Model Checking: An Introduction
|
|
|
- Dominic Powers
- 10 years ago
- Views:
Transcription
1 Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI 5535, Spring A Double Header Two lectures Model checking primer Software model checking SLAM and BLAST (tools) Some key players: Model checking Ed Clarke, Ken McMillan, Amir Pnueli SLAM Tom Ball, Sriram Rajamani BLAST Ranjit Jhala, Rupak Majumdar, Tom Henzinger Who are we again? We're going to find critical bugs in important bits of software using PL techniques! You ll be enthusiastic about this and thus want to learn the gritty details 3 4 Take-Home Message Model checking is the exhaustive exploration of the state space of a system, typically to see if an error state is reachable It produces concrete counterexamples The state explosion problem refers to the large number of states in the model Temporal logic allows you to specify properties with concepts like eventually and always 5 Overarching Plan Model Checking (today) Transition systems (ie, models) Temporal properties Temporal logics: LTL and CTL Explicit-state model checking Symbolic model checking Counterexample Guided Abstraction Refinement Safety properties Predicate abstraction c2bp Software model checking bebop Counterexample feasibility newton Abstraction refinement weakest pre, thrm prv 6 1
2 Spoiler This stuff really works! Symbolic model checking is a massive success in the model-checking field SLAM took the PL world by storm Spawned multiple copycat projects Launched Microsoft s Static Driver Verifier (released in the Windows DDK) 7 Model Checking There are complete courses in model checking (see ECEN 5139, Prof Somenzi) Model Checking by Edmund M Clarke, Orna Grumberg, and Doron A Peled Symbolic Model Checking by Ken McMillan We will skim Keywords Model checking is an automated technique Model checking verifies transition systems Model checking verifies temporal properties Model checking falsifies by generating counterexamples Verification vs Falsification What is verification? What is falsification? A model checker is a program that checks if a (transition) system satisfies a (temporal) property 9 10 Verification vs Falsification An automated verification tool can report that the system is verified (with a proof); or that the system was not verified When the system was not verified, it would be helpful to explain why Model checkers can output an error counterexample: a concrete execution scenario that demonstrates the error Can view a model checker as a falsification tool The main goal is to find bugs So what can we verify or falsify? 11 Temporal Properties Temporal Property A property with time-related operators such as invariant or eventually Invariant(p) is true in a state if property p is true in every state on all execution paths starting at that state G, AG, ( globally or box or forall ) Eventually(p) is true in a state if property p is true at some state on every execution path starting from that state F, AF, ( future or diamond or exists ) 12 2
3 An Example Concurrent Program A simple concurrent mutual exclusion program Two processes execute asynchronously There is a shared variable turn Two processes use the shared variable to ensure that they are not in the critical section at the same time Can be viewed as a fundamental program: any bigger concurrent one would include this one 10: while (true) { 11: wait(turn == 0); // critical section 12: work(); turn = 1; 13: // concurrently with 20: while (true) { 21: wait(turn == 1); // critical section 22: work(); turn = 0; 23: 13 Reachable States of the Example Program 12,21 12,20 10,22 11,22 Next: formalize this intuition Each state is a valuation of all the variables: turn and the two program counters for two processes #14 Analyzed System is a Transition System Labeled transition system T = (S, I, R, L) Also called a Kripke Structure S = Set of states // standard FSM I S = Set of initial states // standard FSM R S S = Transition relation // standard FSM L: S 2 AP = Labeling function // this is new! AP: Set of atomic propositions (eg, x=5 AP) Atomic propositions capture basic properties For software, atomic props depend on variable values The labeling function labels each state with the set of propositions true in that state 15 Example Properties of the Program In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time pc1=12, pc2=22 are atomic properties for being in the critical