Theory and Performance of Series Connected Synchronous Motor

Similar documents
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

SYNCHRONOUS MACHINES

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

8 Speed control of Induction Machines

Motor Fundamentals. DC Motor

Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting, excitation system

Lab 14: 3-phase alternator.

Power Quality Paper #3

Induction Motor Theory

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

IV. Three-Phase Induction Machines. Induction Machines

Simulation and Analysis of Parameter Identification Techniques for Induction Motor Drive

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

13 ELECTRIC MOTORS Basic Relations

DIRECT CURRENT GENERATORS

Synchronous generators are built in large units, their rating ranging from tens to hundreds of megawatts.

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

Unit 33 Three-Phase Motors

Direct Current Motors

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Verification of Short Circuit Test Results of Salient Poles Synchronous Generator

HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS

Principles and Working of DC and AC machines

DYNAMIC MODEL OF INDUCTION MOTORS FOR VECTOR CONTROL. Dal Y. Ohm Drivetech, Inc., Blacksburg, Virginia

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao

Synchronous motor. Type. Non-excited motors

On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction Motors

Lab 8: DC generators: shunt, series, and compounded.

WIND TURBINE TECHNOLOGY

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

Renewable Energy Laboratory for Engineering Students

Simulation of VSI-Fed Variable Speed Drive Using PI-Fuzzy based SVM-DTC Technique

INDUCTION REGULATOR. Objective:

THIS paper reports some results of a research, which aims to investigate the

CHAPTER 5 SYNCHRONOUS GENERATOR

Three phase circuits

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR

Mathematical Modelling of PMSM Vector Control System Based on SVPWM with PI Controller Using MATLAB

How To Understand And Understand The Electrical Power System

Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

ELECTRICAL ENGINEERING

Basics of Electricity

1150 hp motor design, electromagnetic and thermal analysis

ET 332b Ac Electric Machines and Power Systems

6. Synchronous machine dynamics

UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Design and Analysis of Switched Reluctance Motors

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

Module Title: Electrotechnology for Mech L7

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS

Lecture 6: AC machinery fundamentals

Motors and Generators

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection

Chapter 6. Synchronous Machines

Physical Address: City: State: Zip Code:

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

A New Design of Permanent Magnets Reluctance Generator Andi Pawawoi, Syafii

Large Generators and High Power Drives

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

Advance Electronic Load Controller for Micro Hydro Power Plant

UNIT II : SYNCHRONOUS MOTORS

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR

FREQUENCY CONTROLLED AC MOTOR DRIVE

ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only

Principles of Adjustable Frequency Drives

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Science and Reactor Fundamentals Electrical CNSC Technical Training Group. Table of Contents

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

How the efficiency of induction motor is measured?

SIMULATION AND SPEED CONTROL OF INDUCTION MOTOR DRIVES

Three-Phase Induction Motor

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

NATIONAL CERTIFICATE (VOCATIONAL)

AC Generators and Motors

DC motors: dynamic model and control techniques

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

Inductance. Motors. Generators

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

INTRODUCTION TO SYSTEM PROTECTION. Hands-On Relay School 2012

Outline. Turbine Generators. Generator History 3/25/2014

COMPUTER SIMULATION OF REAL TIME IDENTIFICATION FOR INDUCTION MOTOR DRIVES

Modeling and Simulation of a Large Chipper Drive

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations

Transcription:

Theory and Performance of Series Connected Synchronous Motor Yasser G. Dessouky BSc, MSc, PhD and MIEEE Control and Electrical Engineering Department Arab Academy for Science and Technology Miami, Alexandria PO Box 19, Egypt Adel L. Mohamadein BSc, MSc, PhD, MIEE, CEng and MIEEE Electrical Engineering Department Alexandria University Alexandria PO Box 1544, Egypt Abstract: Series Connected Synchronous Motor (SCSM) is an induction motor with stator and rotor windings connected in series. This motor runs synchronously at double nominal speed when runs as normal induction motor (IM). This paper presents theoretical and experimental investigation for steady state performance based on a phasor diagram as derived from relation between voltages, currents and fluxes of the machine. Keywords: Slip ring induction motor, parametric machine, synchronous motor LIST OF SYMBOLS f frequency of the applied supply voltage, Hz F R, F S, F t rotor, stator and resultant MMFs respectively I magnetisation current, A I a armature current, A K effective rotor to stator turns ratio l s, l r stator and rotor leakage inductance respectively, H N b, N r base and operating speeds when the machine runs as I.M and SCSM respectively, rpm P number of poles P o/p,p i/p,p f output and input power and friction losses respectively, W R a armature resistance, R s, R r stator and rotor resistances respectively, T output torque, Nm AS, AR stator and rotor phase voltage respectively,, E supply voltage and back emf per phase respectively, X a armature leakage reactance respectively, X m, X ms magnetising reactance corresponding to N b and N r when runs as I.M and SCSM respectively,,, angles between (F S & F t ), (F R & F t ) and (F R & F S ) respectively angle between supply current and voltage I- INTRODUCTION Operation principle of series connected synchronous machines for generator mode of operation was studied and analysed using d-q model [1], Floquet theory [] and phasor diagram [3]. Controlling the terminal voltage via excitation capacitor has been presented in [4]using a fixed thyristor controlled reactor. SCSM is basically a three phase slip ring induction machine whose stator and rotor windings are connected in series with sequence of two phases reversed as shown in Fig. 1. With reference to Fig., synchronous mode of operation is possible only when stator and rotor MMFs rotate synchronously opposite to each other at an absolute speed equal to half rotor speed. This machine is capable of operating at higher speeds than conventional induction or synchronous motors fed by same supply frequency. Since rotor and stator windings are connected in series, this machine can operate at higher voltage levels without affecting conductor insulation class. Theory and analysis based on a d-q model has been presented in [5]. In the present paper, the motor mode of operation for series connected machines is studied based on a phasor diagram representation. Theoretical and experimental results are compared and showed reasonable correlation. cs cr ar as br bs Fig. 1 Schematic diagram of SCSM

