmightalsobeused. ThepureHMMsystemcouldbeimprovedbyexperimentingwithother techniqueofconnectionistmodelmerging(robinsonetal.1994).theimpositionofamorecomplex,task-dependentgrammarwhichfurtherrestricts thechoiceofwordscanalsobeexpectedtoyieldhigheraccuracy. Betterrecognitionratesforthehybridsystemcouldbeexpectedfromthe O-linehandwritingrecognition 112

114 Abbink,G.H.,Teulings,H.L.andSchomaker,L.R.B.(1993)Description Bibliography AldusandMicrosoft,(1988)TiStandardDenition,5.0edition. Alimi,A.andPlamondon,R.(1993)Performanceanalysisofhandwritten Arcelli,C.andSannitidiBaja,G.(1985)Awidthindependentfastthinning ofon-linescriptusinghollerbach'sgenerationmodel.in(iwfhr1993), pp.217{224. strokesgenerationmodels.in(iwfhr1993),pp.252{261. Bengio,Y.,LeCun,Y.andHenderson,D.(1994a)Globallytrainedhandwrittenwordrecognizerusingspatialrepresentation,convolutionalneural networksandhiddenmarkovmodels.in(cowanetal.1994),pp.937{ Bellegarda,J.B.,Nahamoo,D.,Nathan,K.S.andBellegarda,E.J.(1994)SupervizedhiddenMarkovmodelingforon-linehandwritingrecognition. InInternationalConferenceonAcoustics,SpeechandSignalProcessing, volume5,pp.149{152. algorithm.ieeetransactionsonpatternanalysisandmachineintelligence7(4):463{474. Boser,B.E.(1994)Patternrecognitionwithoptimalmarginclassiers.In Bos,B.andvanderMoer,A.(1993)TheBakuninprojectandopticalcharacterrecognition.In(OCRHD1993),pp.11{15. Networks5(2):157{166. dencieswithgradientdescentisdicult.ieeetransactionsonneural 944. Bengio,Y.,Simard,P.andFrasconi,P.(1994b)Learninglong-termdepen- Bouma,H.(1971)Visualrecognitionofisolatedlowercaseletters.Vision (Impedovo1994),pp.147{171. Breuel,T.M.(1994)Asystemfortheo-linerecognitionofhandwrittentext. Bourlard,H.andMorgan,N.(1993)ConnectionistSpeechRecognition:A Bozinovic,R.M.andSrihari,S.N.(1989)O-linecursivewordrecognition.IEEETransactionsonPatternAnalysisandMachineIntelligence HybridApproach.Kluwer. Research11:459{474. TechnicalReport94{02,IDIAP,CP609,1920Martigny,Switzerland. 11(1):68{83. O-linehandwritingrecognition 113

115 Bridle,J.S.(1990)Probabilisticinterpretationoffeedforwardclassication Brown,P.F.(1987)Theacoustic-modellingprobleminautomaticspeech networkoutputs,withrelationshipstostatisticalpatternrecognition. NeurocomputingF68:227{236. BIBLIOGRAPHY Browning,J.(1992)Articialintelligencesurvey.TheEconomist322 Caesar,T.,Gloger,J.M.andMandler,E.(1993a)Preprocessingandfeatureextractionforahandwritingrecognitionsystem.In(ICDAR1993)partment.CMU-CS recognition.technicalreport,carnegiemelloncomputersciencede- (7750):21. Canny,J.F.(1986)Acomputationalapproachtoedgedetection.IEEE Caesar,T.,Joachim,G.,Kaltenmeier,A.andMandler,E.(1993b)Recognition TransactionsonPatternAnalysisandMachineIntelligence8:679{698. pp.409{416. pp.408{411. byhandwrittenwordimagesbystatisticalmethods.in(iwfhr1993), Cootes,T.F.andTaylor,C.J.(1992)Activeshapemodels `smartsnakes'. Charniak,E.(1993)StatisticalLanguageLearning.MITPress. Cheriet,M.andSuen,C.Y.(1993)Extractionofkeylettersforcursivescript Cipolla,R.andBlake,A.(1990)Thedynamicanalysisofapparentcontours. InThirdInt.Conf.ComputerVision,pp.616{623. InProceedingsoftheBritishMachineVisionConference,ed.byD.Hogg recognition.patternrecognitionletters14:1009{1017. Cowan,J.D.,Tessauro,G.andAlspector,J.eds.(1994)AdvancesinNeural Cootes,T.F.,Taylor,C.J.,Cooper,D.H.andGraham,J.(1992)Training MachineVisionConference,ed.byD.HoggandR.Boyle.SpringerVerlag. InformationProcessingSystems,number6.MorganKaufmann. modelsofshapefromsetsofexamples.inproceedingsofthebritish andr.boyle.springerverlag. Downing,J.andLeong,C.K.(1982)PsychologyofReading.Macmillan. Doermann,D.S.,(1993)DocumentImageUnderstanding:IntegratingRecoveryandInterpretation.UniversityofMarylandPh.D.thesis. Study.Dept.ofAppliedMath,WeizmanInstituteofSciencePh.D.thesis. MicroelectricsandsignalprocessingNumber9.LondonAcademic. Edelman,S.,(1988)ReadingandWritingCursiveScript:AComputational Davies,E.R.(1990)MachineVision:Theory,Algorithms,Practicalities. Edelman,S.,Ullman,S.andFlash,T.(1990)Readingcursivescriptbyalignmentofletterprototypes.InternationalJournalofComputerVision5 O-linehandwritingrecognition (3):303{