section Eventually the first process enters the critical section 16 Example Properties of the Program Temporal Logics For what? For expressing properties In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time pc1=12, pc2=22 are atomic properties for being in the critical section Invariant( (pc1=12 pc2=22)) Eventually the first process enters the critical section Eventually(pc1=12) 17 There are four basic temporal operators: X p Next p, in the next state G p Globally p, in every state, p is an invariant F p Future p, p will hold in a future state, eventually p U q p Until q, assertion p will hold until q holds Precise meaning of these temporal operators are defined on execution paths 18 3
4 Execution Paths A path in a transition system is an infinite sequence of states (s 0, s 1, s 2, ), such that i 0 (s i, s i+1 ) R A path (s 0,s 1,s 2,) is an execution path if s 0 I Given a path x = (s 0, s 1, s 2, ) x i denotes the i th state: s i x i denotes the i th suffix: (s i, s i+1, s i+2, ) In some temporal logics one can quantify paths starting from a state using path quantifiers A : for all paths E : there exists a path Paths and Predicates We write x p the path x makes the predicate p true x is a path in a transition system p is a temporal logic predicate Example: A x x G ( (pc1=12 pc2=22)) Linear Time Logic (LTL) LTL properties are constructed from atomic propositions in AP; logical operators,, ; and temporal operators X, G, F, U The semantics of LTL is defined on paths: Given a path x: x p iff L(x 0, p) atomic prop x X p iff x 1 p next x F p iff x G p iff x p U q iff 21 Linear Time Logic (LTL) LTL properties are constructed from atomic propositions in AP; logical operators,, ; and temporal operators X, G, F, U The semantics of LTL is defined on paths: Given a path x: x p iff L(x 0, p) atomic prop x X p iff x 1 p next x F p iff i 0 x i p future x G p iff i 0 x i p globally x p U q iff i 0 x i q and j<i x j p until 22 Satisfying Linear Time Logic Given a transition system T = (S, I, R, L) and an LTL property p, T satisfies p if all paths starting from all initial states I satisfy p 23 Computation Tree Logic (CTL) In CTL temporal properties use path quantifiers: A : for all paths, E : there exists a path The semantics of CTL is defined on states: Given a state s s p iff L(s, p) s 0 EX p iff a path (s 0, s 1, s 2, ) s 1 p s 0 AX p iff paths (s 0, s 1, s 2, ) s 1 p s 0 EG p iff a path (s 0, s 1, s 2, ) i 0 s i p s 0 AG p iff paths (s 0, s 1, s 2, ) i 0 s i p 24 4
5 Linear vs Branching Time Recall the Example LTL is a linear time logic When determining if a path satisfies an LTL formula we are only concerned with a single path CTL is a branching time logic When determining if a state satisfies a CTL formula we are concerned with multiple paths In CTL the computation is instead viewed as a computation tree which contains all the paths The computation tree is obtained by unrolling the transition relation The expressive powers of CTL and LTL are incomparable (LTL CTL*, CTL CTL*) Basic temporal properties can be expressed in both logics Not in this lecture, sorry! (Take a class on Modal Logics) 25 12,21 12,20 10,22 11,22 This is a labeled transition system 26 Linear vs Branching Time LTL Satisfiability Examples Linear Time View Branching Time View 12,20 On this path: Holds Does Not Hold 12,21 One path starting at state (turn=0,pc1=10,pc2=20) A computation tree starting at state (turn=0,pc1=10,pc2=20) 12, LTL Satisfiability Examples LTL Satisfiability Examples On this path: Holds Does Not Hold On this path: F, G,, X, X (X p) holds, X (X (X p)) does not hold On this path: F, G,, X, X (X p) holds, X (X (X p))) holds
6 CTL Satisfiability Examples s At state s: Holds Does Not Hold s CTL Satisfiability Examples At state s: Holds Does Not Hold CTL Satisfiability Examples s s s At state s: EF p, EX (EX p), AF ( p), AF p, AG p, AG ( p), EX p, EG p, At state s: EF p, AF p, EX (EX p), EX p, EG p, AG p, AG ( p), AF ( p) does not hold At state s: EF p, AF p, AG p, EG p, Ex p, AX p, EG ( p), EF ( p), does not hold #33 Model Checking Complexity Given a transition system T = (S, I, R, L) and a CTL formula f One can check if a state of the transition system satisfies the formula f in O( f ( S + R )) time Multiple depth first searches (one for each temporal operator) = explicit-state model checking Given a transition system T = (S, I, R, L) and an LTL formula f One can check if the transition system satisfies the formula f in O(2 f ( S + R )) time 35 State Space Explosion The complexity of model checking increases linearly with respect to the size of the transition system ( S + R ) However, the size of the transition system ( S + R ) is exponential in the number of variables and number of concurrent processes This exponential increase in the state space is called the state space explosion Dealing with it is one of the major challenges in model checking research 36 6