-3 1.1.9.7 Nr.5.3.1 Nr/ -.1 - -1 Nr/ 1 3 4 5 6 7 8 9 1 11 1 13 14 15 Fig. Stator and rotor MMF s 16 17 Rotor 18 Stator 19 II- PHASOR DIAGRAM REPRESENTATION Phasor diagram of SCSM can be determined based on the relation between voltages, currents and fluxes of the machine. As shown in Fig. 3, the machine is symbolically represented as a -pole, 3-phase machine. Denoting the angle between stator and rotor MMF axes as, then resultant air gap MMF F t will lag stator MMF F S by an angle of while leading rotor MMF F R by an angle of where: (1) Fig.3 shows the rotor position and the MMF's when the armature current is maximum. The instants of maximum rotor and stator phase voltage take place when the resultant MMF coincides with rotor and stator coils. Therefore, the instant of maximum phase current follows that of maximum stator and rotor phase voltages by angles of (9-) and (9-) respectively as F t should rotate these angles to coincide with stator and rotor phase coil planes. In phasor notation, stator and rotor phase voltages AS and AR respectively can be expressed by: AS AS j e () 1 AR AR j e (3) Since same flux cuts both stator and rotor phases at same speed and by assuming an effective turns ratio of K, then: K FS (4) Therefore, AR K AS (5) Regarding MMF relationship of Fig. 3, it is seen that: sin F sin S (6) Substituting by (4) into (6) yields: K sin sin (7) Also, total MMF F t is related to stator MMF F S and rotor MMF F R by: Ft F R F S FS cos (8) Subsequently, the magnetisation current I is related to armature current I a by: I 1 K Kcos (9) Conventional no-load test for 3-phase induction machine is carried out at base speed N b corresponding to nominal motor frequency yielding the evaluation of magnetisation reactance X m. Denoting magnetisation reactance of SCSM as X ms where: Xms AS AS I 1 K Kcos (1) Ft FS Since field rotates at half rotor speed N r, the corresponding value of X ms is given by: N Xms X r m (11) Nb Substituting by (1) into (11) and rearranging result in: AS N X r m 1 K Kcos (1) Nb Fig. 3 Symbolic representation of -pole 3-phase SCSM The supply voltage equals back emf plus voltage drop across resistances and leakage reactances of both rotor and stator.

