Foundational Proof Certificates
|
|
|
- Bruce Briggs
- 10 years ago
- Views:
Transcription
1 An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs? Funding from the ERC Advanced Grant ProofCert
2 Outline 1 About formal proofs quickly 2 3
3 We must first narrow our topic Proofs are documents that are used to communicate trust within a community of agents. Agents can be machines and humans. Our focus: computer agents publishing and checking formal Not our focus today: learning from proofs, interacting with proofs, computing with proofs.
4 Provers: computer agents that produce proofs There is a wide range of provers. automated and interactive theorem provers model checkers, SAT solvers type inference, static analysis testers There is a wide range of evidence of proof. proof scripts: steer a theorem prover to a proof resolution refutations, natural deduction, tableaux, etc winning strategies, simulations It is the exception when one prover s evidence is shared with another prover.
5 Require provers to publish their proofs Since provers do not currently communicate proofs, the trend is to unifying various theorem proving activities into existing frameworks, eg, Isabelle or Coq. Separate proofs from provenance: insist that provers output their proofs so others can check them. We shall use the term proof certificate for those documents denoting proofs that are circulated between provers.
6 Outline 1 About formal proofs quickly 2 3
7 D1: A simple checker can, in principle, check if a proof certificate denotes a proof. D2: The proof certificate format supports a broad spectrum of proof systems. These two desiderata enable the creation of both marketplaces and libraries of proofs.
8 D3: A proof certificate is intended to denote a proof in the sense of structural proof theory. Structural proof theory is a mature field that deals with deep aspects of proofs and their properties. For example: given certificates for x(a(x) y B(x, y)) and A(10), can we extract from them a witness t such that B(10, t) holds?
9 D4: A proof certificate can simply leave out details of the intended proof. Formal proofs are often huge. All means to reduce their size need to be available. Allow abstractions and lemma. Separate computation from deduction and leave computation traces out of the certificate. Permit holes in proofs: we now have a trade-offs between proof size and proof reconstruction via (bounded) proof search. Proof checking may involve significant computation in order to reconstruct missing proof details.
10 Which logic? First-order or higher-order?
11 Which logic? First-order or higher-order? Both! Higher-order (à la Church 1940) seems a good choice since it includes propositional and first-order.
12 Which logic? First-order or higher-order? Both! Higher-order (à la Church 1940) seems a good choice since it includes propositional and first-order. Classical or intuitionistic logic?
13 Which logic? First-order or higher-order? Both! Higher-order (à la Church 1940) seems a good choice since it includes propositional and first-order. Classical or intuitionistic logic? Both! Imagine that these two logics fit together in one larger logic. Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL).
14 Which logic? First-order or higher-order? Both! Higher-order (à la Church 1940) seems a good choice since it includes propositional and first-order. Classical or intuitionistic logic? Both! Imagine that these two logics fit together in one larger logic. Following Gentzen (LK/LJ), Girard (LU), Liang & M (LKU, PIL). Modal, temporal, spatial? I leave these out for now. There is likely to always be a frontier that does not (immediately) fit.
15 Which proof system? There are numerous, well studied proof systems: natural deduction, sequent, tableaux, resolution, Herbrand disjunctions, etc. Many others are clearly proof-like: tables (in model checking), winning strategies (in game playing), etc. Other: certificates for primality, etc. We wish to capture all such proof evidence. Of course, handling so many proof formats might make for a terribly complex proof checker.
16 Atoms and molecules of inference We outline how all these demands on certificates can be addressed using what we know of the theory of proof structures. There are atoms of inference. Gentzen s sequent calculus first provided these: introduction and structural rules. Girard s linear logic refined our understanding of these further. To account for first-order structure, we also need fixed points and equality. There are molecules of inference. There are rules of chemistry for assembling atoms of inference into molecules of inference ( synthetic inference rules ).