7 Algorithm: Temporal Properties = Fixpoints States that satisfy AG(p) are all the states which are not in EF( p) (= the states that can reach p) Pictorial Backward Fixed Point Inverse Image of p = EX( p) Compute EF( p) as the fixed point of Func: 2 S 2 S Given Z S, Func(Z) = p reach-in-one-step(z) or Func(Z) = p EX(Z) Actually, EF( p) is the least-fixed point of Func smallest set Z such that Z = Func(Z) to compute the least fixed point, start the iteration from Z=, and apply the Func until you reach a fixed point This can be computed (unlike most other fixed points) 37 Initial states initial states that violate AG(p) = initial states that satisfy EF( p) p states that can reach p = EF( p) = states that violate AG(p) This fixed point computation can be used for: verification of EF( p) or falsification of AG(p) and similar fixed points handle the other cases 38 Symbolic Model Checking Symbolic model checking represent state sets and the transition relation as Boolean logic formulas Fixed point computations manipulate sets of states rather than individual states Recall: we needed to compute EX(Z), but Z S Fixed points can be computed by iteratively manipulating these formulas Use an efficient data structure for manipulation of Boolean logic formulas Binary Decision Diagrams (BDDs) SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs 39 Binary Decision Diagrams (BDDs) Efficient representation for boolean functions (a set can be viewed as a function) Disjunction, conjunction complexity: at most quadratic Negation complexity: constant Equivalence checking complexity: constant or linear Image computation complexity: can be exponential 40 Key Terms Building Up To Software Model Checking via Counterexample Guided Abstraction Refinement There are easily dozens of papers We will skim Counterexample guided abstraction refinement (CEGAR) A successful software model-checking approach Sometimes called Iterative Abstraction Refinement SLAM = The first CEGAR project/tool Developed at MSR Lazy Abstraction = CEGAR optimization Used in the BLAST tool from Berkeley 42 7
8 What is Counterexample Guided Abstraction Refinement (CEGAR)? Verification by Model Checking? Theorem Proving? Dataflow Analysis or Program Analysis? Verification un 4: while(new!= old); Is this program correct? What does correct mean? How do we determine if a program is correct? Verification by Model Checking Verification by Theorem Proving un 4: while(new!= old); 1 (Finite State) Program 2 State Transition Graph 3 Reachability - Program Finite state model - State explosion + State exploration + Counterexamples Precise [SPIN,SMV,Bandera,JPF] 45 un 4: while(new!= old); 1 Loop Invariants 2 Logical Formulas 3 Check Validity Invariant: lock Æ new = old Ç lock Æ new old 46 Verification by Theorem Proving Verification by Program Analysis un 4: while(new!= old); 1 Loop Invariants 2 Logical Formulas 3 Check Validity - Loop invariants - Multithreaded programs + Behaviors encoded in logic + Decision procedures Precise [ESC, PCC] 47 un 4: while(new!= old); 1 Dataflow Facts 2 Constraint System 3 Solve Constraints - Imprecision: fixed facts + Abstraction + Type/Flow analyses Scalable [Cqual, ESP] 48 8
9 Combining Strengths Theorem Proving - Need loop invariants (will find automatically) + Behaviors encoded in logic (used to refine abstraction) + Theorem provers (used to compute successors, refine abstraction) SLAM Model Checking Program Analysis - Imprecise (will be precise) + Abstraction (will shrink the state space we must explore) For Next Time Read Lazy Abstraction for the main ideas, ok to skim Sec 7 - Finite-state model, state explosion (will find small good model) + State space exploration (used to get a path sensitive analysis) + Counterexamples (used to find relevant facts, refine abstraction)
logic language, static/dynamic models SAT solvers Verified Software Systems 1 How can we model check of a program or system?