E E e j = AS AR (17) 9- as Fig. 4 Phasor diagram of SCSM 9- Ra ar Xa Following previous relations, a phasor diagram can be constructed as shown in Fig. 4. It is seen that: cos Ra AS sin AR sin (13) sin Xa AS cos AR cos (14) where, Ra Rs Rr Xa f ls lr f PN r 4 For each value of, the values of the six unknowns,, I a, AS, AR and can be evaluated by solving the six simultaneous equations (1), (5), (7), (1), (13) and (14). III- TORQUE AND POWER EXPRESSIONS Saturation and eddy current losses are neglected. The input power P i/p is given by: Pi / p 3 cos (15) The output power P o/p can be expressed as: where, Po / p 3E cos Pf (16) The net electromechanical torque T is expressed by: P o / p T (18) N r 6 I- EXPERIMENTAL TEST RIG The experimental set-up is made from a slip ring three phase induction motor whose details are given in Table 1. The parameters as have been obtained by standard tests at 5 Hz are given in Table. The induction machine is connected in the SCSM mode as shown in Fig. 1 and coupled to a DC dynamometer, which enables torque measurement. The speed is measured by an ac tachometer. Also phase voltage, current and input power are recorded. Starting methods of SCSM are similar to conventional synchronous motor. In this test, the machine is fed from a conventional synchronous generator to facilitate starting and speed control. - RESULTS AND DISCUSSION Experimental tests have been carried out at a frequency of 5 Hz and a maximum line voltage of 135 as obtained from the supplying synchronous generator at this low frequency. Thus, the running speed of SCSM is 15 rpm. The parts of Fig. 5 show the relation between motor angles, voltages, torque, power and efficiency versus motor current. The experimental results were limited by motor rated current (3.6A). Besides the supplying synchronous generator pulls out of synchronism after that current. From Fig. 5, it can be concluded that the correlation between experimental and theoretical results shows reasonable matching which proves the validity of the suggested model. It can also be concluded that the input power factor cos() is high. This is attributed to the high inductance ratio L d /L q as concluded from d-q model [5] (approximately 4). The armature current always lags stator phase voltage while it lags and leads rotor phase voltage. The motor power factor is always lagging like induction motor and unlike conventional synchronous motor whose power factor is lagging or leading. The input power is low compared to rated value. This is because of using low applied voltage which can be increased to about 7 because of series connection of rotor and stator. Increasing applied voltage results in wider range and enables obtaining more power to weight ratio than conventional induction machine. Because of high speeds this machine would have better cooling. It is expected for unity turns ratio machine that the performance would be better because the stator and rotor voltage will be in phase and therefore the power factor will be improved. TABLE 1. IM DETAILS /38, 6.3/3.6 A. kw, 5 Hz, 4 pole 139 rpm

TABLE. IM PARAMETERS R s =.8, R r = 1.96, l s = 16.81 mh, l r = 1.48 mh, K =.86 and X m = 14.5. 1 8 6 4 18 15 1 9 6 Angles, degrees 3.5 1 1.5.5 3 3.5 4 5 4 3 1 oltage, (a) as ar.5 1 1.5.5 3 3.5 4 (b).5 1 1.5.5 3 3.5 4 (e) Fig. 5 Relationship between motor current and (a) motor angles, (b) phase voltages, (c) developed torque, (d) power and (e) efficiency (points = measured & lines = calculated) I. CONCLUSION SCSM runs synchronously at double rated speed when it runs as an induction motor depending on number of motor poles and supply frequency. Like synchronous motors, this motor is not self starting and it starts with the same methods as the conventional synchronous motor. Saturation and eddy current losses were neglected. The steady state performance has been studied based on a deduced phasor diagram. Comparison between experimental and theoretical results showed satisfactory agreement which proves the validity of the suggested phasor diagram. The results can be considered as a useful guide to operate and design three phase SCSM. 5 T, Nm 4 3 1.5 1 1.5.5 3 3.5 4 9 Power, W ( c ) II. REFERENCES [1] A.S. Mostafa, A.L. Mohamadein and E. M. Rashad, Analysis of series connected wound-rotor self excited induction generator, IEE Proc. B, ol. 14, No. 5, Sept. 1993, pp. 39-336. [] A.S. Mostafa, A.L. Mohamadein and E. M. Rashad, Application of Floquet s theory to the analysis on series connected wound rotor self excited synchronous generator, IEEE Trans. on EC, ol. 8, No. 3, Sept. 1993. [3] A.L. Mohamadein and E.A. Shehata, Theory and performance of series connected self excited synchronous generator, IEEE Trans. on EC, ol. 1, No. 3, Sept. 1995. [4] M. EL-Shanawany, Capacitor controlled self excited series connected synchronous generator, Eng. Research Bulletin, Faculty of Engineering, Menoufia University, ol. 17, Part I, 1994. [5] E. Rashad, M. Abdel-Karim and Y.G. Dessouky, Theory and analysis of three phase series connected parametric motors, IEEE Trans. on EC, ol. 11, No. 4, Dec. 1996. 6 I/P O/P 3.5 1 1.5.5 3 3.5 4 (d)

II. BIOGRAPHIES Yasser Gaber Dessouky was born in Alexandria, Egypt, 1969. He got the B.Sc. and M.Sc. in Electrical and Control Engineering from Alexandria University, Egypt in 1991 and 1993 respectively. He obtained the Ph.D. degree from Heriot-Watt University, Edinburgh, U.K. in 1998 Since 1991 he has been employed in the Department of Control and Electrical Engineering of the Arab Academy of Science and Technology, Alexandria, Egypt. His research interest includes modelling and simulation of electric machines, power electronics, machine drives and microprocessor applications. Adel L. Mohamadein (SM 83) was born in Alexandria on December, 1947. He obtained his BSc and MSc from Alexandria University in 1968 and 1971 respectively and his PhD from UMIST in 1974. Professor Mohamadein has been delegated to King Saudi University twice in the periods 1978-1981 and 1984-1989. His interest is in the area of electric machines, drives and power electronics where he published around 65 papers.