116 Elliman,D.G.andBanks,R.N.(1991)Acomparisonoftwoneuralnetworks Eldridge,M.A.,Nimmo-Smith,I.,Wing,A.M.andTotty,R.N.(1984) measures.journaloftheforensicsciencesociety24(3):179{219. Thevariabilityofselectedfeaturesincursivehandwriting:Categorical BIBLIOGRAPHY Fontaine,T.andShastri,L.(1992)Characterrecognitionusingamodular Fahlman,S.E.(1988)Anempiricalstudyoflearningspeedinbackpropagationneuralnetworks.TechnicalReportCMU-CS ,CMU. forhand-printedcharacterrecognition.iniee2ndneuralnetworks, Fukushima,K.(1980)Neocognitron:Aself-organisingneuralnetworkmodel sylvania,philadelphiapa spatiotemporalconnectionistmodel.neuroprose,universityofpenn- number349iniee,pp.224{228. BiologicalCybernetics36:193{202. foramechanismofpatternrecognitionunaectedbyshiftinposition. Gilloux,M.,Leroux,M.andBertille,J.-M.(1993)StrategiesforhandwrittenwordsrecognitionusinghiddenMarkovmodels.In(ICDAR1993), InformationProcessingSystems,number5.MorganKaufmann. P.J.,Janet,S.A.andWilson,C.L.,(1994)NISTform-basedhandprint Garris,M.D.,Blue,J.L.,Candela,G.T.,Dimmick,D.L.,Geist,J.,Grother, Geake,E.(1992)Letterstoacomputer.NewScientistpp.30{33. Giles,C.L.,Hanson,S.J.andCowan,J.D.eds.(1993)AdvancesinNeural pp.299{304. recognitionsystem.documentunderstandingmailinglist. Govindan,V.K.andShivaprasad,A.P.(1990)Characterrecognition{a Gray,R.M.(1984)Vectorquantization.In(WaibelandLee1990),chapter review.patternrecognition23(7):671{683. Hinton,G.E.,Williams,C.K.I.andRevow,M.D.(1992)Adaptiveelastic Hepp,D.J.(1991)Anapplicationofbackpropagationtotherecognitionof Haber,R.N.andHaber,L.R.(1981)Visualcomponentsofthereading ofthespie1451:228{233. process.visiblelanguagexv(2):147{182. handwrittendigitsusingmorphologicallyderivedfeatures.proceedings 3.3,pp.75{100. Hochberg,M.M.,(1992)AComparisonofState-DurationModellingTechniquesforConnectedSpeechRecognition.DivisionofEngineering, Hollerbach,J.M.(1981)Anoscillationtheoryofhandwriting.Biological modelsforhand-printedcharacterrecognition.in(moodyetal.1992), pp.512{522. BrownUniversityPh.D.thesis. O-linehandwritingrecognition Huang,Y.S.andSuen,C.Y.(1993)Combinationofmultipleclassierswith Cybernetics39:139{156. measurementvalues.in(icdar1993),pp.598{

117 Hubel,D.H.andWiesel,T.N.(1962)Receptiveelds,binocularinteraction Hull,J.J.(1993)Adatabaseforhandwrittentextrecognitionresearch.IEEE andfunctionalarchitectureinthecat'svisualcortex.journalofphysiology160:106{154. BIBLIOGRAPHY ICDAR.(1993)SecondInternationalConferenceonDocumentAnalysisand ICDAR.(1991)FirstInternationalConferenceonDocumentAnalysisand Idan,Y.andChevalier,R.C.(1991)Handwrittendigitsrecognitionbya Recognition,St.Malo,France. TransactionsonPatternAnalysisandMachineIntelligence. Impedovo,S.ed.(1994)FundamentalsinHandwritingRecognition,volume Impedovo,S.,Dimauro,G.andPirlo,G.(1990)Anewdecisiontreealgorithm Recognition,Tsukuba,Japan.IEEEComputerSocietyPress. supervisedkohonen-likelearningalgorithm.ijcnn913:2576{2581. IWFHR.(1993)ThirdInternationalWorkshoponFrontiersinHandwriting 124ofNATOASISeriesF:ComputerandSystemsSciences.Springer Jacobs,R.A.(1988)Increasedratesofconvergencethroughlearningrate Verlag. Jelinek,F.(1991)Upfromtrigrams!Thestruggleforimprovedlanguage forhandwrittennumeralsrecognitionusingtopologicalfeatures.proc. SPIE1384:280{284. Johansson,S.,Atwell,E.,Garside,R.andLeech,G.(1986)ThetaggedLOB Recognition.CEDAR,SUNYBualo. adaptation.neuralnetworks1:295{307. models.inproceedingseuropeanconferenceonspeechcommunication Kimura,F.andShridhar,M.(1991)Handwrittennumericalrecognition andtechnology,pp.1037{1039. Kimura,F.,Shridhar,M.andChen,Z.(1993a)Improvementsofalexicon Kass,M.,Witkin,A.andTerzopoulos,D.(1987)Snakes:Activecontour corpus.technicalreport,norwegiancomputingcentreforthehumanities,bergen. basedonmultiplealgorithms.patternrecognition24(10):969{983. models.inproc.1stinter.conf.computervision,pp.259{268.ieee. Kuhn,R.anddeMori,R.(1990)Acache-basednaturallanguagemodelfor Kimura,F.,Shridhar,M.andNarasimharmurthi,N.(1993b)Lexicondi- directedalgorithmforrecognitionofunconstrainedhandwrittenwords. rectedsegmentation-recognitionprocedureforunconstrainedhandwrit- tenwords.in(iwfhr1993),pp.122{131. In(ICDAR1993),pp.18{22. Lam,L.,Lee,S.andSuen,C.Y.(1992)Thinningmethodologies Acomprehensivesurvey.IEEETransactionsonPatternAnalysisandMachine Intelligence14(9):869{885. O-linehandwritingrecognition speechrecognition.ieeetransactionsonpatternanalysisandmachine Intelligence12(6):570{583.Corrected:PAMI,14(6):691,