5. LTL, CTL Last part: Alloy logic language, static/dynamic models SAT solvers Today: Temporal Logic (LTL, CTL) Verified Software Systems 1 Overview How can we model check of a program or system? Modeling
Introduction to Software Verification
Introduction to Software Verification Orna Grumberg Lectures Material winter 2013-14 Lecture 4 5.11.13 Model Checking Automated formal verification: A different approach to formal verification Model Checking
Model Checking II Temporal Logic Model Checking
1/32 Model Checking II Temporal Logic Model Checking Edmund M Clarke, Jr School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 2/32 Temporal Logic Model Checking Specification Language:
Formal Verification and Linear-time Model Checking
Formal Verification and Linear-time Model Checking Paul Jackson University of Edinburgh Automated Reasoning 21st and 24th October 2013 Why Automated Reasoning? Intellectually stimulating and challenging
Algorithmic Software Verification
Algorithmic Software Verification (LTL Model Checking) Azadeh Farzan What is Verification Anyway? Proving (in a formal way) that program satisfies a specification written in a logical language. Formal
Formal Verification by Model Checking
Formal Verification by Model Checking Natasha Sharygina Carnegie Mellon University Guest Lectures at the Analysis of Software Artifacts Class, Spring 2005 1 Outline Lecture 1: Overview of Model Checking
Temporal Logics. Computation Tree Logic
Temporal Logics CTL: definition, relationship between operators, adequate sets, specifying properties, safety/liveness/fairness Modeling: sequential, concurrent systems; maximum parallelism/interleaving
Formal Verification of Software
Formal Verification of Software Sabine Broda Department of Computer Science/FCUP 12 de Novembro de 2014 Sabine Broda (DCC-FCUP) Formal Verification of Software 12 de Novembro de 2014 1 / 26 Formal Verification
The Course. http://www.cse.unsw.edu.au/~cs3153/
The Course http://www.cse.unsw.edu.au/~cs3153/ Lecturers Dr Peter Höfner NICTA L5 building Prof Rob van Glabbeek NICTA L5 building Dr Ralf Huuck NICTA ATP building 2 Plan/Schedule (1) Where and When Tuesday,
Software Model Checking: Theory and Practice
Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted
Model Checking of Software
Model Checking of Software Patrice Godefroid Bell Laboratories, Lucent Technologies SpecNCheck Page 1 August 2001 A Brief History of Model Checking Prehistory: transformational programs and theorem proving
Static Program Transformations for Efficient Software Model Checking
Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major
Automata-based Verification - I
CS3172: Advanced Algorithms Automata-based Verification - I Howard Barringer Room KB2.20: email: [email protected] March 2006 Supporting and Background Material Copies of key slides (already
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
2 Temporal Logic Model Checking
Bounded Model Checking Using Satisfiability Solving Edmund Clarke 1, Armin Biere 2, Richard Raimi 3, and Yunshan Zhu 4 1 Computer Science Department, CMU, 5000 Forbes Avenue Pittsburgh, PA 15213, USA,
http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86
Atlantic Electronic http://aejm.ca Journal of Mathematics http://rema.ca Volume 1, Number 1, Summer 2006 pp. 69 86 AUTOMATED RECOGNITION OF STUTTER INVARIANCE OF LTL FORMULAS Jeffrey Dallien 1 and Wendy
Testing LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland
Development of dynamically evolving and self-adaptive software. 1. Background
Development of dynamically evolving and self-adaptive software 1. Background LASER 2013 Isola d Elba, September 2013 Carlo Ghezzi Politecnico di Milano Deep-SE Group @ DEIB 1 Requirements Functional requirements