17 Satisfying the desiderata D1: Simple checkers. Only the atoms of inference and the rules of chemistry (both small and closed sets) need to be implemented in the checker. D2: Certificates supports a wide range of proof systems. The molecules of inference can be engineered into a wide range of existing inference rules. D3: Certificates are based on proof theory. Immediate by design. D4: Details can be elided. Search using atoms will match search in the space of molecules, ie., don t invent new molecules in the checker.
18 Advances in proof theory, advances in proof checkers Hilbert proofs: Proofs are lists of formulas in which elements are either axioms or follow from previous elements by inference rules. LCF/ML (1979) views proofs as such structures. Many provers today (HOL, Coq, Isabelle) are built on LCF.
19 Advances in proof theory, advances in proof checkers Hilbert proofs: Proofs are lists of formulas in which elements are either axioms or follow from previous elements by inference rules. LCF/ML (1979) views proofs as such structures. Many provers today (HOL, Coq, Isabelle) are built on LCF. Sequent calculus: Topic started with Gentzen (1935) and was enriched by Girard. Focused proofs (eg, Andreoli, Liang & M) makes sequent proofs far more useful in computer science. The λprolog [M & Nadathur, 1986, 2012] programming language provides what is needed.
20 Outline About formal proofs quickly 1 About formal proofs quickly 2 3
21 Focused proof systems Consider a one-side sequent calculus system for classical logic. Two invertible introduction inference rules:, B 1, B 2, B 1 B 2, B[y/x], xb The inference rules for their de Morgan duals (not invertible):, B[t/x], xb 1, B 1 2, B 2 1, 2, B 1 B 2 Focused proofs are built in two phases: the up arrow phase contains only invertible rules the down arrow phase contains not necessarily invertible rules
22 LKF : (multi)focused proof systems for classical logic Θ Γ, A Θ Γ, B Θ Γ, t Θ Γ, A B Θ Γ Θ Γ, f Θ Γ, A, B Θ Γ, A B Θ t + Θ Γ 1, B 1 Θ Γ 2, B 2 Θ Γ 1, Γ 2, B 1 + B 2 Θ Γ, B i Θ Γ, B 1 + B 2 Init P a, Θ P a Store Θ, C Γ Θ Γ, C Release Θ N Θ N P multiset of positives; N multiset of negatives; P a positive literal; C positive formula or negative literal Decide P, Θ P P, Θ
23 Results about LKF Let B be a propositional logic formula and let ˆB result from B by placing + or on t, f,, and (there are exponentially many such placements). Theorem. B is a tautology if and only if ˆB has an LKF proof. [Liang & M, TCS 2009] Thus the different polarizations do not change provability but can radically change the proofs. Also: Negative (non-atomic) formulas are treated linearly (never weakened nor contracted). Only positive formulas are contracted (in the Decide rule).
24 An example Assume that Θ contains the formula a + b + c and that we have a derivation that Decides on this formula. Θ, c Θ a Init Θ b Init Θ c Θ c Release Θ a + b + and c Decide Θ This derivation is possible iff Θ is of the form a, b, Θ. Thus, the macro-rule is a, b, c, Θ a, b, Θ
25 A certificates for propositional logic: compute CNF Use and. Their introduction rules are invertible. The initial macro-rule is huge, having all the clauses in the conjunctive normal form of B as premises.... L 1,..., L n L i L 1,..., L n Init Decide.... B The proof certificate can specify the complementary literals for each premise or it can ask the checker to search for them. Proof certificates can be tiny but require exponential time for checking.
26 Positive connectives allow for inserting information Let B have several alternations of conjunction and disjunction. Using positive polarities with the tautology C = (p + B) + p allows for a more clever proof then the previous one. C, p p C, p C Decide C, p C p C p C C Decide C C Clever choices are injected twice. The subformula B is avoided.