118 Lanitis,A.,Taylor,C.J.andCootes,T.F.(1993)Agenericsystemforclassifyingvariableobjectusingexibletemplatematching.InBritishMachine Press. VisionConference,ed.byJ.Illingworth,volume1,pp.329{338.BMVA Lanitis,A.(1992)Applicationsofpointdistributionmodelsinhandwritten opticalcharacterrecognitionandfacerecognition.transferreport,dept. ofmedicalbiophysics,universityofmanchester. BIBLIOGRAPHY LeCun,Y.,Boser,B.,Denker,J.S.,Henderson,D.,Howard,R.E.,Hubbard, Lecolinet,E.andBaret,O.(1994)Cursivewordrecognition:Methodsand Lecolinet,E.andCrettez,J.-P.(1991)Agrapheme-basedsegmentationtechnique.In(ICDAR1991),pp.740{748. W.andJackel,L.D.(1989)Backpropagationappliedtohandwrittenzip coderecognition.journalofneuralcomputation1:541{551. Lee,K.-F.(1989)AutomaticSpeechRecognition:TheDevelopmentofthe strategies.in(impedovo1994),pp.235{263. Leroux,M.,Salome,J.C.andBadard,J.(1991)Recognitionofcursivescript Leymarie,F.(1990)Trackinganddescribingdeformableobjectsusingactive SPHINXSystem.Kluwer. wordsinasmalllexicon.in(icdar1991),pp.774{782. Manke,S.andBodenhausen,U.(1994)Aconnectionistrecognizerforon-line Linde,Y.,Buzo,A.andGray,R.M.(1980)Analgorithmforvectorquantizer Lu,S.W.,Ren,Y.andSuen,C.Y.(1991)HierarchicalattributedgraphrepresentationandrecognitionofhandwrittenChinesecharacters.Pattern contourmodels.technicalreporttr-cim-90-9,mcgilluniversity. Recognition24(7):617{632. design.ieeetransactionsoncommunicationscom-28(1):84{95. Marr,D.(1982)Vision.Freeman. Martins,W.andAllinson,N.M.(1991)Visualsearchofpostalcodesbyneuralnetworksusinghumanexamples.InIEE2ndConferenceonNeural Networks. Matan,O.,Burges,C.J.C.,LeCun,Y.andDenker,J.S.(1992)Multi-digit cursivehandwritingrecognition.ininternationalconferenceonacoustics,speechandsignalprocessing,volume2,pp.633{6. McGraw,G.,Rehling,J.andGoldstone,R.(1994)Rolesinletterperception:Humandataandcomputermodels.TechnicalReportCRCC-TR90, McVeigh,A.(1993)TheIrishdatabaseproject:acaseforOCR.In(OCRHD recognitionusingaspacedisplacementnetwork.in(moodyetal.1992), Moody,J.E.,Hanson,S.J.andLippmann,R.P.eds.(1992)Advancesin pp.488{495. O-linehandwritingrecognition CenterforResearchonConceptsandCognition.IndianaUniversity. 1993),pp.29{37. NeuralInformationProcessingSystems,number4.MorganKaufmann. 117

119 Mori,S.,Suen,C.Y.andYamamoto,K.(1992)HistoricalreviewofOCR Moreau,J.-V.,Plessis,B.,Bougeois,O.andPlagnaud,J.-L.(1991)Apostal chequereadingsystem.in(icdar1991),pp.758{766. researchanddevelopment.proceedingsoftheieee80(7):1029{1058. BIBLIOGRAPHY Mori,Y.andYokosawa,K.(1988)Neuralnetworksthatlearntodiscriminate Nag,R.,Wong,K.H.andFallside,F.(1986)Handwrittenscriptrecognition Nellis,J.andStonham,T.J.(1991)Afullyintegratedhand-printedcharacter similarkanjicharacters.neuralinformationprocessingsystems. usinghiddenmarkovmodels.inicassp'86.ieee. Olsen,M.(1993)Scanning,keyboarding,anddataverication:Factorsin OCRHD.(1993)OpticalCharacterRecognitionintheHistoricalDiscipline, numbera18inviiiinternationalconferenceoftheassociationforhistoryandcomputing.netherlandshistoricdataarchive. selectingdatacollectiontechnologies.in(ocrhd1993),pp.93{112. enceonneuralnetworks,number349iniee,pp.219{223. recognitionsystemusingarticialneuralnetworks.iniee2ndconfer- Palumbo,P.W.,Srihari,S.N.,Soh,J.,Sridhar,R.andDemajenko,V.(1992) Paquet,T.andLecourtier,Y.(1991)Handwritingrecognition:Application Postaladdressblocklocationinrealtime.IEEEComputer25(7):34{42. Pavlidis,T.(1993)Recognitionofprintedtextunderrealisticconditions. Pavlidis,T.(1992)Applicationofsplinestoshapedescription.InVisual Paquet,T.andLecourtier,Y.(1993)Recognitionofhandwrittensentences Form,ed.byArcelli,Cordella,andS.diBaja,pp.431{441.Plenum. onbankcheques.in(icdar1991),pp.749{757. Pearlmutter,B.A.(1990)Dynamicrecurrentneuralnetworks.TechnicalReportCMU-CS ,CarnegieMellonUniversity,SchoolofComputer Science,Pittsburgh,PA usingarestrictedlexicon.patternrecognition26(3):391{407. Pettier,J.C.andCamillerapp,J.(1993)Scriptrepresentationbyageneralised Plamondon,R.,Bordeau,M.,Chouinard,C.andSuen,C.Y.(1993)Validationofpreprocessingalgorithms:Amethodologyanditsapplicationsto thedesignofathinningalgorithmforhandwrittencharacters.in(icdar 1993),pp.262{269. writeridentication Thestateoftheart.PatternRecognition22 PatternRecognitionLetters14:317{326. Plamondon,R.andLorette,G.(1989)Automaticsignaturevericationand skeleton.in(icdar1993),pp.850{853. Plessis,B.,Sicsu,A.,Heutte,L.,Menu,E.,Lecolinet,E.,Debon,O.and O-linehandwritingrecognition (2):107{129. Moreau,J.-V.(1993)Amulti-classiercombinationstrategyforthe recognitionofhandwrittencursivewords.in(icdar1993),pp.642{