T-79.186 Reactive Systems: Introduction and Finite State Automata
T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software
The Model Checker SPIN
The Model Checker SPIN Author: Gerard J. Holzmann Presented By: Maulik Patel Outline Introduction Structure Foundation Algorithms Memory management Example/Demo SPIN-Introduction Introduction SPIN (Simple(
Software Verification and Testing. Lecture Notes: Temporal Logics
Software Verification and Testing Lecture Notes: Temporal Logics Motivation traditional programs (whether terminating or non-terminating) can be modelled as relations are analysed wrt their input/output
Automated Theorem Proving - summary of lecture 1
Automated Theorem Proving - summary of lecture 1 1 Introduction Automated Theorem Proving (ATP) deals with the development of computer programs that show that some statement is a logical consequence of
Software Verification: Infinite-State Model Checking and Static Program
Software Verification: Infinite-State Model Checking and Static Program Analysis Dagstuhl Seminar 06081 February 19 24, 2006 Parosh Abdulla 1, Ahmed Bouajjani 2, and Markus Müller-Olm 3 1 Uppsala Universitet,
Software safety - DEF-STAN 00-55
Software safety - DEF-STAN 00-55 Where safety is dependent on the safety related software (SRS) fully meeting its requirements, demonstrating safety is equivalent to demonstrating correctness with respect
tutorial: hardware and software model checking
tutorial: hardware and software model checking gerard holzmann and anuj puri { gerard anuj } @research.bell-labs.com Bell Labs, USA outline introduction (15 mins) theory and algorithms system modeling
LTL Model Checking with Logic Based Petri Nets
LTL Model Checking with Logic Based Petri Nets Tristan M. Behrens and Jürgen Dix IfI Technical Report Series IfI-07-04 Impressum Publisher: Institut für Informatik, Technische Universität Clausthal Julius-Albert
Model Checking based Software Verification
Model Checking based Software Verification 18.5-2006 Keijo Heljanko [email protected] Department of Computer Science and Engineering Helsinki University of Technology http://www.tcs.tkk.fi/~kepa/ 1/24
InvGen: An Efficient Invariant Generator
InvGen: An Efficient Invariant Generator Ashutosh Gupta and Andrey Rybalchenko Max Planck Institute for Software Systems (MPI-SWS) Abstract. In this paper we present InvGen, an automatic linear arithmetic
The software model checker BLAST
Int J Softw Tools Technol Transfer (2007) 9:505 525 DOI 10.1007/s10009-007-0044-z SPECIAL SECTION FASE 04/05 The software model checker BLAST Applications to software engineering Dirk Beyer Thomas A. Henzinger
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications
Formal Verification Coverage: Computing the Coverage Gap between Temporal Specifications Sayantan Das Prasenjit Basu Ansuman Banerjee Pallab Dasgupta P.P. Chakrabarti Department of Computer Science & Engineering
Verification of multiagent systems via ordered binary decision diagrams: an algorithm and its implementation
Verification of multiagent systems via ordered binary decision diagrams: an algorithm and its implementation Franco Raimondi Alessio Lomuscio Department of Computer Science King s College London London
CISC422/853: Formal Methods
Outline CISC422/853: Formal Methods in Software Engineering: Computer-Aided Verification Topic 7: Specifying, or How to Describe How the System Should (or Should Not) Behave Juergen Dingel Feb, 2009 Readings:
Specification and Analysis of Contracts Lecture 1 Introduction
Specification and Analysis of Contracts Lecture 1 Introduction Gerardo Schneider [email protected] http://folk.uio.no/gerardo/ Department of Informatics, University of Oslo SEFM School, Oct. 27 - Nov.
