Chapter 9 Photosynthesis and Cellular Respiration

Similar documents
Chapter 9 Review Worksheet Cellular Respiration

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Photosynthesis and Cellular Respiration. Stored Energy

Bioenergetics Module A Anchor 3

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63

8-3 The Reactions of Photosynthesis Slide 1 of 51

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

Photosynthesis takes place in three stages:

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

Unit 5 Photosynthesis and Cellular Respiration

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Biology I. Chapter 8/9

AP Bio Photosynthesis & Respiration

Biology. Slide 1of 51. End Show. Copyright Pearson Prentice Hall

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

Photosynthesis Practice. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best.

Green pigment that absorbs solar energy and is important in photosynthesis

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Photosynthesis P P P. Autotrophs and Heterotrophs (page 201) Chemical Energy and ATP (pages ) Chapter 8. Name Class Date

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Summary of Metabolism. Mechanism of Enzyme Action

1. Explain the difference between fermentation and cellular respiration.

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Chapter 9 Cellular Respiration

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

Equation for Photosynthesis

Chloroplasts and Mitochondria

How Cells Release Chemical Energy Cellular Respiration

3. In what part of the chloroplast do the light-dependent reactions of photosynthesis take place? Chloroplast. Name Class Date

Biology Slide 1 of 51

Electron Transport Generates a Proton Gradient Across the Membrane

Visualizing Cell Processes

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Name Date Period PHOTOSYNTHESIS HW REVIEW ENERGY AND LIFE

Metabolism Poster Questions

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

Cell. (1) This is the most basic unit of life inside of our bodies.

CHAPTER 6: PHOTOSYNTHESIS CAPTURING & CONVERTING ENERGY

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

The chemical energy used for most cell processes is carried by ATP.

Photosynthesis Chapter 8 E N E R G Y T O M A K E F O O D?

VII. NARRATION FOR PHOTOSYNTHESIS: TRANSFORMING LIGHT TO LIFE

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

BCOR 011 Exam 2, 2004

pathway that involves taking in heat from the environment at each step. C.

Photosynthesis (Life from Light)

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Cellular Respiration An Overview

Cellular Respiration: Practice Questions #1

Question. Which of the following are necessary in order for photosynthesis to occur? A. water B. light energy C. carbon dioxide D.

Review Questions Photosynthesis

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

Jan Baptisa van Helmont (1648)

MAIN SOURCE OF ENERGY FOR LIFE ON EARTH? THE SUN!!

4.2 Overview of Photosynthesis

Is ATP worth the investment?

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O O 2

Chapter 10: Photosynthesis

Topic 3: Nutrition, Photosynthesis, and Respiration

Ch. 4 ATP & Photosynthesis

Like The Guy From Krypton Photosynthesis: Energy from Sunlight What Is Photosynthesis?

Chapter 7 Cellular Respiration

Photosynthesis January 23 Feb 1, 2013 WARM-UP JAN 23/24. Mr. Stephens, IB Biology III 1

Energy Production In A Cell (Chapter 25 Metabolism)

2. 1. What are the three parts of an ATP molecule? (100 points)

Multiple Choice Identify the choice that best completes the statement or answers the question.

Carbon Hydrogen Oxygen Nitrogen

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

ATP & Photosynthesis Honors Biology

Cellular Respiration and Fermentation

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Photosynthesis Part I: Overview & The Light-Dependent Reactions

Cellular Respiration

Chapter 14- RESPIRATION IN PLANTS

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

Photosynthesis. Photosynthesis: Converting light energy into chemical energy. Photoautotrophs capture sunlight and convert it to chemical energy

008 Chapter 8. Student:

AP BIOLOGY 2015 SCORING GUIDELINES

Bio 101 Section 001: Practice Questions for First Exam

Photosynthesis. Name. Light reactions Calvin cycle Oxidation Reduction Electronegativity Photosystem Electron carrier NADP+ Concentration gradient

b. What is/are the overall function(s) of photosystem II?

Cellular Respiration Stage 4: Electron Transport Chain

8.3 The Process of Photosynthesis

> C 6 H 12 O 6 + 6O 2

Photosynthesis Reactions. Photosynthesis Reactions

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

A B C D. Name Class Date

Name Class Date. Figure 8-1

Lecture 7 Outline (Ch. 10)

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

Biology for Science Majors

Transcription:

Chapter Outline Chapter 9 Photosynthesis and Cellular Respiration Section 1: Energy in Living Systems KEY IDEAS > What type of energy is used in cells, and what is the ultimate source of this energy? > How is an organism s metabolism related to the carbon cycle? > How is energy released in a cell? CHEMICAL ENERGY > What type of energy is used in cells, and what is the ultimate source of this energy? > Organisms use and store energy in the chemical bonds of organic compounds. Almost all of the energy in organic compounds comes from the sun. Organisms require a constant source of energy. Energy is needed for organisms to maintain their homeostasis. Homeostasis is the process of maintaining internal order and balance even when the environment changes. Photosynthesis is the process by which plants, algae, and some bacteria use sunlight, carbon dioxide, and water to produce carbohydrates and oxygen. Organisms that are able to perform photosynthesis, such as plants, are autotrophs. Autotrophs make organic compounds that serve as food for them and for almost all of the other organisms on Earth. Organisms that cannot make their own food must absorb food molecules made by autotrophs, eat autotrophs, or eat organisms that consume autotrophs. Food molecules that are made or consumed by an organism are the fuel for its cells. Cells use these molecules to release the energy stored in the molecules bonds. The energy is used to carry out life processes. METABOLISM AND THE CARBON CYCLE > How is an organism s metabolism related to the carbon cycle? > Metabolism involves either using energy to build organic molecules or breaking down organic molecules in which energy is stored. Organic molecules contain carbon. Therefore, an organism s metabolism is part of Earth s carbon cycle. Energy enters an ecosystem when organisms use sunlight during photosynthesis to convert carbon dioxide molecules into glucose. Holt Biology 1 Photosynthesis and Cellular Respiration

Through the process of cellular respiration, cells make the carbon in glucose into stable carbon dioxide molecules and produce energy. Energy is also released and used to make ATP (adenosine triphospate), an organic molecule that is the main energy source for cell processes. TRANSFERRING ENERGY > How is energy released in a cell? > In cells, chemical energy is gradually released in a series of chemical reactions that are assisted by enzymes. In chemical reactions, energy can be absorbed and released during the breaking and forming of bonds. Enzymes are proteins that act as catalysts in biochemical reactions. ATP When cells break down food molecules, some of the energy in the molecules is released as heat. Much of the remaining energy to make ATP. ATP is a portable form of energy currency inside cells. ATP is a nucleotide made up of a chain of three phosphate groups. When the bond of the third phosphate group is broken, energy is released, producing ADP. ATP Synthase In many cells, ATP synthase, an enzyme that catalyzes the synthesis of ATP, recycles ADP by bonding a third phosphate group to the molecule. ATP synthase acts as both an enzyme and a carrier protein for hydrogen ions. The flow of H + ions through ATP synthase powers the production of ATP. Hydrogen Ion Pumps In chloroplasts and mitochondria, a series of molecules, called an electron transport chain, pump H + ions across the membrane to create a concentration gradient. The electron transport chain uses energy from released from electron carriers, such as NADH and NADPH, to pump hydrogen ions. Holt Biology 2 Photosynthesis and Cellular Respiration

Section 2: Photosynthesis KEY IDEAS > What is the role of pigments in photosynthesis? > What are the roles of the electron transport chains? > How do plants make sugars and store extra unused energy? > What are the three environmental factors that affect photosynthesis? HARVESTING LIGHT ENERGY > What is the role of pigments in photosynthesis? > In plants, light energy is harvested by pigments that are located in the thylakoid membrane of chloroplasts. Photosynthesis is the process that provides energy for almost all life. Chloroplasts are the organelles that convert light energy into chemical energy. Within the inner membrane of the chloroplast, is the stroma which contains the thylakoid membrane. This membrane produces flat, disc-like sacs called thylakoids that are arranged in stacks and contain molecules that absorb light energy for photosynthesis. Light is a form of electromagnetic radiation, energy that can travel through empty space in the form of waves. Sunlight contains all of the wavelengths of visible light which we see as different colors. A pigment is a substance that absorbs certain wavelengths (colors) of light and reflects all of the others. Chlorophyll is a green pigment in chloroplasts that absorbs light energy to start photosynthesis. It absorbs mostly blue and red light and reflects green and yellow light, which makes plants appear green. Plants also have pigments called carotenoids which help plants absorb additional light energy. When light hits a thylakoid, energy is absorbed by many pigment molecules and eventually transferred to electron carriers. Holt Biology 3 Photosynthesis and Cellular Respiration

TWO ELECTRON TRANSPORT CHAINS > What are the roles of the electron transport chains? > During photosynthesis, one electron transport chain provides energy to make ATP, while the other provides energy to make NADPH. Both chains use energy from electrons excited by light. Producing ATP and NADPH Step 1: Electrons excited by light leave the chlorophyll molecules. An enzyme splits water molecules to replace these electrons. Oxygen gas is formed and released into the atmosphere. Step 2: Excited electrons transfer some of their energy to pump H + ions into the thylakoid. This process creates a concentration gradient across the thylakoid membrane. Step 3: The energy from diffusion of H + ions through the channel portion of ATP synthase is used to catalyze a reaction in which a phosphate group is added to a molecule of ADP, producing ATP. Step 4: Light excites electrons in another chlorophyll molecule. The electrons are passed on to the second chain and replaced by the de-energized electrons from the first chain. Step 5: Excited electrons combine with H + ions and NADP + to form NADPH. NADPH is an electron carrier that provides high-energy electrons needed to store energy in organic molecules. PRODUCING SUGAR > How do plants make sugars and store extra unused energy? > In the final stage of photosynthesis, ATP and NADPH are used to produce energy-storing sugar molecules from the carbon in carbon dioxide. The first two stages of photosynthesis depend directly on light because light energy is used to make ATP and NADPH. The use of carbon dioxide to make organic compounds is called carbon dioxide fixation, or carbon fixation. The reactions that fix carbon dioxide are light-independent reactions, sometimes called dark reactions. The most common method of carbon fixation is the Calvin cycle. Atmospheric carbon dioxide is combined with other carbon compounds to produce organic compounds. ATP and NADPH supply some of the energy required in these reactions. Holt Biology 4 Photosynthesis and Cellular Respiration