27 Example: Resolution as a proof certificate A clause: x 1... x n [L 1 L m ] A negated clause: x 1... x n [L 1 L m ] 1 A clause C is trivial if it contains complementary literals. 2 A clause C 1 subsumes C 2 if there is a substitution instance of the literals in C 1 which is a subset of the literals in C 2. 3 C 3 is a resolution of C 1 and C 2 if we chose the mgu of two complementary literals, one from each of C 1 and C 2, etc. Polarize using and + (multiplicative connectives). Let d Θ Γ mean that Θ Γ has a proof with decide depth d. If C is trivial then 1 C. If C 1 subsumes a non-trivial clause C 2 then 2 C 1 C 2. If C 3 is a resolvent of C 1 and C 2 then 3 C 1, C 2 C 3.
28 Example: Resolution as a proof certificate (cont) Translate a refutation of C 1,..., C n into an LKF proof with small holes as follows: assume that {i, j} {1,..., n} and that a resolvent of C i and C j is C n+1.. Ξ C 1,..., C n, C n+1 Store C i, C j C n+1 C 1,..., C n C n+1 Cut p C 1,..., C n Here, Ξ can be replaced with a hole annotated with decide depth bound 3.
29 First-order terms and their structure Θ Γ, A[y/x] Θ Γ, x A Θ Γ, A[t/x] Θ Γ, x A y is not free in the lower sequent Θ t = t Θ Γ, s t Θσ Γσ Θ Γ, s t s and t are not unifiable. s and t have mgu σ. Θ Γ, B(νB) t Θ Γ, νb t Θ Γ, B(µB) t Θ Γ, µb t B is a formula with n 0 variables abstracted; t is a list of n terms. Here, µ and ν denotes some fixed point. Least and greatest require induction and co-induction.
30 Examples of fixed points Natural numbers: terms over 0 for zero and s for successor. Two ways to define predicates over numbers. nat 0 :- true. nat (s X ) :- nat X. leq 0 Y :- true. leq (s X ) (s Y ) :- leq X Y. Above, as a logic program and below, as fixed points. nat = µ(λpλx.(x = 0) + y.(s y) = x + p y) leq = µ(λqλxλy.(x = 0) + u v.(s u) = x + (s v) = y + q u v). Horn clauses can be made into fixed point specifications.
31 The engineering of proof systems Consider proving the down-arrow focused sequent Θ (leq m n + N 1 ) + (leq n m + N 2 ), where m, n are natural numbers and N 1, N 2 are negative formulas. There are exactly two possible macro rules: Θ N 1 Θ (leq m n + N 1 ) + (leq n m + N 2 ) for m n Θ N 2 Θ (leq m n + N 1 ) + (leq n m + N 2 ) for n m A macro inference rule can contain an entire Prolog-style computation.
32 The engineering of proof systems (cont) Consider proofs involving simulation. sim P Q P A[ P A P Q [Q A Q sim P Q ]]. Typically, P A P is given as a table or as a recursion on syntax (e.g., CCS): hence, as a fixed point. The body of this expression is exactly two macro connectives. P A[P A P ] is a negative macro connective. There are no choices in expanding this macro rule. Q [Q A Q + ] is a positive macro connective. There can be choices for continuation Q. These macro-rules now match exactly the sense of simulation from model theory / concurrency theory.
33 Future directions Develop many more proof certificate definitions. We need to provide for their modular construction. Improve performance of checking. Develop focusing and fixed points. This will allow model checkers and inductive theorem provers to share proofs. What is a good proof search mechanism to check these? λprolog will not work. Generalize proof certificates to include both partial proofs and counter-examples. Both have economic and didactic value. Get certificates adopted. Start with prover competitions?
34 Some recent references [1] Chihani, M, and Renaud. Foundational proof certificates in first-order logic. Submitted. [2] Liang and M. Focusing and polarization in linear, intuitionistic, and classical logics. TCS, [3] Liang and M. Kripke Semantics and Proof Systems for Combining Intuitionistic Logic and Classical Logic, APAL [4] M, A proposal for broad spectrum proof certificates, CPP 2011: Certified Proofs and Programs. [5] Nigam and M. A framework for proof systems, J. of Automated Reasoning, 2010.
