Comparative Study of Strength of RC Shear Wall at Different Location on Multi-storied Residential Building

Similar documents
SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE

EFFECT OF POSITIONING OF RC SHEAR WALLS OF DIFFERENT SHAPES ON SEISMIC PERFORMANCE OF BUILDING RESTING ON SLOPING GROUND

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

4B The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.

Optimum proportions for the design of suspension bridge

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

ANALYSIS AND DESIGN OF RC TALL BUILDING SUBJECTED TO WIND AND EARTHQUAKE LOADS

Seismic Risk Prioritization of RC Public Buildings

Control of Seismic Drift Demand for Reinforced Concrete Buildings with Weak First Stories

Analysis of a Tower Crane Accident

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

CH. 2 LOADS ON BUILDINGS

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Seismic performance evaluation of an existing school building in Turkey

New approaches in Eurocode 3 efficient global structural design

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

November 20, Heather Sustersic Dear Professor Sustersic,

The International Journal Of Science & Technoledge (ISSN X)

Aluminium systems profile selection

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN

ASSESSMENT AND RETROFITTING OF EXISTING RC BUILDINGS IN VIETNAM IN TERMS OF EARTHQUAKE RESISTANCES

Structural Design of Multi-story Residential Building for in Salem, India

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

Structural Analysis. EUROCODE 2 Background and Applications

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California Prepared By

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

PERFORMANCE BASED SEISMIC EVALUATION AND RETROFITTING OF UNSYMMETRICAL MEDIUM RISE BUILDINGS- A CASE STUDY

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Seismic retrofitting on structures in urban areas

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig some of the trusses that are used in steel bridges

Technical Notes 3B - Brick Masonry Section Properties May 1993

Seismic Evaluation and Retrofitting of RC Building by Using Energy Dissipating Devices

STRUCTURAL DAMAGE OF A 5-STOREY BUILDING: DIFFERENTIAL SETTLEMENT DUE TO CONSTRUCTION OF AN ADJACENT BUILDING OR BECAUSE OF CONSTRUCTION DEFECTS?

9.3 Two-way Slabs (Part I)

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

INTRODUCTION TO BEAMS

Numerical modelling of shear connection between concrete slab and sheeting deck

Seismic Analysis and Design of Steel Liquid Storage Tanks

Tall buildings. Florea Dinu. Lecture 13: 25/02/2014

INTRODUCTION TO LIMIT STATES

Expected Performance Rating System

DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTI-STAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Specification for Structures to be Built in Disaster Areas

The Collapse of Building 7 by Arthur Scheuerman December 8, 06

Steel joists and joist girders are

1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona

Chapter. Earthquake Damage: Types, Process, Categories

DISASTER RESISTANCE EARTHQUAKES AND STRUCTURES

bi directional loading). Prototype ten story

Effect of Container Height on Base Shear of Elevated Water Tank

Methods for Seismic Retrofitting of Structures

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

Elevating Your House. Introduction CHAPTER 5

Foundations 65 5 FOUNDATIONS. by Richard Chylinski, FAIA and Timothy P. McCormick, P.E. Seismic Retrofit Training

Detailing of Reinforcment in Concrete Structures

What is Seismic Retrofitting?

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations

A project report on, Prepared in partial fulfillment of. Study oriented project, Course code: CE G611 Computer Aided Analysis and Design

Structural Audit of Buildings

6 RETROFITTING POST & PIER HOUSES

The University of Birmingham (Live System)

Design Example of a Six Storey Building

SEISMIC RETROFITTING OF STRUCTURES

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

Current Status of Seismic Retrofitting Technology

Sisal Composite Ltd. Apparel 4 Ltd. JM Knit Ltd. Natun Para, Hemayetpur, Savar, Dhaka-1340 ( N, E)

Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version)

Design Manual to BS8110

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

A 38-story design-build steel structure features a staggered-truss frame

THE STAR, DARLING HOTEL AND SPA PYRMONT, NSW. Associate Director, Taylor Thomson Whitting Ltd, Sydney, Australia

Breakaway Walls

Joist Models in Standard Structural Software

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION

Rigid and Braced Frames

Hunter College school of Social Work Thesis Proposal

Critical Facility Round Table

RFEM 5. Spatial Models Calculated acc. to Finite Element Method. of DLUBAL SOFTWARE GMBH. Dlubal Software GmbH Am Zellweg 2 D Tiefenbach

Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads

Overhang Bracket Loading. Deck Issues: Design Perspective

Chapter 6 ROOF-CEILING SYSTEMS

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE...