Model checking test models. Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl
Model checking test models Author: Kevin de Berk Supervisors: Prof. dr. Wan Fokkink, dr. ir. Machiel van der Bijl February 14, 2014 Abstract This thesis is about model checking testing models. These testing
Chair of Software Engineering. Software Verification. Assertion Inference. Carlo A. Furia
Chair of Software Engineering Software Verification Assertion Inference Carlo A. Furia Proving Programs Automatically The Program Verification problem: Given: a program P and a specification S = [Pre,
A computational model for MapReduce job flow
A computational model for MapReduce job flow Tommaso Di Noia, Marina Mongiello, Eugenio Di Sciascio Dipartimento di Ingegneria Elettrica e Dell informazione Politecnico di Bari Via E. Orabona, 4 70125
From Workflow Design Patterns to Logical Specifications
AUTOMATYKA/ AUTOMATICS 2013 Vol. 17 No. 1 http://dx.doi.org/10.7494/automat.2013.17.1.59 Rados³aw Klimek* From Workflow Design Patterns to Logical Specifications 1. Introduction Formal methods in software
Today s Agenda. Automata and Logic. Quiz 4 Temporal Logic. Introduction Buchi Automata Linear Time Logic Summary
Today s Agenda Quiz 4 Temporal Logic Formal Methods in Software Engineering 1 Automata and Logic Introduction Buchi Automata Linear Time Logic Summary Formal Methods in Software Engineering 2 1 Buchi Automata
Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha January 21, 2014 1
Contact Information CS477 Formal Software Development Methods Elsa L Gunter 2112 SC, UIUC [email protected] http://courses.engr.illinois.edu/cs477 Office: 2112 SC Office Hours: Wednesdays 11:00am -
Introduction to Formal Methods. Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm
Introduction to Formal Methods Các Phương Pháp Hình Thức Cho Phát Triển Phần Mềm Outline Introduction Formal Specification Formal Verification Model Checking Theorem Proving Introduction Good papers to
Formal Verification of Computer Systems - (INFO-F-412)
Formal Verification of Computer Systems - (INFO-F-412) Thierry Massart Université Libre de Bruxelles Département d Informatique February 2013 Acknowledgment I want to thank Edmund Clarke, Keijo Heljanko,
µz An Efficient Engine for Fixed points with Constraints
µz An Efficient Engine for Fixed points with Constraints Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura Manchester University and Microsoft Research Abstract. The µz tool is a scalable, efficient
Combining Software and Hardware Verification Techniques
Formal Methods in System Design, 21, 251 280, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Combining Software and Hardware Verification Techniques ROBERT P. KURSHAN VLADIMIR
Software Engineering using Formal Methods
Software Engineering using Formal Methods Model Checking with Temporal Logic Wolfgang Ahrendt 24th September 2013 SEFM: Model Checking with Temporal Logic /GU 130924 1 / 33 Model Checking with Spin model
Automated Route Planning for Milk-Run Transport Logistics with the NuSMV Model Checker
IEICE TRANS. INF. & SYST., VOL.E96 D, NO.12 DECEMBER 2013 2555 PAPER Special Section on Parallel and Distributed Computing and Networking Automated Route Planning for Milk-Run Transport Logistics with
Program Analysis: Theory and Practice
Introductions Program Analysis: Theory and Practice Who am I? About you? What do you want to get out of this class? Evan Chang Meeting 1: Welcome CSCI 7135, Fall 2010 http://www.cs.colorado.edu/~bec/courses/csci7135-f10/
Feature Specification and Automated Conflict Detection
Feature Specification and Automated Conflict Detection AMY P. FELTY University of Ottawa and KEDAR S. NAMJOSHI Bell Laboratories Large software systems, especially in the telecommunications field, are
MetaGame: An Animation Tool for Model-Checking Games
MetaGame: An Animation Tool for Model-Checking Games Markus Müller-Olm 1 and Haiseung Yoo 2 1 FernUniversität in Hagen, Fachbereich Informatik, LG PI 5 Universitätsstr. 1, 58097 Hagen, Germany [email protected]
On the Modeling and Verification of Security-Aware and Process-Aware Information Systems
On the Modeling and Verification of Security-Aware and Process-Aware Information Systems 29 August 2011 What are workflows to us? Plans or schedules that map users or resources to tasks Such mappings may
System modeling. Budapest University of Technology and Economics Department of Measurement and Information Systems
System modeling Business process modeling how to do it right Partially based on Process Anti-Patterns: How to Avoid the Common Traps of Business Process Modeling, J Koehler, J Vanhatalo, IBM Zürich, 2007.