120 Rabiner,L.R.andJuang,B.H.(1986)AnintroductiontohiddenMarkov Rayner,K.andPollatsek,A.(1989)ThePsychologyofReading.Prentice- Hall. models.ieeeasspmagazine3(1):4{16. BIBLIOGRAPHY Renals,S.andHochberg,M.(1994)Decodertechnologyforconnection- Robinson,A.andFallside,F.(1991)Arecurrenterrorpropagationnetwork Robinson,A.(1994)Theapplicationofrecurrentnetstophoneprobability Robinson,A.,Hochberg,M.andRenals,S.(1994)IPA:Improvedphone istlargevocabularyspeechrecognition.technicalreportcued/f- INFENG/TR.186,CambridgeUniversityEngineeringDepartment,UK. estimation.ieeetransactionsonneuralnetworks. Robinson,A.J.,(1989)DynamicErrorPropagationNetworks.Cambridge speechrecognitionsystem.computerspeechandlanguage5:259{274. modellingwithrecurrentneuralnetworks.inproceedingsoftheieee volume1,pp.37{40. InternationalConferenceonAcoustics,Speech,andSignalProcessing, Sasanuma,S.(1984)CansurfacedyslexiaoccurinJapanese.InOrthographies Rumelhart,D.E.,Hinton,G.E.andWilliams,R.J.(1986)Learninginternal ExplorationsintheMicrostructureofCognition,ed.byD.E.Rumelhart andj.l.mcclelland,volume1,chapter8,pp.318{362.bradfordbooks. UniversityEngineeringDepartmentPh.D.thesis. Schenkel,M.,Guyon,I.andHenderson,D.(1994)On-linecursivescript representationsbyerrorpropagation.inparalleldistributedprocessing: recognitionusingtimedelayneuralnetworksandhiddenmarkovmod- andreading.lawrenceerlbaumassociates. Senior,A.W.(1994)Normalisationandpreprocessingforarecurrent Senior,A.W.(1993)Arecurrentnetworkapproachtotheautomaticreading ofhandwriting.in(ocrhd1993),pp.59{65. pp.360{365. cessing,volume2,pp.637{640. networko-linehandwritingrecognitionsystem.in(impedovo1994), els.ininternationalconferenceonacoustics,speechandsignalpro- Simard,P.,LeCun,Y.andDenker,J.(1993)Ecientpatternrecognition Senior,A.W.andFallside,F.(1993b)Usingconstrainedsnakesforfeature Senior,A.W.andFallside,F.(1993a)O-linehandwritingrecognitionby Simon,J.-C.(1992)O-linecursivewordrecognition.Proceedingsofthe recurrenterrorpropagationnetworks.in(iwfhr1993),pp.132{141. Singer,Y.andTishby,N.(1993)Decodingofcursivescripts.In(Gilesetal. spottingino-linecursivescript.in(icdar1993),pp.305{310. O-linehandwritingrecognition usinganewtransformationdistance.in(gilesetal.1993),pp.50{58. IEEE80(7):1150{ ). 119

121 Srihari,S.N.andBozinovic,R.M.(1987)Amulti-levelperceptionapproach Singer,Y.andTishby,N.(1994)Dynamicalencodingofcursivehandwriting. ToappearinBiologicalCybernetics. toreadingcursivescript.articialintelligence33:217{255. BIBLIOGRAPHY Suen,C.Y.,Berthod,M.andMori,S.(1980)Automaticrecognitionof Srihari,S.N.,Govindaraju,V.andShekhawat,A.(1993)Interpretationof Starner,T.,Makhoul,J.,Schwartz,R.andChou,G.(1994)On-linecursive handwrittenaddressesinusmailstream.in(icdar1993),pp.291{294. Suen,C.Y.,Legault,R.,Nadal,C.,Cheriet,M.andLam,L.(1993)Buildinga pp.125{128. tionalconferenceonacoustics,speechandsignalprocessing,volume5, handprintedcharacters thestateoftheart.proc.ieee68(4):469{ handwritingrecognitionusingspeechrecognitiontechniques.ininterna- Teulings,H.-L.(1994)Invarianthandwritingfeaturesusefulincursive-script references. Waibel,A.andLee,K.-F.eds.(1990)ReadingsinSpeechRecognition.MorganKaufmann. avisuallycomplexenvironmentanditsapplicationtolocatingaddress Taylor,I.andTaylor,M.M.(1983)ThePsychologyofReading.NewYork newgenerationofhandwritingrecognitionsystems.patternrecognition Letters14:303{315. Wang,C.-H.andSrihari,S.N.(1988)Aframeworkforobjectrecognitionin Academic. recognition.in(impedovo1994),pp.179{198. Winston,P.H.(1984)ArticialIntelligence.AddisonWesley,secondedition. Woodland,P.C.,Odell,J.J.,Valtchev,V.V.andYoung,S.J.(1994)Large Processing,volume2,pp.125{128. oftheieeeinternationalconferenceonacoustics,speech,andsignal vocabularycontinuousspeechrecognitionusinghtk.inproceedings 151. blocksonmailpieces.internationaljournalofcomputervision2:125{ Yanikoglu,B.A.andSandon,P.A.(1993)O-linecursivehandwritingrecog- Yamadori,A.(1975)Ideogramreadinginalexia.Brain98:231{238. Zhang,T.Y.andSuen,C.Y.(1984)Afastparallelalgorithmforthinning Yuille,A.L.,Hallinan,P.W.andCohen,D.S.(1992)Featureextractionfrom nitionusingstyleparameters.technicalreportpcs-tr93-192,dart- mouthcollege,nh. facesusingdeformabletemplates.internationaljournalofcomputer Vision8(2):99{111. digitalpictures.communicationsoftheacm27(3):236{239. O-linehandwritingrecognition 120

Small Business Administration

Small Business Administration SmallBusinessAdministration AgencyWebsiteReview JenniferBishop INFO680USGOVERNMENTINFORMATION DrexelUniversity ProfessorT.Karel March16,2010 Introduction TheSmallBusinessAdministrationwasestablishedin1953underPresidentEisenhower.Since

More information

A) the use of different pens for writing B) learning to write with a pen C) the techniques of writing with the hand using a writing instrument

A) the use of different pens for writing B) learning to write with a pen C) the techniques of writing with the hand using a writing instrument Level A 1. Your name written in your usual handwriting is called your: A) guarantee B) signature C) handwriting 2. Penmanship is A) the use of different pens for writing B) learning to write with a pen