Advanced Retrofitting Methods and Techniques for RC Building: State of an Art

Weight Measurement Technology

Civil Engineering and Architecture (CEA) Detailed Outline

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

16. Beam-and-Slab Design

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

STRUCTURAL ASSESSMENT REPORT BOLINAS MARINE STATION - BOLINAS, CALIFORNIA

Transcription:

International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 4 (2014), pp. 391-400 Research India Publications http://www.ripublication.com/ijcer.htm Comparative Study of Strength of RC Shear Wall at Different Location on Multi-storied Residential Building Civil Engineering Department, RCOEM, Nagpur, Shri Ramdeobaba College of Engineering & Management, Nagpur, INDIA. Abstract Shear wall systems are one of the most commonly used lateral load resisting systems in high-rise buildings. Shear walls have very high in plane stiffness and strength, which can be used to simultaneously resist large horizontal loads and support gravity loads, making them quite advantageous in many structural engineering applications. There are lots of literatures available to design and analyze the shear wall. However, the decision about the location of shear wall in multistory building is not much discussed in any literatures. In this paper, therefore, main focus is to determine the solution for shear wall location in multistory building. A RCC building of six storey placed in NAGPUR subjected to earthquake loading in zone-ii is considered. An earthquake load is calculated by seismic coefficient method using IS 1893 (PART I):2002. These analyses were performed using STAAD Pro. A study has been carried out to determine the strength of RC shear wall of a multistoried building by changing shear wall location. Three different cases of shear wall position for a 6 storey building have been analyzed. Incorporation of shear wall has become inevitable in multi-storey building to resist lateral forces. Keywords: Multi-storey, RC structure, seismic analysis, RC shear wall, STADD Pro. 1. Introduction Generally shear wall can be defined as structural vertical member that is able to resist combination of shear, moment and axial load induced by lateral load and gravity load transfer to the wall from other structural member. Reinforced concrete walls, which

392 include lift wells or shear walls, are the usual requirements of Multi Storey Buildings. Design by coinciding centroid and mass center of the building is the ideal for a Structure. An introduction of shear wall represents a structurally efficient solution to stiffen a building structural system because the main function of a shear wall is to increase the rigidity for lateral load resistance. In modern tall buildings, shear walls are commonly used as a vertical structural element for resisting the lateral loads that may be induced by the effect of wind and earthquakes which cause the failure of structure as shown in figure Shear walls of varying cross sections i.e. rectangular shapes to more irregular cores such as channel, T, L, barbell shape, box etc. can be used. Provision of walls helps to divide an enclose space, whereas of cores to contain and convey services such as elevator. Wall openings are inevitably required for windows in external walls and for doors or corridors in inner walls or in lift cores. The size and location of openings may vary from architectural and functional point of view. The use of shear wall structure has gained popularity in high rise building structure, especially in the construction of service apartment or office/ commercial tower. It has been proven that this system provides efficient structural system for multi storey building in the range of 30-35 storey s (MARSONO & SUBEDI, 2000). In the past 30 years of the record service history of tall building containing shear wall element, none has collapsed during strong winds and earthquakes (FINTEL, 1995). 1.1 RC Shear Wall Reinforced concrete (RC) buildings often have vertical plate-like RC walls called Shear Walls in addition to slabs, beams and columns. These walls generally start at foundation level and are continuous throughout the building height. Their thickness can be as low as 150mm, or as high as 400mm in high rise buildings. The overwhelming success of buildings with shear walls in resisting strong earthquakes is summarized in the quote, We cannot afford to build concrete buildings meant to resist severe earthquakes without shear walls. as said by Mark Fintel, a noted consulting engineer in USA. RC shear walls provide large strength and stiffness to buildings in the direction of their orientation, which significantly reduces lateral sway of the building and thereby reduces damage to structure and its contents. Since shear walls carry large horizontal earthquake forces, the overturning effects on them are large. Shear walls in buildings must be symmetrically located in plan to reduce ill-effects of twist in buildings. They could be placed symmetrically along one or both directions in plan. Shear walls are more effective when located along exterior perimeter of the building such a layout increases resistance of the building to twisting. 1.2 Function of Shear Wall Shear walls must provide the necessary lateral strength to resist horizontal earthquake forces. When shear walls are strong enough, they will transfer these horizontal forces to the next element in the load path below them. These other components in the load