Relations: their uses in programming and computational specifications
PEPS Relations, 15 December 2008 1/27 Relations: their uses in programming and computational specifications Dale Miller INRIA - Saclay & LIX, Ecole Polytechnique 1. Logic and computation Outline 2. Comparing
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
Bindings, mobility of bindings, and the -quantifier
ICMS, 26 May 2007 1/17 Bindings, mobility of bindings, and the -quantifier Dale Miller, INRIA-Saclay and LIX, École Polytechnique This talk is based on papers with Tiu in LICS2003 & ACM ToCL, and experience
Automated Theorem Proving - summary of lecture 1
Automated Theorem Proving - summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
Schedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material
OLC mputational gic Schedule Time and Place Thursday, 8:15 9:45, HS E Logic (master program) Georg Moser Institute of Computer Science @ UIBK week 1 October 2 week 8 November 20 week 2 October 9 week 9
Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)
Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic
Logic in general. Inference rules and theorem proving
Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent
CS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
Non-deterministic Semantics and the Undecidability of Boolean BI
1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open
Research Note. Bi-intuitionistic Boolean Bunched Logic
UCL DEPARTMENT OF COMPUTER SCIENCE Research Note RN/14/06 Bi-intuitionistic Boolean Bunched Logic June, 2014 James Brotherston Dept. of Computer Science University College London Jules Villard Dept. of
Extending Semantic Resolution via Automated Model Building: applications
Extending Semantic Resolution via Automated Model Building: applications Ricardo Caferra Nicolas Peltier LIFIA-IMAG L1F1A-IMAG 46, Avenue Felix Viallet 46, Avenue Felix Viallei 38031 Grenoble Cedex FRANCE
Lecture 8: Resolution theorem-proving
Comp24412 Symbolic AI Lecture 8: Resolution theorem-proving Ian Pratt-Hartmann Room KB2.38: email: [email protected] 2014 15 In the previous Lecture, we met SATCHMO, a first-order theorem-prover implemented
A Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
Lecture 13 of 41. More Propositional and Predicate Logic
Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
Computational Logic and Cognitive Science: An Overview
Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical
Static Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
Verifying Specifications with Proof Scores in CafeOBJ
Verifying Specifications with Proof Scores in CafeOBJ FUTATSUGI, Kokichi 二 木 厚 吉 Chair of Language Design Graduate School of Information Science Japan Advanced Institute of Science and Technology (JAIST)
University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to
Termination Checking: Comparing Structural Recursion and Sized Types by Examples
Termination Checking: Comparing Structural Recursion and Sized Types by Examples David Thibodeau Decemer 3, 2011 Abstract Termination is an important property for programs and is necessary for formal proofs
ML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
Likewise, we have contradictions: formulas that can only be false, e.g. (p p).
CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula
We would like to state the following system of natural deduction rules preserving falsity:
A Natural Deduction System Preserving Falsity 1 Wagner de Campos Sanz Dept. of Philosophy/UFG/Brazil [email protected] Abstract This paper presents a natural deduction system preserving falsity. This new
How To Write A Program Verification And Programming Book
Jose Bacelar Almeida Maria Joao Frade Jorge Sousa Pinto Simao Melo de Sousa Rigorous Software Development An Introduction to Program Verification & Springer Contents 1 Introduction 1 1.1 A Formal Approach
System BV is NP-complete
System BV is NP-complete Ozan Kahramanoğulları 1,2 Computer Science Institute, University of Leipzig International Center for Computational Logic, TU Dresden Abstract System BV is an extension of multiplicative
(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,
From Workflow Design Patterns to Logical Specifications
AUTOMATYKA/ AUTOMATICS 2013 Vol. 17 No. 1 http://dx.doi.org/10.7494/automat.2013.17.1.59 Rados³aw Klimek* From Workflow Design Patterns to Logical Specifications 1. Introduction Formal methods in software