More information

WASHINGTON UNDERINSURED MOTORISTS COVERAGE SELECTION/REJECTION

WASHINGTON UNDERINSURED MOTORISTS COVERAGE SELECTION/REJECTION IL U 008 04 06 WASHINGTON UNDERINSURED MOTORISTS COVERAGE SELECTION/REJECTION Policy Number: Policy Effective : Company: Producer: Applicant/Named Insured: Washington law permits you to make certain decisions

More information

3.Processstatemonitoring

3.Processstatemonitoring Chapter14 Processmonitoringandvisualisation O.SimulaandJ.Kangas HelsinkiUniversityofTechnology,LaboratoryofComputerandInformation usingself-organizingmaps Science,Rakentajanaukio2C,02150Espoo,Finland,Fax:358(0)4513277,

More information

Control Systems with Actuator Saturation

Control Systems with Actuator Saturation Control Systems with Actuator Saturation Analysis and Design Tingshu Hu Zongli Lin With 67 Figures Birkhauser Boston Basel Berlin Preface xiii 1 Introduction 1 1.1 Linear Systems with Actuator Saturation

More information

Signature verification using Kolmogorov-Smirnov. statistic

Signature verification using Kolmogorov-Smirnov. statistic Signature verification using Kolmogorov-Smirnov statistic Harish Srinivasan, Sargur N.Srihari and Matthew J Beal University at Buffalo, the State University of New York, Buffalo USA {srihari,hs32}@cedar.buffalo.edu,[email protected]

More information

Performative Design for Spatial Acoustics

Performative Design for Spatial Acoustics Performative Design for Spatial Acoustics Concept for an evolutionary design algorithm based on acoustics as design driver A. Benjamin Spaeth 1, Achim Menges 2 1 casino IT, University of Stuttgart, Germany,

More information

University of Cambridge ESOL Examinations Certificate in Teaching English to Speakers of Other Languages 2015/2016 Course Information

University of Cambridge ESOL Examinations Certificate in Teaching English to Speakers of Other Languages 2015/2016 Course Information Speakers of Other Languages 2015/2016 Course Information FULL TIME COURSES August 3 August 28, 2015 January 4 January 29, 2016 8 February 4 March, 2016 4 April 29 April, 2016 9 May 3 June, 2016 1 August

More information

How To Check If A Shipyard Is Asbestos Free

How To Check If A Shipyard Is Asbestos Free (June 2013) Procedures for verifying that materials are asbestos free 1. New Building Shipyards 1.1 As per UI SC249, the RO should verify that the shipyard has established written procedures for purchasing

More information

WASHINGTON UNDERINSURED MOTORISTS COVERAGE SELECTION/REJECTION

WASHINGTON UNDERINSURED MOTORISTS COVERAGE SELECTION/REJECTION CA 7051 08 10 WASHINGTON UNDERINSURED MOTISTS COVERAGE SELECTION/REJECTION Policy Number: Policy Effective : Company: HARCO NATIONAL INSURANCE CO. Producer: Applicant/Named Insured: Washington law permits

More information

CANADIAN PAYMENTS ASSOCIATION ASSOCIATION CANADIENNE DES PAIEMENTS RULE G12

CANADIAN PAYMENTS ASSOCIATION ASSOCIATION CANADIENNE DES PAIEMENTS RULE G12 CANADIAN PAYMENTS ASSOCIATION ASSOCIATION CANADIENNE DES PAIEMENTS RULE G12 PROCEDURES FOR PUBLIC WORKS AND GOVERNMENT SERVICES CANADA (PWGSC) DIRECT DEPOSIT PAYMENT ITEMS 2012 CANADIAN PAYMENTS ASSOCIATION

More information

UNIT 21. CONCESSIVE, PURPOSE, REASON

UNIT 21. CONCESSIVE, PURPOSE, REASON UNIT 21. CONCESSIVE, PURPOSE, REASON and RESULT CLAUSES Most of the following examples have been taken from: Murphy, R. (2004). English Grammar in Use with Answers. A Self-study Reference and Practice

More information

STEP-BY-STEP INSTRUCTION GUIDE FOR ONLINE APPLICATION TO STUDY AT UP

STEP-BY-STEP INSTRUCTION GUIDE FOR ONLINE APPLICATION TO STUDY AT UP CLIENT SERVICE CENTRE SYSTEMS STEP-BY-STEP INSTRUCTION GUIDE FOR ONLINE APPLICATION TO STUDY AT UP Browser details: IE version 7 or higher Enter the Security Code shown on your page and click on create

More information

Bank or building society account details form

Bank or building society account details form Bank or building society account details form This form asks for details of the bank or building society account into which you want us to pay your grant. Please complete the form and return it to us.

More information

348 Birch s Road North Bay, ON P1B 8Z4 (ph) 1-800-265-9370 (fax) 1-866-352-6740 FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURE

348 Birch s Road North Bay, ON P1B 8Z4 (ph) 1-800-265-9370 (fax) 1-866-352-6740 FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURE 348 Birch s Road North Bay, ON P1B 8Z4 (ph) 1-800-265-9370 (fax) 1-866-352-6740 FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURE 1 TABLE OF CONTENTS Shipper s Responsibilities 3 Consignee Responsibilities 4 Salvage

More information

On the first page, select the appropriate semester and click "Search Schedule of Classes." You'll now see the online Schedule of Classes search page.