Analysis of Boolean Programs
Analysis of Boolean Programs Patrice Godefroid 1 Mihalis Yannakakis 2 1 Microsoft Research, [email protected] 2 Columbia University, [email protected] Abstract. Boolean programs are a popular abstract
Fundamentals of Software Engineering
Fundamentals of Software Engineering Model Checking with Temporal Logic Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel, Reiner
6.080/6.089 GITCS Feb 12, 2008. Lecture 3
6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my
Introducing Formal Methods. Software Engineering and Formal Methods
Introducing Formal Methods Formal Methods for Software Specification and Analysis: An Overview 1 Software Engineering and Formal Methods Every Software engineering methodology is based on a recommended
Verifying Real-Time Embedded Software by Means of Automated State-based Online Testing and the SPIN Model Checker Application to RTEdge Models
Verifying Real-Time Embedded Software by Means of Automated State-based Online Testing and the SPIN Model Checker Application to RTEdge Models A thesis submitted to the Faculty of Graduate and Postdoctoral
Introduction to Static Analysis for Assurance
Introduction to Static Analysis for Assurance John Rushby Computer Science Laboratory SRI International Menlo Park CA USA John Rushby Static Analysis for Assurance: 1 Overview What is static analysis?
A Classification of Model Checking-based Verification Approaches for Software Models
A Classification of Model Checking-based Verification Approaches for Software Models Petra Brosch, Sebastian Gabmeyer, Martina Seidl Sebastian Gabmeyer Business Informatics Group Institute of Software
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
Program Synthesis is a Game
Program Synthesis is a Game Barbara Jobstmann CNRS/Verimag, Grenoble, France Outline Synthesis using automata- based game theory. MoBvaBon, comparison with MC and LTL. Basics Terminology Reachability/Safety
The ProB Animator and Model Checker for B
The ProB Animator and Model Checker for B A Tool Description Michael Leuschel and Michael Butler Department of Electronics and Computer Science University of Southampton Highfield, Southampton, SO17 1BJ,
Path Querying on Graph Databases
Path Querying on Graph Databases Jelle Hellings Hasselt University and transnational University of Limburg 1/38 Overview Graph Databases Motivation Walk Logic Relations with FO and MSO Relations with CTL
Goal-Driven Adaptable Software Architecture for UAVs
SEAS DTC Annual Technical Conference 2008 Goal-Driven Adaptable Software Architecture for UAVs William Heaven, Daniel Sykes, Jeff Magee, Jeff Kramer SER001 Imperial College London The Challenge Autonomous
Fixed-Point Logics and Computation
1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
Introduction to SPIN. Acknowledgments. Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck. Features PROMELA/SPIN
Acknowledgments Introduction to SPIN Parts of the slides are based on an earlier lecture by Radu Iosif, Verimag. Ralf Huuck Ralf Huuck COMP 4152 1 Ralf Huuck COMP 4152 2 PROMELA/SPIN PROMELA (PROcess MEta
Foundational Proof Certificates
An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
Institut für Parallele und Verteilte Systeme. Abteilung Anwendersoftware. Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart
Institut für Parallele und Verteilte Systeme Abteilung Anwendersoftware Universität Stuttgart Universitätsstraße 38 D-70569 Stuttgart Diplomarbeit Nr. 3243 Development and Evaluation of a Framework for