A Note on Context Logic
A Note on Context Logic Philippa Gardner Imperial College London This note describes joint work with Cristiano Calcagno and Uri Zarfaty. It introduces the general theory of Context Logic, and has been
Fixed-Point Logics and Computation
1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
Verifying security protocols using theorem provers
1562 2007 79-86 79 Verifying security protocols using theorem provers Miki Tanaka National Institute of Information and Communications Technology Koganei, Tokyo 184-8795, Japan Email: [email protected]
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications Sayantan Das Prasenjit Basu Ansuman Banerjee Pallab Dasgupta P.P. Chakrabarti Department of Computer Science & Engineering
Optimizing Description Logic Subsumption
Topics in Knowledge Representation and Reasoning Optimizing Description Logic Subsumption Maryam Fazel-Zarandi Company Department of Computer Science University of Toronto Outline Introduction Optimization
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Trust but Verify: Authorization for Web Services. The University of Vermont
Trust but Verify: Authorization for Web Services Christian Skalka X. Sean Wang The University of Vermont Trust but Verify (TbV) Reliable, practical authorization for web service invocation. Securing complex
Model Checking II Temporal Logic Model Checking
1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:
Deterministic Discrete Modeling
Deterministic Discrete Modeling Formal Semantics of Firewalls in Isabelle/HOL Cornelius Diekmann, M.Sc. Dr. Heiko Niedermayer Prof. Dr.-Ing. Georg Carle Lehrstuhl für Netzarchitekturen und Netzdienste
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Equivalence in Answer Set Programming
Equivalence in Answer Set Programming Mauricio Osorio, Juan Antonio Navarro, José Arrazola Universidad de las Américas, CENTIA Sta. Catarina Mártir, Cholula, Puebla 72820 México {josorio, ma108907, arrazola}@mail.udlap.mx
Plan-Space Search. Searching for a Solution Plan in a Graph of Partial Plans
Plan-Space Search Searching for a Solution Plan in a Graph of Partial Plans Literature Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning Theory and Practice, chapter 2 and 5. Elsevier/Morgan
ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information
Type Theory & Functional Programming
Type Theory & Functional Programming Simon Thompson Computing Laboratory, University of Kent March 1999 c Simon Thompson, 1999 Not to be reproduced i ii To my parents Preface Constructive Type theory has
On strong fairness in UNITY
On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct
Formal Verification and Linear-time Model Checking
Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
Modal Proofs as Distributed Programs (Extended Abstract)
Modal Proofs as Distributed Programs (Extended Abstract) Limin Jia and David Walker Princeton University 35 Olden St., Princeton, NJ 08544, USA {ljia,dpw}@cs.princeton.edu Abstract. We develop a new foundation
First-Order Logics and Truth Degrees
First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics
Generating models of a matched formula with a polynomial delay
Generating models of a matched formula with a polynomial delay Petr Savicky Institute of Computer Science, Academy of Sciences of Czech Republic, Pod Vodárenskou Věží 2, 182 07 Praha 8, Czech Republic
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Logical Agents. Explorations in Artificial Intelligence. Knowledge-based Agents. Knowledge-base Agents. Outline. Knowledge bases
Logical Agents Explorations in Artificial Intelligence rof. Carla. Gomes [email protected] Agents that are able to: Form representations of the world Use a process to derive new representations of the
MATHEMATICAL LOGIC FOR COMPUTER SCIENCE
MATHEMATICAL LOGIC FOR COMPUTER SCIENCE Second Edition WORLD SCIENTIFIC SERIES IN COMPUTER SCIENCE 25: Computer Epistemology A Treatise on the Feasibility of the Unfeasible or Old Ideas Brewed New (T Vamos)
Satisfiability Checking
Satisfiability Checking SAT-Solving Prof. Dr. Erika Ábrahám Theory of Hybrid Systems Informatik 2 WS 10/11 Prof. Dr. Erika Ábrahám - Satisfiability Checking 1 / 40 A basic SAT algorithm Assume the CNF