On the first page, select the appropriate semester and click Search Schedule of Classes. You'll now see the online Schedule of Classes search page. Using the Online Schedule of Classes This section will review how to use the Online Schedule of Classes. Follow the instructions below to search for a class, and learn what all the information in the Online

More information

D2.4: Two trained semantic decoders for the Appointment Scheduling task

D2.4: Two trained semantic decoders for the Appointment Scheduling task D2.4: Two trained semantic decoders for the Appointment Scheduling task James Henderson, François Mairesse, Lonneke van der Plas, Paola Merlo Distribution: Public CLASSiC Computational Learning in Adaptive

More information

FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURES

FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURES FREIGHT LOSS AND DAMAGE CLAIMS PROCEDURES SHIPPER S RESPONSIBILITIES To prevent loss and or damage of your freight, the following factors must be considered when a product, its packaging and its package

More information

CITY of DALY CITY INSURANCE REQUIREMENTS

CITY of DALY CITY INSURANCE REQUIREMENTS CITY of DALY CITY INSURANCE REQUIREMENTS IMPORTANT NOTE Contractors/Homeowners shall not perform any work, or allow any work to be performed, on behalf of the City or in the City right of way, until the

More information

Bookkeeping and Accounting

Bookkeeping and Accounting Bookkeeping and Accounting within the Business Skills suite Unit Title: Preparing and recording financial documentation OCR unit number: M6 Unit reference number: J/600/8758 Level: 2 Credit value: 2 Guided

More information

GEORGIA UNINSURED MOTORISTS COVERAGE SELECTION/REJECTION

GEORGIA UNINSURED MOTORISTS COVERAGE SELECTION/REJECTION GEGIA UNINSURED MOTISTS COVERAGE SELECTION/REJECTION IL U 049 01 09 Policy Number: Policy Effective : Company: Producer: Applicant/Named Insured: Georgia law permits you to make certain decisions regarding

More information

Suggestions and patter for the Debbie Hepplewhite method of teaching print handwriting

Suggestions and patter for the Debbie Hepplewhite method of teaching print handwriting Suggestions and patter for the Debbie Hepplewhite method of teaching print handwriting Introduction It is recommended that a simple print handwriting style is taught first to all young learners alongside

More information

Packaging Guide. Mortgage Applications.

Packaging Guide. Mortgage Applications. Packaging Guide. Mortgage Applications. Loans 25,001 to 250,000 The purpose of this guide is to help our Broker Partners in submitting packaged applications to Aldermore. These pages set out the minimum

More information

Integrated Development of Distributed Real-Time Applications with Asynchronous Communication

Integrated Development of Distributed Real-Time Applications with Asynchronous Communication Integrated Development of Distributed Real-Time Applications with Asynchronous Communication Marc Schanne International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES) 26-28 September

More information

A Framework for the Semantics of Behavioral Contracts

A Framework for the Semantics of Behavioral Contracts A Framework for the Semantics of Behavioral Contracts Ashley McNeile Metamaxim Ltd, 48 Brunswick Gardens, London W8 4AN, UK [email protected] Abstract. Contracts have proved a powerful concept

More information

How To Pass Cambriac English: First For Schools

How To Pass Cambriac English: First For Schools First Certificate in English (FCE) for Schools CEFR Level B2 Ready for success in the real world Cambridge English: First for Schools Cambridge English: First, commonly known as First Certificate in English

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Introduction and Course Administration Dr. Hyunyoung Lee [email protected] 410B HR Bright 979-845-2490 1 CSCE 314: Programming Languages Course Homepage http://faculty.cse.tamu.edu/hlee/csce314/

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

Inspection campaign summary report

Inspection campaign summary report Inspection Division Survey market inspection Unit TOPIC: Implantable defibrillation leads Inspection campaign summary report Abstract: An inspection campaign was conducted between November 2013 and June

More information

SPA 475 Spring 2013 Methods for Teaching Spanish as a Second Language Department of Literature and Languages Texas A&M University-Commerce

SPA 475 Spring 2013 Methods for Teaching Spanish as a Second Language Department of Literature and Languages Texas A&M University-Commerce SPA 475 Spring 2013 Methods for Teaching Spanish as a Second Language Department of Literature and Languages Texas A&M University-Commerce Instructor: Dr. David Hervás Online course Horas de oficina: Contact

More information

New Payroll Experience Payroll Control Center in 2015. Customer

New Payroll Experience Payroll Control Center in 2015. Customer Payroll Control Center in 2015 Customer Legal disclaimer The information in this presentation is confidential and proprietary to SAP and may not be disclosed without the permission of SAP. This presentation

More information

Copyright 2007 Casa Software Ltd. www.casaxps.com. ToF Mass Calibration

Copyright 2007 Casa Software Ltd. www.casaxps.com. ToF Mass Calibration ToF Mass Calibration Essentially, the relationship between the mass m of an ion and the time taken for the ion of a given charge to travel a fixed distance is quadratic in the flight time t. For an ideal

More information

Standards Designation and Organization Manual

Standards Designation and Organization Manual Standards Designation and Organization Manual InfoComm International Performance Standards Program Ver. 2009-1 March 27, 2009 Issued by: Joseph Bocchiaro III, Ph.D., AStd., CTS-D, CTS-I, ISF-C The Director

More information

PET Speaking Part 2 teacher s notes

PET Speaking Part 2 teacher s notes PET Speaking Part 2 teacher s notes Description to introduce and practise Part 2 of the Speaking test and to consider what makes a good performance in PET Speaking Part 2 Also to identify and practise

More information

application form ECCLESIASTICAL INVESTMENT FUNDS Version 3

application form ECCLESIASTICAL INVESTMENT FUNDS Version 3 application form Version 3 Please complete all sections below and return to: Ecclesiastical Investment Management Limited, PO Box 3733, Swindon SN4 4BG Please note this form cannot be used for an Ecclesiastical

More information

EPEAT CONFORMITY ASSESSMENT PROTOCOLS 1680.3: 4.4 Product longevity/life cycle extension

EPEAT CONFORMITY ASSESSMENT PROTOCOLS 1680.3: 4.4 Product longevity/life cycle extension EPEAT CONFORMITY ASSESSMENT PROTOCOLS 1680.3: 4.4 Product longevity/life cycle extension 4.4.1 Upgradeable firmware 4.4.1.1 Required Upgradeable firmware Verification Guidance Product Verification Committee

More information

Recent changes to Queensland s Workers Compensation Scheme

Recent changes to Queensland s Workers Compensation Scheme Recent changes to Queensland s Workers Compensation Scheme EVERYTHING OLD IS NEW AGAIN almost Presentation on 1 October 2015 Jacqi Marshall, Senior Associate Section 193A Additional lump sum compensation

More information

Reading Assistant: Technology for Guided Oral Reading

Reading Assistant: Technology for Guided Oral Reading A Scientific Learning Whitepaper 300 Frank H. Ogawa Plaza, Ste. 600 Oakland, CA 94612 888-358-0212 www.scilearn.com Reading Assistant: Technology for Guided Oral Reading Valerie Beattie, Ph.D. Director

More information

2013/2014 TAX YEAR NEW SUBSCRIPTIONS. Applications must be received by 15 November 2013.