Using Patterns and Composite Propositions to Automate the Generation of Complex LTL
University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 8-1-2007 Using Patterns and Composite Propositions to Automate the Generation of Complex
AUTOMATED TEST GENERATION FOR SOFTWARE COMPONENTS
TKK Reports in Information and Computer Science Espoo 2009 TKK-ICS-R26 AUTOMATED TEST GENERATION FOR SOFTWARE COMPONENTS Kari Kähkönen ABTEKNILLINEN KORKEAKOULU TEKNISKA HÖGSKOLAN HELSINKI UNIVERSITY OF
INF5140: Specification and Verification of Parallel Systems
Motivation INF5140: Specification and Verification of Parallel Systems Lecture 1 Introduction: Formal Methods Gerardo Schneider Department of Informatics University of Oslo INF5140, Spring 2009 Outline
Checking. E. M. Clarke O. Grumberg K. L. McMillan X. Zhao
Ecient Generation of Counterexamples and Witnesses in Symbolic Model Checking E. M. Clarke O. Grumberg K. L. McMillan X. Zhao School of Computer Science Computer Science Dept. Cadence Berkeley Labs. School
Validated Templates for Specification of Complex LTL Formulas
Validated Templates for Specification of Complex LTL Formulas Salamah Salamah Department of Electrical, computer, Software, and Systems Engineering Embry Riddle Aeronautical University 600 S. Clyde Morris
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
Model Checking LTL Properties over C Programs with Bounded Traces
Noname manuscript No. (will be inserted by the editor) Model Checking LTL Properties over C Programs with Bounded Traces Jeremy Morse 1, Lucas Cordeiro 2, Denis Nicole 1, Bernd Fischer 1,3 1 Electronics
A Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
Bounded LTL Model Checking with Stable Models
Under consideration for publication in Theory and Practice of Logic Programming 1 Bounded LTL Model Checking with Stable Models KEIJO HELJANKO and ILKKA NIEMELÄ Helsinki University of Technology Department
Business Process Verification: The Application of Model Checking and Timed Automata
Business Process Verification: The Application of Model Checking and Timed Automata Luis E. Mendoza Morales Processes and Systems Department, Simón Bolívar University, P.O. box 89000, Baruta, Venezuela,
Monitoring Metric First-order Temporal Properties
Monitoring Metric First-order Temporal Properties DAVID BASIN, FELIX KLAEDTKE, SAMUEL MÜLLER, and EUGEN ZĂLINESCU, ETH Zurich Runtime monitoring is a general approach to verifying system properties at
Static Analysis. Find the Bug! 15-654: Analysis of Software Artifacts. Jonathan Aldrich. disable interrupts. ERROR: returning with interrupts disabled
Static Analysis 15-654: Analysis of Software Artifacts Jonathan Aldrich 1 Find the Bug! Source: Engler et al., Checking System Rules Using System-Specific, Programmer-Written Compiler Extensions, OSDI
Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund
Automata-Based Verification of Temporal Properties on Running Programs Dimitra Giannakopoulou Klaus Havelund RIACS Technical Report 01.21 August 2001 Presented at the 16 th IEEE International Conference
Formal Verification Problems in a Bigdata World: Towards a Mighty Synergy
Dept. of Computer Science Formal Verification Problems in a Bigdata World: Towards a Mighty Synergy Matteo Camilli [email protected] http://camilli.di.unimi.it ICSE 2014 Hyderabad, India June 3,