Certamen 1 de Representación del Conocimiento
Certamen 1 de Representación del Conocimiento Segundo Semestre 2012 Question: 1 2 3 4 5 6 7 8 9 Total Points: 2 2 1 1 / 2 1 / 2 3 1 1 / 2 1 1 / 2 12 Here we show one way to solve each question, but there
Beyond Propositional Logic Lukasiewicz s System
Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
Fun with Henry. Dirk Pattinson Department of Computing Imperial College London
Fun with Henry Dirk Pattinson Department of Computing Imperial College London 1 Example: The Tudors Henry VIII Henry Carey Mary Boleyn There have been speculation that Mary s two children, Catherine and
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
2 Temporal Logic Model Checking
Bounded Model Checking Using Satisfiability Solving Edmund Clarke 1, Armin Biere 2, Richard Raimi 3, and Yunshan Zhu 4 1 Computer Science Department, CMU, 5000 Forbes Avenue Pittsburgh, PA 15213, USA,
Verification of Imperative Programs in Theorema
Verification of Imperative Programs in Theorema Laura Ildikó Kovács, Nikolaj Popov, Tudor Jebelean 1 Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria Institute
Introduction to type systems
Introduction to type systems p. 1/5 Introductory Course on Logic and Automata Theory Introduction to type systems [email protected] Based on slides by Jeff Foster, UMD Introduction to type systems
Predicate Logic Review
Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning
Formal Verification of Software
Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification
High Integrity Software Conference, Albuquerque, New Mexico, October 1997.
Meta-Amphion: Scaling up High-Assurance Deductive Program Synthesis Steve Roach Recom Technologies NASA Ames Research Center Code IC, MS 269-2 Moffett Field, CA 94035 [email protected] Jeff Van
Computational Methods for Database Repair by Signed Formulae
Computational Methods for Database Repair by Signed Formulae Ofer Arieli ([email protected]) Department of Computer Science, The Academic College of Tel-Aviv, 4 Antokolski street, Tel-Aviv 61161, Israel.
Fractal Modal Logics and Systematic Communication Protocols
Modal tableaux for verifying stream authentication protocols Guido Governatori 1, Mehmet A. Orgun 2 and Chuchang Liu 3 1 School of ITEE, The University of Queensland, Brisbane, QLD 4072, Australia 2 Department
2. The Language of First-order Logic
2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to
Regression Verification: Status Report
Regression Verification: Status Report Presentation by Dennis Felsing within the Projektgruppe Formale Methoden der Softwareentwicklung 2013-12-11 1/22 Introduction How to prevent regressions in software
Verication by Finitary Abstraction Weizmann Institute of Sciences and Universite Joseph Fourier, Grenoble Fourth International Spin Workshop (SPIN'98) Paris 2.11.98 Joint work with: Y. Kesten Ben Gurion
RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis
RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
Model Checking based Software Verification
Model Checking based Software Verification 18.5-2006 Keijo Heljanko [email protected] Department of Computer Science and Engineering Helsinki University of Technology http://www.tcs.tkk.fi/~kepa/ 1/24
Theory of Automated Reasoning An Introduction. Antti-Juhani Kaijanaho
Theory of Automated Reasoning An Introduction Antti-Juhani Kaijanaho Intended as compulsory reading for the Spring 2004 course on Automated Reasononing at Department of Mathematical Information Technology,
Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.
Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true
Ensuring Consistency in Long Running Transactions
Ensuring Consistency in Long Running Transactions UCLA Computer Science Dept. Technical Report TR-070011 Jeffrey Fischer Rupak Majumdar Department of Computer Science, University of California, Los Angeles
Formal Engineering for Industrial Software Development
Shaoying Liu Formal Engineering for Industrial Software Development Using the SOFL Method With 90 Figures and 30 Tables Springer Contents Introduction 1 1.1 Software Life Cycle... 2 1.2 The Problem 4 1.3
leant A P Revisited 1 Introduction
leant A P Revisited Melvin Fitting [email protected] Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468 Depts. Computer Science, Philosophy, Mathematics Graduate Center (CUNY),