FACTORS THAT AFFECT PHOTOSYNTHESIS > What are the three environmental factors that affect photosynthesis? > Light intensity, carbon dioxide concentration, and temperature are three environmental factors that affect photosynthesis. In general, the rate of photosynthesis increases as light intensity increases until all of the pigments in a chloroplast are being used. The concentration of carbon dioxide affects the rate of photosynthesis in a way similar to light. Photosynthesis is most efficient in a certain range of temperatures. Holt Biology 5 Photosynthesis and Cellular Respiration

Section 3: Cellular Respiration KEY IDEAS > How does glycolysis produce ATP? > How is ATP produced in aerobic respiration? > Why is fermentation important? GLYCOLYSIS > How does glycolysis produce ATP? > The breaking of a sugar molecule by glycolysis results in a net gain of two ATP molecules. The cells of most organisms transfer energy found in organic compounds, such as those in foods, to ATP. The primary fuel for cellular respiration is glucose. Fats can be broken down to make ATP. Proteins and nucleic acids can also be used to make ATP, but they are usually used for building important cell parts. In glycolysis, enzymes break down one six-carbon molecule of glucose into two three-carbon pyruvate molecules. Glycolysis is the only source of energy for some prokaryotes. Other organisms use oxygen to release even more energy from a glucose molecule. Metabolic processes that require oxygen are aerobic. In aerobic respiration, the pyruvate product of glycolysis undergoes another series of reactions to produce more ATP molecules. AEROBIC RESPIRATION > How is ATP produced in aerobic respiration? > The total yield of energy-storing products from one time through the Krebs cycle is one ATP, three NADH, and one FADH 2. Electron carriers transfer energy through the electron transport chain, which ultimately powers ATP synthase. Organisms such as humans can use oxygen to produce ATP efficiently through aerobic respiration. The first stage of aerobic respiration is the Krebs cycle, a series of reactions that produce electron carriers. The electron carriers enter an electron transport chain, which powers ATP synthase. Up to 34 ATP molecules can be produced from one glucose molecule in aerobic respiration. Holt Biology 6 Photosynthesis and Cellular Respiration

Krebs Cycle Pyruvate (from glycolysis) is broken down and combined with other carbon compounds. Each time the carbon-carbon bonds are rearranged during the Krebs cycle, energy is released. Electron Transport Chain The second stage of aerobic respiration takes place in the inner membranes of mitochondria, where the enzyme ATP synthase is located. Electron carriers, produced during the Krebs cycle, transfer energy through the electron transport chain. Energy from the electrons is used to actively transport hydrogen ions out of the inner mitochondrial compartment. Hydrogen ions diffuse through ATP synthase, providing energy to produce several ATP molecules from ADP. At the end of the electron transport chain, the electrons combine with an oxygen atom and two hydrogen ions to form two water molecules. If oxygen is not present, the electron transport chain stops. The electron carriers are not recycled, so the Krebs cycle also stops. FERMENTATION > Why is fermentation important? > Fermentation enables glycolysis to continue supplying a cell with ATP in anaerobic conditions. To make ATP during glycolysis, NAD + is converted to NADH. Organisms must recycle NAD + to continue making ATP through glycolysis. The process in which carbohydrates are broken down in the absence of oxygen is called fermentation. In lactic acid fermentation, pyruvate is converted to lactic acid in a process. During vigorous exercise, lactic acid fermentation also occurs in the muscles of animals, including humans. During alcoholic fermentation, one enzyme removes carbon dioxide from pyruvate. A second enzyme converts the remaining compound to ethanol, recycling NAD + in the process. Holt Biology 7 Photosynthesis and Cellular Respiration

Efficiency of Cellular Respiration In the first stage of cellular respiration, glucose is broken down to pyruvate during glycolysis, an anaerobic process. Glycolysis results in a net gain of two ATP molecules for each glucose molecule that is broken down. In the second stage, pyruvate either passes through the Krebs cycle or undergoes fermentation. Fermentation recycles NAD+ but does not produce ATP. Cells release energy most efficiently when oxygen is present because they make most of their ATP during aerobic respiration. For each glucose molecule that is broken down, as many as two ATP molecules are made during the Krebs cycle. The Krebs cycle feeds NADH and FADH 2 to the electron transport chain, which can produce up to 34 ATP molecules. Holt Biology 8 Photosynthesis and Cellular Respiration