2013/2014 TAX YEAR NEW SUBSCRIPTIONS. Applications must be received by 15 November 2013. Legal & General Defined Return Plan 3 NEW ISA AND/OR DIRECT INVESTMENT APPLICATION FORM. Applications must be received by 15 November 2013. 2013/2014 TAX YEAR NEW SUBSCRIPTIONS FOR OFFICE USE Client Number

More information

BUPA MEDICAL GAP SCHEME

BUPA MEDICAL GAP SCHEME PRACTITIONER S GUIDE BUPA MEDICAL GAP SCHEME BUPA. FIND A HEALTHIER YOU About Bupa Bupa is a healthcare leader proudly looking after the needs of more than 3 million Australians. We have been around for

More information

If you are a citizen of any other country, please provide country name below:

If you are a citizen of any other country, please provide country name below: Valid from March 2016 Please complete this form in BLOCK LETTERS and black ink, and return it to: FREEPOST JP MORGAN AM. An address or a stamp is not required to be added to the envelope. If you have any

More information

Electronic Health Records

Electronic Health Records What Do Electronic Health Records Mean for Our Practice? What Are Electronic Health Records? Electronic Health Records (EHRs) are computer systems that health & medical practices (including mental health

More information

Sheffield Hallam University BSc (Hons) Hospitality Business Management

Sheffield Hallam University BSc (Hons) Hospitality Business Management Sheffield Hallam University BSc (Hons) Hospitality Business Management Registration Number (Non-Local Higher and Professional Education (Regulation) Ordinance): 251510 Sheffield Hallam University Sheffield

More information

Appendix... B. The Object Constraint

Appendix... B. The Object Constraint UML 2.0 in a Nutshell Appendix B. The Object Constraint Pub Date: June 2005 Language The Object Constraint Language 2.0 (OCL) is an addition to the UML 2.0 specification that provides you with a way to

More information

Application Form Pure Lump Sum Plan

Application Form Pure Lump Sum Plan Application Form Pure Lump Sum Plan This form is an application for a lifetime mortgage with Pure Retirement Limited. To avoid delays in processing the application, it is important that the form is completed

More information

Cambridge English: Preliminary (PET) Frequently Asked Questions (FAQs)

Cambridge English: Preliminary (PET) Frequently Asked Questions (FAQs) Cambridge English: Preliminary (PET) Frequently Asked Questions (FAQs) Is there a wordlist for Cambridge English: Preliminary exams? Yes. There is a Cambridge English: Preliminary (PET) vocabulary list

More information

The different kinds of variables in a Java program

The different kinds of variables in a Java program The different kinds of variables in a Java program The different kinds of variables in a Java program Java has 4 different kinds of variables Class variables Instance variables Local variables Parameter

More information

Electronic Health Records

Electronic Health Records What Do Electronic Health Records Mean for Our Practice? What are Electronic Health Records? Electronic Health Records (EHRs) are computer systems that medical practices use instead of paper charts. All

More information

Tall Building Form Generation by Parametric Design Process

Tall Building Form Generation by Parametric Design Process ctbuh.org/papers Title: Authors: Subject: Keywords: Tall Building Form Generation by Parametric Design Process Mahjoub Elnimeiri, Professor, Illinois Institute of Technology Sang Min Park, PhD Candidate,

More information

Please click on ANNX-K menu option as in the screen below.

Please click on ANNX-K menu option as in the screen below. Process flow for online submission of NEFT Payment Details, Payment Invoice & Annexure-K by an Exempted Trust to EPFO office (For a member who has changed employment from an exempted establishment to an

More information

GUIDELINES ON THE DEVELOPMENT AND USE OF A NATIONAL VALUATION DATABASE AS A RISK ASSESSMENT TOOL

GUIDELINES ON THE DEVELOPMENT AND USE OF A NATIONAL VALUATION DATABASE AS A RISK ASSESSMENT TOOL WCO OMD GUIDELINES ON THE DEVELOPMENT AND USE OF A NATIONAL VALUATION DATABASE AS A RISK ASSESSMENT TOOL Table of Contents Preamble Introduction Use of a database Caveat regarding the use of a database

More information

Private Medical Insurance

Private Medical Insurance Private Medical Insurance Application Form Moratorium Underwriting Form Please complete in BLOCK CAPITALS and in dark coloured ink. 1. Primary Insured The Primary Insured is the person applying for this

More information

Forlorn Hope : tracing the dynamics of composer-performer collaboration

Forlorn Hope : tracing the dynamics of composer-performer collaboration Forlorn Hope : tracing the dynamics of composer-performer collaboration David Gorton (composer) Royal Academy of Music Stefan Östersjö (performer) Malmö Academy of Music and Orpheus Institute Powerpoint

More information

Ege Fren Ege Fren San. ve Tic. A.Ş.

Ege Fren Ege Fren San. ve Tic. A.Ş. Page : 1 / 8 1. Purpose: This manual is formed in order to create a business environment based on a partnership understanding with our suppliers, determine and develop our relationships in this context

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD IEC 60076-1 Edition 2.1 2000-04 Edition 2:1993 consolidated with amendment 1:1999 Power transformers Part 1: General This English-language version is derived from the original bilingual

More information

Professional Indemnity Insurance Architects and Consulting Engineers Single Project Cover

Professional Indemnity Insurance Architects and Consulting Engineers Single Project Cover Professional Indemnity Insurance Architects and Consulting Engineers Single Project Cover Proposal Form ADNIC is a Public Joint Stock Company incorporated in the United Arab Emirates by Law No. (4) of

More information

Tropical Tracks. Tropical rainforests are located along the Equator. Look at the map in the Biome. Draw the Equator on your map and label it.