Comparative Study of Strength of RC Shear Wall at Different Location on Multi 393 path may be other shear walls, floors, foundation walls, slabs or footings. Shear walls also provide lateral stiffness to prevent the roof or floor above from excessive sidesway. When shear walls are stiff enough, they will prevent floor and roof framing members from moving off their supports. Also, buildings that are sufficiently stiff will usually suffer less nonstructural damage. 2. Analysis Analysis of building is done using STAAD Pro. The models were prepared in the STADD Pro. Software by using different cross sections of RC shear wall viz. Box type, L type and cross type shear wall and these are located at different location such as along periphery, at corner and at middle positions. 2.1 Problem Statement For the analysis purpose, the model of RC building G+ 5 storey s and 16mx16m plan area has selected which is located in Nagpur City. The ground storey height is 3.5m and floor to floor height is 3m. Spacing of frame is 4m. Concrete used is M20 and structural steel is Fe415. Structural properties of RC Building Shear wall thickness : 200 mm Total depth of slab : 120 mm External wall thickness : 250 mm including plaster Internal wall thickness : 150 mm including plaster Size of external column : 300x530 mm Size of internal column : 300x300 mm Size of beam in longitudinal : 300x450 mm and transverse direction Zone factor (Z) : 0.1 Importance factor (I) : 1 Response reduction factor (R) : 3

394 Following figure (1) shows the plan and figure (2) elevation of different models of the above multistoried RC building in that column along X-direction shows in alphabets i.e. A, B, C, D and E and column along Z-direction shows with the numbers i.e. 1,2,3,4 and 5. Fig. 1 Model of Building Without Shear Wall. Figs: Different model of building with different type of shear wall.

Comparative Study of Strength of RC Shear Wall at Different Location on Multi 395 Table 1: Computation of lateral forces at each floor of building. Sr. No. Level Lateral Force Model I Model II Model III Model IV 1 Roof 253.03 237.431 237.431 251.502 2 5 th Floor 289.18 269.539 269.539 289.498 3 4 th Floor 187.06 174.905 174.905 188.174 4 3 rd Floor 108.44 101.394 101.394 108.562 5 2 nd Floor 50.60 47.317 47.317 50.662 6 1 st Floor 15.36 13.519 13.519 15.38 Deflected shape of a structure for 1.5DL+1.5EQX Model I: Structure without shear wall Model II: Structure with L type shear wall Model III: Structure with shear wall along periphery Model IV: Structure with cross type shear wall

396 3. Result Summary Table 4.1: Maximum Deflection at the Roof without Shear Wall. software Load combination Calculated deflection (mm) STADD Pro. V8i 1.5DL+1.5EQX 52.948 1.2DL+1.2LL+1.2EQX 491 1.5DL+1.5EQZ 38.172 Nod e no. 1.5 DL +1. 5E QX At 20m 1 52. 69 2 52. 739 3 52. 734 7 52. 838 8 52. 832 13 52. 948 Table 4.2: Comparison of drift (mm) between shear wall and without shear wall of a structure. No shear wall Shear wall 1 Shear wall 2 Shear wall 3 1.2 1.5 1.5D 1.2 1.5 1.5D 1.2 1.5 1.5 1.2 DL DL L+1. DL DL L+1. DL DL DL DL +1. +1. 5EQ +1.2 +1.5 5EQ +1. +1. +1. +1. 2LL 5E X LL+ EQ X 2L 5E 5E 2L +1. QZ 1.2 Z L+ QZ QX L+ 2E EQ 1.2 1.2 QX X EQ EQ X X 16 217 213 366 37 491 37. 855 37. 92 37. 948 38. 06 38. 119 38. 172 13.5 29 13.9 24 0 74 15.2 02 15.4 18 15.8 38 10.8 29 1 87 4 02 12.7 55 12.9 98 13.4 69 12.8 42 12.8 91 13.4 02 5 84 8 72 15.2 41 9.82 1 9.78 1 9.70 8 10.1 95 10.3 72 10.6 55 7.8 96 9.5 25 7.7 9.4 95 65 7.7 9.4 85 93 8.6 9.9 28 8.8 10. 39 162 9.1 10. 97 391 648 767 74 714 599 723 Table 4.3: Maximum Bending Moment of Various Models. 748 899 869 919 711 806 1.5 DL +1.5 EQ Z 12.9 3 13.0 29 12.9 97 13.0 39 12.9 81 13.0 27 LEVEL Bending Moment (kn.m) MODEL I MODEL II MODEL III MODEL IV AT 20m -7.896-10.607 17.207-12.129 AT 8m -2.365-2.132 12.412-5.204 AT 3.5m -0.315 1.119 3.321-0.363

Comparative Study of Strength of RC Shear Wall at Different Location on Multi 397 Table 4.4: Comparison of Shear forces-y (KN) for Beam of different models. COMPARISON OF SHEAR FORCE FOR BEAM BEAM NO. LOAD COMBINATIO N SHEAR FORCE (KN) NO SHEAR WALL SHEAR WALL 1 SHEAR WALL 2 SHEAR WALL 3 7 1.5DL+1.5EQX 10.007 8.221 40.717 12.735 72 1.5DL+1.5EQX 5.424 4.508 37.386 9.332 417 1.5DL+1.5EQX 6.336 5.045 33.784 451 1784 1.5DL+1.5EQX 5.406 3.813 30.739 15.561 1849 1.5DL+1.5EQX 5.221 2.638 20.287 16.508 1914 1.5DL+1.5EQX 4.969 1.623 15.156 16.664 1979 1.5DL+1.5EQX 3.866 0.343 12.987 10.438 Table 4.5: Maximum Drift in Frame X-direction. Load Combination Displacement mm Allowabl MODE L I MODE L II MODE L III MODE L IV e Displ. mm (1) (2) (3) (4) (5) (6) 1.2DL+1.2LL+1.2EQX 215 187 9.798 892 80 1.5DL+1.5EQX 52.737 13.924 7.785 76 80 1.5DL+1.5EQZ 38.005 13.559 9.488 13.18 80 Table 4.6: Maximum Drift in Frame Y-direction. Load Combination Displacement mm Allowable MODE MODE MODE MODEL Displacemen L I L II L III IV t mm (1) (2) (3) (4) (5) (6) 1.2DL+1.2LL+1.2EQX 215 187 9.798 892 80 1.5DL+1.5EQX 52.737 13.924 7.785 76 80 1.5DL+1.5EQZ 38.005 13.559 9.488 13.18 80

398 4.1.a: Graph of Shear Force Y 4.2.b: Graph of Shear Force Z 4.3.c: Graph of Bending Moment Y 4.4.d: Graph of Bending Moment Z 4. Discussion 4.1 Maximum Deflection The lateral deflection of column in the model of shear wall provided along periphery is reduced as compared to other two models. It reduces up to 33.33% and 32.06% as compared to models with L type shear wall and cross type shear wall respectively. Maximum Shear Force In Beams The effect of earthquake for model III at ground storey is more as compare to top storey and middle level. e.g. for a particular beam at ground storey increases shear force up to 21.21% compared to shear wall at middle storey. Maximum Bending Moment in Beams The effect of earthquake for model III at top storey is more as compare to middle storey and ground level. e.g. for a particular beam at top storey increases bending moment up to 41.67% compared to bending moment at middle storey.

Comparative Study of Strength of RC Shear Wall at Different Location on Multi 399 5. Conclusion (i) Among all the load combination, the load combination of 1.5DL+1.5EQX is found to be more critical combination for all the models. (ii) The lateral deflection of column for building with type 2 shear wall is reduced as compared to all models. (iii) The shear force is maximum at the ground level for model III as compared to model II and IV. (iv) The shear force of model IV at middle level is more as compared to model III. (v) The bending moment is maximum at roof level for model III among all the models. (vi) It has been observed that the top deflection is reduced after providing type 2 shear wall of the frame in X-direction as well as in Y-direction. (vii) For the load 1.5DL+1.5EQZ, both the shear force and bending moment is maximum for model III of the frame in X-direction. (viii) It has also been observed that for the load 1.5DL+1.5 EQX, the shear force is more for model III as compared to model II of the frame of Y-direction. (ix) The bending moment of model IV is more than model III for the load 1.5DL+1.5 EQX of the frame in Y-direction. Hence, it can be said that building with type 2 shear wall is more efficient than all other types of shear wall. References [1] Solution of shear wall in multi-storey building, Anshuman, Dipendu Bhunia, Bhavin Ramjiyani, International journal of civil and structural engineering, Volume 2, no.2, 20 [2] Review on Shear wall for soft storey high rise building, Misam Abidi and Mangulkar Madhuri N.,International Journal of Civil and Advance Technology, ISSN 2249-8958,Volume-1,Issue-6, August 2012 [3] Effect of change in shear wall location on storey drift of multi-storey residential building subjected to lateral load, Ashish S. Agrawal and S. D. Charkha, International journal of Engineering Research and Applications, Volume 2, Issue 3,may-june 2012, pp.1786-1793. [4] Configuration of multi-storey building subjected to lateral forces, M Ashraf, Z. A. Siddiqui, M. A. Javed, Asian journal of civil engineering,vol. 9,no.5, pp. 525-535, 2008. [5] IS 1893(part 1) : 2002, Criteria for earthquake resistant design of structures, part 1, general provisions and buildings, Fifth revision, Bureau of Indian Standerds, Manak Bhavan, Bahadur Shah Zafar Marg, New Delhi 110002. [6] IS : 875 (Part 2) 1987 (Reaffirmed 2008), Code of practice for design loads for buildings and structures. Part 2- Imposed load. [7] Shrikhande Manish, Agrawal Pankaj(2010). Earthquake Resistant Design of Structures. PHI Learning Private Limited New Delhi.

400