Tropical Tracks. Tropical rainforests are located along the Equator. Look at the map in the Biome. Draw the Equator on your map and label it. Tropical Tracks KS2 In Eden s Rainforest Biome you will discover how plants, animals and people of the Tropical Rainforest fit together. Let s Start! Look Point 1 (The Map, grid reference 175 482) Tropical

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* INFORMATION AND COMMUNICATION TECHNOLOGY 0417/01 Paper 1 Theory For Examination from

More information

MODELING)THE)LOJACK)EFFECT)IN)THE)) CYBER)SECURITY)MARKET))

MODELING)THE)LOJACK)EFFECT)IN)THE)) CYBER)SECURITY)MARKET)) CasatrinaLee 3May2014 i MODELING)THE)LOJACK)EFFECT)IN)THE)) CYBER)SECURITY)MARKET)) )A)STUDY)OF)INCENTIVES) Abstract:) Cybersecurityhasbecomeapertinentconcernamongbusinessesfollowing theincreasingdigitizationofoperations.hackingmethodsareeverevolvingand

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

Graduate Assessment Test (Sample)

Graduate Assessment Test (Sample) Graduate Assessment Test (Sample) CS201-203 1. Fibonacci sequence is defined by a recurrence relation. The series is: 0,1,1,2,3,5,8,13,... Write a complete recursive method/function that returns the fibonacci

More information

Using AR Student Health Insurance

Using AR Student Health Insurance Using AR Georgia Enhanced Banner Student and Financial Aid Systems User Documentation Version 8.30 March 2014 This page left blank to facilitate front/back printing. Using Georgia Enhancements 8. 30 Table

More information

Good News For Credit Card Users. A Consumer Guide

Good News For Credit Card Users. A Consumer Guide Good News For Credit Card Users A Consumer Guide Credit card companies have been working with government to bring in changes that will give you more control over your credit card accounts. The UK Cards

More information

University of Reading Postgraduate Research Programmes Admissions Policy

University of Reading Postgraduate Research Programmes Admissions Policy University of Reading Postgraduate Research Programmes Admissions Policy 1 General Statement 1.1 The University Senate is responsible for the admission of postgraduate research students to the University

More information

A Parents Guide to University

A Parents Guide to University A Parents Guide to University WHAT WILL I COVER? Choosing a university The UCAS application process Student finance Top tips for success THE DIFFICULT CHOICE. 180+ Universities to choose from Over 37,000

More information

AXA Wealth. Uncrystallised funds pension lump sum benefit options. 1 of 5. When to use this form. Have you received advice or guidance?

AXA Wealth. Uncrystallised funds pension lump sum benefit options. 1 of 5. When to use this form. Have you received advice or guidance? AXA Wealth Uncrystallised funds pension lump sum benefit options When to use this form Please complete this form to confirm how you would like to take an uncrystallised funds pension lump sum if you have

More information

...Invest with confidence INVESTMENT ACCOUNT (CORPORATE) APPLICATION FORM BUSINESS NAME: ACCOUNT NUMBER:

...Invest with confidence INVESTMENT ACCOUNT (CORPORATE) APPLICATION FORM BUSINESS NAME: ACCOUNT NUMBER: ...Invest with confidence INVESTMENT ACCOUNT APPLICATION FORM (CORPORATE) BUSINESS NAME: ACCOUNT NUMBER: LIBERTY ASSET MANAGEMENT LIMITED Corporate Clubs and Society Other, please specify Requirement a.

More information

Writing a Literature Review in Higher Degree Research. Gillian Colclough & Lindy Kimmins Learning & Teaching Support

Writing a Literature Review in Higher Degree Research. Gillian Colclough & Lindy Kimmins Learning & Teaching Support Writing a Literature Review in Higher Degree Research Gillian Colclough & Lindy Kimmins Learning & Teaching Support This presentation: Aims of a literature review Thoughts about a good literature review

More information

Coventry University. BA (Hons) Business Administration. Coventry University. Programme Overview

Coventry University. BA (Hons) Business Administration. Coventry University. Programme Overview Coventry University BA (Hons) Business Administration Registration Number (Non-Local Higher and Professional Education (Regulation) Ordinance): 251732 Coventry University Coventry University strives to

More information

GE Healthcare. Electronic data interchange and proactive services for Centricity revenue cycle management customers

GE Healthcare. Electronic data interchange and proactive services for Centricity revenue cycle management customers GE Healthcare Electronic data interchange and proactive services for Centricity revenue cycle management customers Accelerate revenue perf Key features updates and other payer-specific adjustments are

More information

MICHIGAN STATUTORY WILL NOTICE. 1. Any person age 18 or older and of sound mind may sign a Will.

MICHIGAN STATUTORY WILL NOTICE. 1. Any person age 18 or older and of sound mind may sign a Will. MICHIGAN STATUTORY WILL NOTICE 1. Any person age 18 or older and of sound mind may sign a Will. 2. There are several kinds of Wills. If you choose to complete this form, you will have a Michigan Statutory

More information

LITERATURE REVIEWS. The 2 stages of a literature review

LITERATURE REVIEWS. The 2 stages of a literature review LITERATURE REVIEWS Literature reviews. are an integral part of graduate studies to help you become fully conversant with a topic area may be a stand alone paper or part of a research paper or proposal

More information

Specifications on Reasonable Adjustments

Specifications on Reasonable Adjustments Specifications on Reasonable Adjustments Consultation on: Ofqual s specifications under Section 96 of the Equality Act 2010 Qualifications covered by Ofqual s specifications Indicating exemptions on certificates

More information

BBC LEARNING ENGLISH 6 Minute Grammar Question forms

BBC LEARNING ENGLISH 6 Minute Grammar Question forms BBC LEARNING ENGLISH 6 Minute Grammar Question forms NB: This is not a word-for-word transcript Hello. Welcome to 6 Minute Grammar with me,. And me,. Hello. Today s programme is all about questions. Yes:

More information

Parsing Technology and its role in Legacy Modernization. A Metaware White Paper

Parsing Technology and its role in Legacy Modernization. A Metaware White Paper Parsing Technology and its role in Legacy Modernization A Metaware White Paper 1 INTRODUCTION In the two last decades there has been an explosion of interest in software tools that can automate key tasks

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

More information